2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

A Multi-Ported Memory Compiler
Utilizing True Dual-port BRAMs

Ameer M.S. Abdelhadi and Guy G.F. Lemieux
Department of Electrical and Computer Engineering
The University of British Columbia
Vancouver, B.C., V6T 174, Canada
{ameer,lemieux } @ece.ubc.ca

Abstract—Recent work has shown how multi-ported RAMs
can be built out of dual-ported RAMs. Such techniques combine
two structures: a set of “data banks” to hold the data, and a
method for selecting the bank containing the last-written data,
often called a live-value table (LVT). Most previous work has
focused on the design of the LVT to reduce area and improve
performance. In this paper, we instead reduce area by optimizing
the design of the “data banks” portion. The optimization is
embedded into a memory compiler that solves a set cover
problem. When the set cover problem is solved optimally, the
data banks use minimum area. Our technique applies to multi-
ported RAMs that have a structural pattern we describe as
“switched ports”. Switched ports are a generalization of true
ports, where a certain number of write ports can be dynamically
switched into a possibly different number of read ports using one
common read/write control signal. Furthermore, a given
application may have multiple sets, each set with a different
read/write control. While previous work generates multi-port
RAM solutions that contain only true ports, or only simple ports,
we contend that using only these two models is too limiting and
prevents optimizations from being applied. Experimental results
on 10 random instances of multi-port RAMs show 17% BRAM
reduction on average compared to the best of other approaches.
The compiler and a fully parameterized Verilog implementation
is released as an open source library. The library has been
extensively tested using Altera's EDA tools.

Keywords—embedded memory; block RAM; multi-ported
memory; shared memory; register-file; parallel memory access

L.

Multi-ported memories are the cornerstone of all high-
performance CPU designs. They are often used in register
files, but also in other shared-memory structures such as
caches and coherence tags. Hence, high-bandwidth memories
with multiple parallel reading and writing ports are required.
In particular, multi-ported RAMs are used by wide superscalar
processors [1], VLIW processors [1][2], multi-core
processors [3][4], vector processors, and coarse-grain
reconfigurable arrays (CGRAs). For example, the second
generation of the Itanium processor architecture employs a 20-
port register file constructed from SRAM bit cells with 12
read ports and 8 write ports [3]. The key requirement for all of
these designs is fast, single-cycle, concurrent access from
multiple requesters.

INTRODUCTION

In FPGAs, one way of synthesizing a multi-ported RAM is
to build it from registers and logic. However, this is only

978-1-5090-2356-1/16 $31.00 © 2016 IEEE
DOI 10.1109/FCCM.2016.45

140

feasible for very small memories. Another way is to alter the
basic SRAM bit cell to provide extra access ports, but this
requires a custom design for each unique set of parameters
(e.g. number of ports). Since FPGAs must fix their RAM
block design for the most common usage case, it is too costly
to provide highly specialized RAMs with a large number of
ports in a device.

Recently, a few different multi-ported RAM designs for
FPGAs have been proposed. All of these techniques use two
structures: a set of “data banks” to hold the data itself, and a
method for selecting the bank containing the last-written data,
often called a live-value table (LVT). Implementation of the
LVT varies, from a register-based LVT [5], to an invalidation-
based LVT [6] which uses block RAMs only. All of these
techniques optimize the LVT itself, but leave the data banks
portion untouched.

It is worth noting that, since these approaches focus on the
LVT, they all use block RAMs only in simple dual-port mode
for the data banks, where one port is dedicated to reads, and
the other is dedicated to writes. However, most FPGA block
RAMs can operate as true dual ports, where each port can
dynamically switch (independently) between read and write.
This paper exploits this true dual-port capability to save area
in the data banks.

Two recent works take advantage of the true dual-port
capability to reduce the number of block RAMs used for the
data banks (as opposed to the LVT). The first work designs a
multi-port RAM where every port is a true dual-port [7]; it
requires half as many block RAMs for data banks as when the
original LVT method is used with fixed ports [5]. However,
this approach makes every port a true dual port; we show that
even fewer block RAMs can be used if multiple ports can be
grouped into switched ports. The second work allows simple
read and simple write ports as before, but adds the notion of a
single “switched port” [8]. While a true port is based on the
pairing of a single read and single write port, switched ports
are best described as a set of read ports and set of write ports
switched under a common read/write control signal. This
saves block RAMs by placing some ports into true dual-port
mode. However, this second work is limited to implementing
just a single switched port.

In this paper, we demonstrate how to build multi-port
RAMs that contain any number of swiched ports. As well, the
multi-port RAM may contain any number of simple read

IEEE
computer
® psouety

ports, simple write ports, and any number of true dual ports
(each of the latter will be treated as a switched port). Since a
true port is a special case of a switched port, we are effectively
generalizing the techniques used in [7] and [8]. Under this
new model, we show an optimization method that can
minimize the use of block RAMs in the data banks. We also
note that for any given problem, there may be multiple
solutions. Our solution uses a minimum set cover algorithm to
map required read/write dependences into true dual-port block
RAMs. In all of our test cases, the set cover problem was
solved optimally, leading to the use of minimal block RAMs
in the data banks.

This paper constructs novel, generic, modular and
parametric switched BRAM-based multi-switched-ports
RAMs. Compared to previous simple-port and true-port
methods, the proposed technique significantly reduces BRAM
consumption. The data banks are optimized to support mixed-
port configuration by utilizing true-dual-ported BRAMs. The
data bank connectivity is converted into a Data-Flow-Graph
(DFG), where vertices represent ports and edges represent
data banks, respectively. Each block RAM deployed in the
solution will cover one or more DFG edges. An optimal set
covering all of the DFG edges results in deploying a minimal
number of block RAMs.

Our architecture is fully implemented in Verilog,
simulated using Altera’s ModelSim, and compiled using
Quartus II. A large variety of different architectures and
parameters, bypassing, depth and width are simulated in batch,
each with over a million random memory cycles. Stratix V,
Altera’s high-end performance-oriented FPGA, is used to
implement and compare the proposed approach with previous
techniques. A run-in-batch simulation and synthesis flow
manager is also provided. The Verilog modules and the flow
manager are available online [9][10].

The rest of this paper is organized as follows. In Section II,
RAM port classification is provided. BRAM-based RAM multi-
porting techniques are reviewed in Section III. The proposed
multi-switched-ports synthesis method is described in detail in
Section IV. The experimental framework and results, are
discussed in Section V. Conclusions are drawn in Section VI.

II. RAM PORT CLASSIFICATION

As described in Fig. 1 (top), RAM ports can be classified
into two categories: fixed ports and switched ports.

A fixed port is cither a simple read port or a simple
write port; the activity of any write is not switched with any
other read. Hence, for a set of fixed ports, all writes and reads
in the set can be concurrently active.

A true dual-port, or simply a true port, is a single port
that can perform either read or write under the control of a
single read/write line. A true port is often drawn as two
distinct data ports (one for read, one for write), but they share
address lines in common. It is possible (but uncommon) to do
a read at the same time as a write to the same address, but the
resulting data are implementation-specific.

A switched port is a collection or set of read ports and write
ports. The number of read and write ports may be different. The

141

ys RAM Ports N\
[Fixed Ports Switched Ports \ \
[(Simple Write Simple Read) K True Ports ‘\ ‘
\ (a single write) (a single read) (a single write switched with a single read)
Fixed Switched
General 1Simple Write! Simple Read General | True
20w, Ri | 1 i
R RS
: : ! Simple ! Simpl !
A Fixed : \;ergee ! Ilggde Switched } rue
o | Waddr; l«—RAddr, | W E n ! R/W (shared) ‘ R/W-
= | Whata, [~RData i pqqre ! Waddr RAddr, | Addr
S | WAddry t«—RAddr, | Whata | Addr RData | WDatay- RData, | Whata
@ | WDatay +RDataz | Simple ! Simple WAddr RAd
o : _ P Wrg i Regd WDatas RData; \ RData
Fixed C ! Switched True
Write Mode Read Mode
= R/W=0 R/W=1
&£/ waddr; RAdr,
O O WData;- RData;
Eglisdad i
I3 Pl Switched Switched 002
Fig. 1. RAM port classification: (top) Venn diagram. (middle) Symbols.

(bottom) Switched-port modes; faint ports are inactive.

read-address lines are usually distinct from the write-address
lines. However, the entire set of ports share a single read/write
line that controls whether the write ports are active, or the read
ports are active. Reads and writes cannot be simultaneously
active. Note that a true port is a special case where a switched
port consisting of a single read and a single write, and the
address lines are shared. A given application may have multiple
switched ports, each with an independent read/write line.

Fig. 1 (middle) shows symbols and black box connectivity
for these different types of RAM ports. The switched port
read/write activity is controlled by a shared R/W control
signal. Fig. 1 (bottom) shows the two modes of a switched
port. The first is the write mode where R/W = 0, writes are
active and reads are inactive. The second is the read mode,
where R/W = 1, reads are active and writes are inactive.

III. PREVIOUS WORK

In this section, we review two approaches to reduce the size
of the data banks. The first turns all ports into true dual-ports,
while the second achieves savings with a single switched port.

A. Multi-Ported RAM with True Dual-ports

Choi et al. [7] introduced a modification to the data banks
to build a multi-ported RAM where all ports are true dual
ports. A reduction in area is achieved by utilizing the
bidirectional functionality of true dual-port BRAMs.

Fig. 2 (left) illustrates a generalization of this method. Each
port is a true dual port that either writes to or reads from a set
of data banks. Each pair of these ports has one data bank in
common. Hence, when a given port is reading, it can access
data written by any other bank.

A register-based LVT determines which bank was last
written at each address. An example of a 3-port RAM is
shown in Fig. 2 (right). Data written from one port must be
accessible to all other ports via a shared true dual-port RAM.
Hence, a total of ¥ - n; - (n, — 1) data copies are required,
where n, is the number of ports. In contrast, the original LVT
approach [5] requires n,? data copies.

3Read /3 Write
Register-based
T

R/WData;

feleam/y

S0S15253 S

nRead /n Write
Register-based

I
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
VT !

R/WDazaz

Fig. 2. True-port banks. Each port share a single BRAM with any other port.
(left) Generalized approach. (right) A 3 ports example.

B. Multi-Ported RAM with a Single Switched Port

The notion of a switched port was introduced in [8], where
true dual-ported BRAMs are utilized to construct switched
ports. This architecture contains two sets of ports: (1) a set of
fixed ports supporting ng¢ simultaneous reads and ny ¢
simultaneous writes, and (2) a single switched port with ng ¢
reads alternating dynamically in time with ny, ¢ writes. Thus,
the ports on a given multi-ported RAM design instance can be
characterized by a set { (ny, ¢, Ng r), (N5, Nrs) }, Where the
first pair of values are the fixed port quantities and the second
pair are the switched port quantities.

The key idea behind the SRAM savings is reconfiguring
unused writing ports into reading ports. Fig. 3 describes an
example of a switched multi-ported RAM with a fixed port of
ny s = 1 writes and ng ¢ = 3 reads and a switched port of
ny s = 2 writes and ng; = 3 reads. Fig. 3 (left) shows the
write mode configuration, while Fig. 3 (right) shows the read
mode configuration. In this example, the upper multi-read
bank keeps a single write operation, while other banks
sacrifice write ports to provide additional read ports. Only data
banks whose writing ports are unused in read mode are
altered, namely nyy, ; banks. The writing ports of each of these
banks are redirected to serve as reading ports in read mode.
The other nyy, banks that keeps writing ports in read mode
must increase the number of reading ports to ng s + ng s to
match read port requirements in read mode. Hence, a total of
Ny s - (Mg rtngs) + Ny s - Mg ¢ data copies are required.

IV. MULTI-PORTED RAM WITH MULTIPLE SWITCHED PORTS

In this section, we describe how multiple switched ports
may arise, and how to design multi-ported RAMs with them.

A. Motivation and Key Idea

Consider the design of a processing element (PE) that has
three distinct (non-overlapping) states of operation:

1. Write to shared RAM using 4 write ports

2. Compute value in shared RAM with ALU using 2
read ports, 1 write port
3. Read from shared RAM using 4 read ports

142

Normal Bank Normal Bank

Wo Ro Wo Re
Ri | Ry

R, Rz

Rs

R

Re

Switched Bank Switched Bank

Switched Bank Switched Bank

Fig. 3. A switched-port example with ny,; = 1;ngy = 3;ny,s = 2,5, = 3.
(left) write configuration (right) read configuration.

In this example, it is necessary to build a shared RAM
structure that has multiple read and write ports. There are
several approaches to building such a multi-port RAM,
including:

A. 4 fixed read ports and 4 fixed write ports

B. 4 true dual-ports

C. two switched ports, with the first having 1 read or
1 write port (ie, a true port), and the second
having 3 read or 3 write ports

D. 2 fixed read ports, 1 fixed write port, and one

switched port containing 2 read or 3 write ports

In addition, there are many other possible “port assignment”
solutions, where each port assignment may yield a solution
requiring a different number of block RAMs. In this paper, we
do not consider the problem of computing an optimal port
assignment; that is left for future work. Instead, we must first
be able to compute the block RAM requirements for a given
port assignment; that is the purpose of this paper.

The example above requires port assignment because there
are multiple states. Consider simpler problems, such as those
in Fig. 4, where each “user” of the shared memory is under the
control of a single read/write line. In such cases, there exists
only one possible port assignment with switched ports.

The one valid port assignment is illustrated on the right-
hand side of Fig. 4 and can broken down as follows. The ALU
consists of two mutually-exclusive functional blocks, f and g.
First, the control signal f/g enables either f or g functional
blocks; in either case the Ro operand must always be read and
can be assigned to a fixed port Ry o. When f is selected, the R
operand can be read from switched read port R, o, but when g
is selected we do not need R, but instead need switched
write ports W4 and W, ;. Thus, f/g is also the read/write
control signal for the P, group of switched ports. Similarly,
the bus has a read/write control signal that directly controls the
P, group of switched ports with R, 5 and W ;.

Thus, Fig. 4 shows two possible implementations of the
shared memory: one with all fixed ports on the left, and one
with switched ports on the right. This leads to two possible

ways to build the shared memory; we will show that the latter
way is more efficient in terms of block RAM usage.

The key idea of our methodology is based on constructing
a Data-Flow-Graph (DFG) to describe RAM port
dependencies, where vertices represent ports and edges
represent data banks. Two types of edges exist: regular (solid)
edges for fixed ports, and dashed edges for switchable ports.

The goal is to “cover” all of these edges, and this cover
directly describes an implementation using BRAMs. For
example, a single regular edge can be covered by a simple
dual-port BRAM with 1 fixed write port and 1 fixed read port
(1W/1R). However, true dual-port BRAMs have two terminals
on each end (2W/2R), and up to 4 edges between them. Thus,
up to 4 edges in the graph can be covered by a true dual-port
BRAM. The objective is to cover all edges with minimal
BRAMSs. This forms a set cover problem (SCP) which can be
solved using special subgraph patterns to indicate possible
covers.

Shared Register-File
with Fixed Ports

Wo W1 W, R,

mn mn 1 mni
Shared bus Shared bus

Fig. 4. Simplified parallel system with shared memory. (left) Multi-ported
RAM with fixed ports connection. (right) Multi-switched-ports connection.

B. Port Assignment and Problem Definition

The problem input is a list of port requirements. Unlike
switched ports, fixed ports are unrelated and operate
individually; hence, they can be aggregated into a single port
group (as in Fig. 4) named P,. The superset of all port groups,
P, includes np port groups, were the first port P, is a fixed-port
and each of the remaining P;_j,_; are switched port groups.
Each P; represents an ordered pair with the number of writes
ny,; and the number of reads ng; for this specific port, namely

P=A{Py,Py, ... P, |Pi = (nwismr)} - 1
For instance, port requirements for the example in Fig. 4 is
P={P=(11,P=(11D,P =21} @

Writes and reads in this RAM are indexed by two indices,
the first index is the port group index ranging 0..np — 1,
while the second index is the write index within a specific port
i ranging 0 ...ny,; — 1, or the read index within a specific port
i ranging 0..ng; — 1. The writes group W and the reads

group R are defined as
W ={W;;|0<i<ny,0<j<ny,} ;
R={RL’]|0Sl<nP,0S]<nR’l} ()

For instance, write and read sets for the example in Fig. 4
are W = {Woo, Wy, W, Wy} and R ={Rgo ,R10,R20} >
respectively.

143

The total number of writes and reads is denoted by ny, and
ng (without indices), respectively, namely,
-1
ng = |R| = Z?:Po NR,i-

“

For instance, the example in Fig. 4 consists of 4 writing
ports and 3 reading ports in total, hence ny,, = 4 and ni = 3.

-1
ny =Wl = ZZ

Fig. 5 generalizes the port assignment for the multi-
switched-ports RAM. Given these port requirements, and
using true-dual-ported BRAMs, the objective of our work is to
construct the data banks to satisfy the given fixed and
switched ports with the fewest BRAMs.

Woo——» ——Roo
Wonys—— _ Port 0 (Fixed) _—Rong,
Wio———s ——R10
W : W R o
Loy~ *_Pert1 (Switched) ._’Rl,anl
WPn-LO_T’ T_’RP"-LO
vy : W R C R
P”{l’nV\l,Pﬂ-l P np-1 (SWItChed)_’ Pn’llanp"_l

Fig. 5. Multi-switched-ports RAM port assignment.

C. Modeling Data Banks with Data-Flow-Graph (DFG)

An LVT-based multi-ported RAM built using only fixed
ports requires every write port to write to a dedicated data
bank, allowing concurrent writes. Furthermore, every write-
specific bank should be accessible by every read port,
allowing all read ports to read data written by any write port.
This requirement can be modeled as a complete bipartite
graph (complete bigraph).

A bigraph is a graph G consisting of two disjoint sets of
vertices, say U and V. Each edge in a bigraph connects a
vertex from U to another vertex in V. A complete bigraph is a
special case where every vertex in U is connected to every
vertex in V, in other words

G=UVElUnV=0,E={{uviuelUveV}).

To model data bank connectivity, a bigraph DFG is
constructed where source vertices are writing ports U =W
and sink vertices are reading ports V =R . Graph edges
connect writes to reads, hence they represent 1W/1R simple-
dual-port BRAMs. Fig. 6 (left) shows the bigraph of the fixed-
port system in Fig. 4 (left).

Fig. 6. Bigraph DFG representing data banks connectivity of the shared
memory in Fig. 4. (left) fixed-ports data banks (right) multi-switched-ports.

Similarly, Fig. 6 (right) shows a bigraph of the switched-
port system in Fig. 4 (right). However, the bigraph is slightly
different from before; some edges E; € E are labeled as
switched edges using dashed lines in the figure. Except for

port group P,, which has only fixed ports, the other port
groups give rise to switched edges that connect the write
vertices to read vertices within the same port group. Formally,
the switched edge set is described as follows

Ey = {{(Wp Ry }|1 <P <np,0 < i <y, 0<j <y 6)

For instance, in Fig. 6 (right), the switched edges are Eg =
{Wi0, Ry0} (Wa 0 Ro}, (Wi, Ry 1}

D. Multi-switched-ports DFG Optimization

Using a true dual-ported BRAM gives us the ability to
cover several possible subgraphs that appear in a bigraph
DFQG. Since these subgraphs are also complete bigraphs, we
call them biclique patterns, or BPs. All different biclique
patterns are described in Table I.

For each BP in Table I, we can identify several specific
instances that it can cover within the biclique DFG from Fig. 6
(right). Fig. 7 enumerates all possible BP instances that occur
within the original biclique DFG.

Once this full enumeration has occurred, all that is
necessary is to select a subset of these BP instances such that
all edges in the original biclique DFG are covered. Each BP
instance requires a BRAM, so minimizing the number of BP

TABLEI. BICLIQUE PATTERNS AND THEIR ATTRIBUTES
Pattern | Name Biclique BRAM Connectivity
2| 2 | W Wo, Wi W2
2| = WRAWLRL W2/R2 (0’
=
il = @)y Woiwl W2
2| WRAIWIRL W2/Ra|H 0’
a| o» R1 R2HRok
3| 5 |G WL W
2| 2 WRAIWIRL W2/R2|H0
& . @ RoxHRL R2HPRy
=
I o | Wy y----- Wp,i"| w1 W2
2| & WRAWIRL W2/R2 [0’
2| » Rpk€HRL R2PR,,
3| 2| @ R | POIWL il
2l = W/RAWI/RL W2/R2[¢W/R,
|| B (vg) Rpk44RL R2
=
Ale| 2 |GGy Wlﬂt' WI w2 ﬁWpJ
£ 2 WR+HNWIRL W2/R2
a1 Rpk¢RL R2
- % @ ————— @ Wp,i) W1 W2 "quj
Zl = WRAWILRL W2/R2 [WR,
|| K (g - (Ra) | Ro 4RI R2Hp Ry,
=
| E § Wp,it' w1 W2 ﬁWp,J
e Bt — — ~<
2| 2 |y WRMMWIRL W2/R2
a1 “ Rpk¢HRL R2H Ry,

144

instances in the cover will minimize BRAM usage.

Biclique patterns must cover all the edges in the switched
bigraph DFG. However, different BPs may have shared edges.
Efficiently covering the bigraph DFG edges is not trivial;
simply choosing all largest 2W/2R-BPs may result in
inefficient results. Covering the edges of the bigraph DFG is
actually equivalent to the set cover problem. The set cover
problem is an NP-complete problem [12].

E. Solving the Cover Problem

The set cover problem takes a universe set U and another set
S of subsets of U whose union covers U (Uses S = U), namely,

SCP = (U,S|Vs € S:s € U, Usess = U). %)

The objective of the set cover problem is to find a cover of

U with the fewest sets from S. Let T < S be such a subset of
S, therefore the set cover problem objective is,
min (1] y.£ = 0) ®

The bigraph DFG optimization solves a set cover problem

where all DFG edges are the universe and all biclique patterns
are the covering subsets, namely,

FIW1R US1W1R U F1IW2R U SIW2R U

scp=(U=Es= F2W1R U S2W1R U F2W2R U S2W2R

) ©

The set cover problem can be formulated and solved as the
following binary linear programming (BLP) problem

minimize Y seg X
subjectto Y.eesxs =1 Ve €U,
x; €{0,1} Vs€ S

(10)

Where x; is a binary decision variable, indicating whether
s is part of the solution or not.

Fig. 7 provides a synthesis example for the bigraph DFG
from Fig. 6 (right). A set cover solution uses the highlighted
biclique patterns in Fig. 7 (left), producing the final
synthesized data bank shown in Fig. 7 (right).

As a comparison, Table I compares solutions for the
purely fixed-ports and multi-switched-ports implementations
of Fig. 4. For this specific example, the fixed-ports method
consumes 12 BRAMs to construct the data banks while the
multi-switched-ports method consumes only 8§ BRAMs,
yielding a 25% BRAM reduction.

FIWIR

PR

}RLU

Roo

patterns; optimal BP’s are highlighted. (right) Synthesized data banks.

TABLEIL. BICLIQUE PATTERNS AND THEIR ATTRIBUTES
Fixed-ports Multi-switched-ports
Shared Register-File 1 1 I
with Fixgd Ports Woo W ~§ ,.g
o

:

WoWi W, R,

Port Assignment

Biclique DFG

Synthesized Data Banks

PR,

g
a
|| == 2l l=z|l=ml=|=]|l=l=l=o

F. Data Dependencies and Bypassing

Due to the pipelined nature of building a full multi-
switched-port RAM, data dependencies due to internal
latencies arise naturally. This requires internal forwarding and
bypassing to solve these hazards. The full multi-switched-port
RAM design consists of the data banks and the I-LVT. The I-
LVT itself consists of feedback banks and output extraction
banks. For each of these three structures, Table III summarizes
the type of bypassing required to produce a correct design that
can tolerate certain hazards. Further detail is provided below.

The I-LVT-based structure [6] is used to steer the read data
out of the multi-switched-ports data banks, however the I-
LVT incurs data dependencies due to the feedback functions
and the latency of reading the I-LVT to decide about the last
written bank [6]. Data dependencies can be handled by
employing bypassing, also known as forwarding. Bypassing is
necessary since dual-port BRAMs cannot internally forward
new data when one port reads and the other port writes the
same address on the same clock edge, constituting a read-
during-write (RDW) hazard.

Table IV shows two types of bypassing based on write
data and address pipelining. Both bypassing techniques are
functionally equivalent, allowing reading of the data that is
being written on the same clock edge, similar to single register
functionality. However, the fully-pipelined two-stage
bypassing shown in Table IV (bottom) can overcome an
additional cycle latency, namely an additional pipe stage on
writing data and address (not shown in the figures). This
capability is required if a BRAM has pipelined inputs (e.g.,
cascaded from another BRAM) that need to be bypassed.

145

The proposed multi-switched-ports RAM utilizes true-
dual-port BRAMs to provide switched port functionality.
However, since writing and reading operations in true-dual-
ported RAMs are exchangeable, the bypassing circuitry
requires special handling. As described in Table IV (right), the
bypass circuit of the true/true RAM configuration is mirrored
compared to the true/simple RAM configuration. Thus, it can
bypass written data from any direction. However, the control
logic that drives the bypassing mux selectors need to be
altered to detect the direction of writing.

The most severe data dependency that I-LVT design [6]
suffers from is write-after-write (WAW), namely, writing to
the same address that has been written in the previous cycle.
This dependency occurs because of the feedback reading and
writing latency. A single-stage bypassing for the feedback
banks solves this dependency.

Two types of reading hazards are also introduced by the I-
LVT design, read-after-write (RAW) and read-during-write
(RDW). RAW occurs when the same data that was written in
the previous clock edge are read in the current clock edge.
RDW occurs when the same data are written and read on the
same clock edge.

Due to the latency of the I-LVT, reading from the same
address on the next clock edge after writing (RAW) will
provide the old data. To read the new data instead, the output
extraction banks of the I-LVT should be bypassed by a single-
stage bypass to overcome the I-LVT latency.

The deepest bypassing stage is reading new data on the
same writing clock edge (RDW), which is similar to a single
register stage latency. This can be achieved by 2-stage bypass
on the output extraction banks of the I-LVT to allow reading
on the same clock edge. The data banks, which are working in
parallel with the I-LVT should be bypassed by a single-stage
to provide new data.

V. EXPERIMENTAL RESULTS

A. Experimental Framework

The proposed multi-switched-port RAM approach, complete
with bypassing ,has been fully implemented in parameterized
Verilog. For a given design instance, we developed a memory
compiler to convert the RAM port assignment into a biclique
DFG, enumerate all of the biclique pattern instances in the DFG,
and use these to describe a set cover problem instance. The set
cover problem is formulated as a Binary Linear Programming
(BLP) problem using AMPL (A Mathematical Programming
Language) [13], which is an algebraic modeling language used
to describe large-scale mathematical optimization problems. The
BLP optimization problem is solved using GLPK (GNU Linear
Programming Kit) [14], an open source large-scale linear
programming solver. Finally, the selected biclique patterns
(covers) are used to automatically construct the data banks as
described in Table I and shown for example in Fig. 7.

A run-in-batch flow manager has also been developed to
simulate and synthesize these designs with various parameters
in batch using Altera’s ModelSim and Quartus II. The Verilog
modules, the algorithmic scripts and the flow manager are
available online as an open source contribution [9][10].

TABLEIIL. BYPASSING OF
MULTI-SWITCHED-PORTS

TABLEIV. SINGLE-STAGE AND TWO-STAGE BRAM BYPASSING

Simple/Simple Configuration

True/Simple Configuration True/True Configuration

I-LVT Banks
Data

Output
Extract

Banks | peedback

Single-stage

Allow

WAW| None | 1-stage | None

Din
Addr
R/W
Dout <

New
Data | None | I-stage |l-stage

RAW
New

Two-stage

Din
Addr

Data |1-stage| 1-stage |2-stage
RDW

R/W —]
Dout «

To verify correctness, each design instance is simulated
using Altera’s ModelSim. A large variety instances with of
different RAM port assignments and design parameters, e.g.
bypassing, RAM depth and data width, are swept and
simulated in batch, each with over a million random cycles.
These multi-switched-port RAM design modules were then
compiled with Altera’s Quartus II into Altera’s Stratix V
SSGXEA7NI1F45C1 device [11]. This is a speed grade 1

device with 234k ALMs and 2560 M20K blocks.
B. Methodology

The proposed multi-switched-port RAM design process is
generic and can support any number of fixed and
heterogeneous switched ports. This means all previous
multiport-RAM methods are actually special cases of this new
proposed method. For benchmarking purposes, we take a
number of design instances, and for each one we find a multi-
switched port RAM using our new method. We then need to
generate comparative results using multiport RAM designed
with fixed ports [6], with true ports [7], and with a single

switched port [8].

Then, we can compare results against the older fixed-port
method [6] using the same tooling. By treating switched ports
as fixed ports, we thereby place all read and write ports into the
first port group P, (the fixed port). This generates a fixed-port
solution that satisfies the same design instance requirements.

To compare against using the true-ports method [7], we
must avoid using the fixed port group P,. Instead, as described
in Table V, each fixed port must be mapped into a true port
(with a fixed R/W control), hence Ny o+ng true ports are
required to implement the fixed ports. In addition, every read
and write pair in a switched port can be mapped into a single
true port, hence, max(ny ;ng;) true ports are required to

implement a switched port group P.. In total, the number of the
required true ports is

-1
Nng = Ny +Ngo + Z?zpl maX(nW_i,nR_i). (11)

For example, the system in Fig. 4 can be implemented using
ny = 5 true ports.

To compare against the single-switched-port method [8],
the largest switched port (say P,,) is chosen to be implemented
as the single-switched port, and all the other ports are
implemented using fixed ports. This becomes

P= {Po = (”W —NymNg — nR,m)' P = (nW,m' nR,m)}a (12)

where m is the index of the switched-port with the
maximum writes and reads,

1<m<np

Ny m+Ngm = 121.125}’ (nw i+7g,)- (13)

C. Test Cases

A number of random multi-switched-ports test-cases are
listed in Table VI. Ten random test cases, TC1 to TC10, have
been generated for illustrative purposes; real cases are difficult
to extract from applications without a precise understanding of
their use of multi-port RAMs and how their FSMs specify
(possibly mutually exclusive cases of) read/write behaviour.
While our method can synthesize any number ports, the test-
cases are limited to 8 switched ports to avoid accidentally
exceeding device resources. These random test-cases use 4 to
8 switched ports, where each switched port has 1 to 4 writes or
reads. For each test case, we specify a multi-port RAM that
the multi-switched ports approach proposed in this paper. In
addition, we show other multi-port RAM designs with fixed
ports [6], true ports [7], and a single switched-port [8] that
address the same requirements.

TABLE V. MULTI-SWITCHED-PORTS CONVERSION (EXAMPLE FROM FIG. 4)

Multi-switched Fixed [5][6] True [7] Single-switched [8]
Woo—W p, RF—Roo Woo— LR, Woo— W_ Py R (N/C) Woo—W p, RF—Roo
_ Fixed Wio— Py e 0 ‘opH{rR/W True W, o—) Fixed FR.p
=} Fixed 10 (NO—W P RF—Ro,0
2| Wi—HW PRI | Wao— v, v Thie Woo—W F—Ro0
ED s;//v‘_/l " R: e Wio=—W P RFR10 W21 W syitched
_’ .—’ AT i J—
< Wm—» g 2| RT— /O R/W—IRW True Re/ W
B| T Swched RAT— (VO WooIW Pe, RIReo | m—svo
Ro/ W
sz{ w Ps R (N/Q)
R/ W5 R/W True

146

D. Results

Table VII lists the experimental results of the ten random
test-cases defined in Table VI, implemented using the four
design styles. All synthesized test-cases have one byte of data
width and 8k-lines in depth, new-data-RAW bypassing and
use a binary-coded I-LVT [6]. BRAM consumption, ALMs
and Fmax are given directly in the table. Table VIII lists the
change percentage in these parameters compared to our
proposed method. Compared to the single switched-port [8]
and the fixed-port [6] methods, ALM consumption and Fmax
are similar while BRAM consumption reduced by 18% on
average. On the other hand, comparing our proposed method
to the true-ports method shows a 42% BRAM reduction, 53%
fewer ALMs, and 15% higher Fmax.

TABLE VI. HETEROGENEOUS MULTI-PORTED RAM TESTCASES
T Writes and reads for each port; (nW,i,nR,i) pairs from (1)
cg#:e Multi-switched Fixed[6] True[7] Single-switched[8]

Po | Py | P | P3| Pa|Ps | Ps|Pr| Py |Po[Prohylne] Po Py
TC1 |(1,D|(1,DH{2,DH{(2,D|(1,2)](1,2)[(2,3)[(2,3)](11,13)](0,0)[(1,1) [15] (9,10) |(2,3)
TC2 |(1,D|(1,DH{(2,D|(1,2)[(2,2)](2,3)[(3,2)[(3,3)](13,14)](0,0)[(1,1) [15] (10,11) | (3.3)
TC3 |(1,2){(1,D[(1,2){(2,D](2,2)](2,3)(3,2)] - [(12,12)]|(0,0)[(1,1) [15] (9,10) |(3,2)
TC4 |(2,D|(A, DA, DH{(L2D|(L,3))2D]GB3)] - [9,15)]0,0)] (1,1) [15] (6,12) [(3.3)
TCS |(1,D](1,3)[(2,D{(2,D]|(2,2)|(2,3)] - - 110,10)](0,0)] (1,1) |13 (8,7) |(2,3)
TC6 |(1,3)[(1,D[(1,D](1,3)](2,2)|(3,3)] - - 1(8,13)|(0,0)[(1,1) [13] (5,10)] (3,3)
TC7](2,2)|(1,DH{2.H|2,D|(1,3)] - - - 18,1 0,00 (L,1) |14 (6,7) |24
TC8 |(2,D)|(1,DH{(1.H|2,D|(3. D] - - - 1(8,10) |(0,0)] (1,1) |14] (7.6) | (1.4
TC9 |(2,3)|(2,H{(1L, D24 - - - - 1(7,12) |(0,0)[(1,1) [15] (5.8)](2,4)
TC10|(3,D)|(1.2)]|(2,4|(3.4)] - - - - 1(9,11)](0,0)] (1,1) [14] (6,7) |(3.4)

TABLE VII. EXPERIMENTAL RESULTS
Test.| Multi-switched | Single-switched[8] True[7] Fixed[6]
CaSe#laRAMY| ALM [fom(MH|BRAMS| ALM [fo(MH2)| BRAMS | ALMS [fm(MH)|BRAMS| ALM .. (MEZ)
TC1| 826 [3417 | 247.4 [1054 [3349 [24225 1290 | 6222 [215.84 | 1034|3271 [235.29
TC2| 1044 [4781 | 224.16 [1316 [4828 | 228.1 | 1290 | 6222 [215.84] 1352 [4840 [225.33
TC3| 904 [3793 [232.56 [1104 [3717] 2373 | 1290 | 6222 [215.84] 1080 | 3634 | 2419
Tca| 726 [2732[250.75 | 882 [2653[253.87| 1290 | 6222 [215.84 918 [2617(245.04
TCS5| 628 | 2434 |248.32| 756 | 2441 |244.38 | 962 4503 |235.68| 780 |2414 [253.94
TC6| 568 | 2031 | 258 700 | 1948 [260.42 | 962 4503 |235.68| 704 [1916 |246.37
TC7| 540 | 1801 | 257.67 | 608 | 1746 | 265.32 | 1120 | 5483 |214.13| 608 | 1703 | 260.96
TC8| 524 | 1675 [265.82| 576 | 1629 |270.42 | 1120 | 5483 |214.13| 592 | 1614 |266.03
TCY| 504 [1499 [279.17| 556 |1502|270.27 | 1290 | 6222 |215.84| 560 1444 |275.71
[TC10] 586 |2321]252.33 | 690 | 2205 257.33 | 1120 | 5483 |214.13| 702 |2154 |247.46
Avg.| 685 [2648.4/251.62 | 824.2 2601.8| 253 1173.4 [5656.5 | 219.3 | 833 [2560.7| 249.8
TABLE VIII. RESULTS COMPARISON

Test-] BRAM Reduction compared to: | ALM Reduction Compared to: | fimax Increase Compared to:
case#| Single-switched[8] | True[7] | Fixed[6] | Single-switched[8]| True[7] [Fixed[6]| Single-switched[8][True[7][Fixed[6]
TC1 22% 36% | 20% -2% 45% | -4% 2% 15%| 5%
TC2 21% 19% | 23% 1% 23% 1% 2% 4% | -1%
TC3 18% 30% | 16% -2% 39% | -4% -2% 8% | -4%
TC4 18% 44% | 21% -3% 56% | -4% -1% 16% | 2%
TCS 17% 35% | 19% 0% 46% | -1% 2% 5% | -2%
TC6 19% 41% | 19% -4% 55% | -6% -1% 9% | 5%
TC7 11% 52% | 11% -3% 67% | -6% -3% 20% | -1%
TC8 9% 53% | 11% -3% 69% | -4% 2% 24% | 0%
TC9 9% 61% | 10% 0% 76% | -4% 3% 29% | 1%
TC10) 15% 48% | 17% -5% 58% | -8% 2% 18% | 2%
Avg. 17% 42% | 18% -2% 53% | -3% -1% 15% | 1%

147

VI. CONCLUSIONS

In this paper, we propose a new idea of having multiple
switched ports in multi-ported RAM design. This method
requires a memory compiler to create a specific design
instance, and solving a set cover problem to optimize its
implementation. Our CAD approach always finds a minimal
implementation for all of our test cases, but there is opportunity
for further CAD research to improve run-time while still being
optimal. On average out of 10 random test-cases, the suggested
multi-switched-ports method reduces BRAM use by 18%
compared to the best of previous methods, while maintaining
ALM count and Fmax. Future research may address the RAM
port assignment problem to more complex cases where there
are more than two states governing memory port usage.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their insightful comments and suggestions. Especially the
suggestion to replace the linear-programming approach with
an exact solution.

REFERENCES

J.H. Tseng and K. Asanovic, “Banked multiported register files for high-
frequency superscalar microprocessors,” Int’l Symp. on Computer
Architecture (ISCA), May 2003, pp. 62-71.

J.A. Fisher, “Very Long Instruction Word architectures and the ELI-
512,” Int’l Sym. on Comp. Arch. (ISCA), 11(3), June 1983.

E.S. Fetzer and J.T Orton, “A fully-bypassed 6-issue integer datapath
and register file on an Itanium microprocessor,” IEEE Int’l Solid-State
Circuits Conf., vol. 1, Feb. 2002, pp. 420-478.

H. Bajwa and X. Chen, “Low-Power High-Performance and
Dynamically Configured Multi-Port Cache Memory Architecture,” Int’l
Conf. on Elec. Eng., Apr. 2007, pp. 1-6.

C.E. LaForest and J.G. Steffan, “Efficient Multi-ported Memories for
FPGAs,” ACM/SIGDA Int’l Symp. on Field-Programmable Gate Arrays
(FPGA ‘10), Feb. 2010, pp. 41-50.

A. M.S. Abdelhadi and G. G.F. Lemieux, “Modular multi-ported
SRAM-based memories,” ACM/SIGDA Int’l Symp. on Field-
Programmable Gate Arrays (FPGA ‘14), Feb. 2014, pp. 35-44.

J. Choi, K. Nam, A. Canis, J. Anderson, S. Brown, and T. Czajkowski,
“Impact of Cache Architecture and Interface on Performance and Area
of FPGA-Based Processor/Parallel-Accelerator Systems,” Int’l Symp. on
Field-Programmable Custom Computing Machines (FCCM ’12), Apr.
2012, pp. 17-24.

A. M.S. Abdelhadi and G. G.F. Lemieux, “Modular Switched Multi-
ported SRAM-based Memories,” ACM Transactions on Reconfigurable
Technology and Systems (TRETS) Special Issue on Reconfigurable
Components with Source Code, in press, accepted in Jul. 2015. 27 pages.

(1]

(2]
(3]

(4]

(3]

(6]

(7]

(8]

G. G.F. Lemieux. (2016). Software Downloads page [online]. Available:
http://www.ece.ubc.ca/~lemieux/downloads/

A. M.S. Abdelhadi. (2016). GitHub repository [online]. Available:
https://github.com/AmeerAbdelhadi/

Altera Corporation, Stratix V Device Handbook, June 2011.

RM. Karp, “Reducibility Among Combinatorial Problems,” in
Complexity of Computer Computations, pp. 85-103, Plenum Press, NY,
1972.

R. Fourer, D.M. Gay, B.W. Kernighan, AMPL: A Modeling Language
for Mathematical Programming. Duxbury Press, 2002.

(9]
[10]

(11]
[12]

[13]

[14] https://www.gnu.org/software/glpk/

