
Interleaved Architectures for High-Throughput
Synthesizable Synchronization FIFOs

Abstract—This paper presents a family of FIFOs for clock-
domain crossings. These designs are distinguished by an in-
terleaved architecture for the control and data-paths. This
approach eliminates most of the throughput bottlenecks in the
FIFO design, allowing operation at well over 1GHz in a 65nm
process using a standard ASIC design flow. Furthermore, these
designs are low-latency: the fall-through time for an empty FIFO
is only a few gate delays greater than the synchronizer latency.
Our designs are fully synthesizable using widely available design
libraries. Furthermore, we identify a glitch vulnerability that is
lurking in many published designs, and describe our solutions
to these hazards.

I. INTRODUCTION

Current chip designs are partitioned into multiple clock

domains and can involve large numbers of clock domain

crossings. Clock domain crossings (CDCs) can involve inter-

faces between IP blocks in a SoC or NoC design, interfaces

between CPU cores and caches, and interfaces to external,

high-speed links. These interfaces often require high band-

width and low latency. CDC designs should be robust so

they do not cause metastability failures on the chip, and they

should be synthesizable to work with industry standard design

flows. FIFO based designs are commonly used because they

can achieve bandwidths that are set by the slower of the

sender and receiver, and they allow a decoupling of timing

constraints between the two domains, greatly simplifying

chip-level timing closure [1], [2].

The two most common approaches to CDC FIFOs are

based on Gray code counters [3] and one-hot designs [4].

The typical Gray code design uses a dual-port SRAM, where

the sender and receiver each have Gray code counters to

address their respective ports. The main limitation of the Gray

code design is that efficient comparison of the read and write

pointers requires conversion back to ordinary binary, and the

combinational logic for the conversion and comparison limits

the operating frequencies. The access times for the SRAM are

another throughput limiter. In contrast, the one-hot designs

have fast control logic. Typically, data is stored in latches

or flip-flops to provide a correspondingly fast data path. A

serious drawback of the one-hot design is that there is a

separate stage of control logic for each word of storage along

with synchronizers between the sender’s and receiver’s clock

domains for each stage. The control circuitry for one-hot

FIFOs can readily dominate the total area.

We present an interleaved variant of the one-hot design.

The key observation is that a N-stage FIFO can be organized

as a two-dimensional, Nv×Nh array, where N = NvNh. The

read and write interfaces each have a pair of one-hot counters:

one that counts modulo Nv; and the other modulo Nh. This

retains the speed of the one-hot design while reducing the area

for the counters to the point that data storage dominates FIFO

area, as in a Gray code design. We also apply interleaving

to the data paths. In particular, using separate data buses for

reading odd- and even-indexed data latches provides an extra-

cycle for the read-path enabling high-throughput operation.

Section III presents the FIFO architecture in more detail.
In the course of designing the FIFO, we discovered a

glitch hazard similar to the ones described in [5]. This hazard

appears in many previously published designs. Section III.3

describes the hazard and our solutions.
Our FIFO is fully synthesizable using only logic functions

that are present in typical cell libraries. The FIFOs are highly

configurable, and the design includes support for simulation,

static timing analysis, and a testbench for regression tests

of the design. The complete design is public and open

source with the BSD license [6]. Section IV summarizes the

capabilities of this open-source package. Section V presents

throughput, latency, and other metrics for FIFOs generated

with our open-source Verilog and standard design tools us-

ing a cell library for a 65nm process. Our FIFOs achieve

throughputs that exceed typical clock frequencies for ASIC

design flows. The fall-through latency for an empty FIFO is

the synchronizer latencies plus one cycle for glitch safety.

II. RELATED WORK

Increasing chip densities have led to a rapid increase in

the number of clock domain crossings that occur in a single

design. FIFOs are attractive for such interfaces because they

offer high throughput and simple flow control. Synchronizing

FIFOs are distinguished largely by the design of the put

and get control logic, the implementation of the data store,

and the synchronization mechanisms between the put and get

interfaces.
The most common synchronizing FIFOs are based on Gray

code counters [1], [3]. The advantage of a Gray code is that

on a clock transition, exactly one bit of the counter makes a

transition. If the put-controller uses a Gray code for its write-

pointer, then the bits of the pointer can be synchronized to

2017 23rd IEEE International Symposium on Asynchronous Circuits and Systems

978-1-5386-2749-5/17 $31.00 © 2017 IEEE

DOI 10.1109/ASYNC.2017.20

41

Ameer M. S. Abdelhadi and Mark R. Greenstreet

University of British Columbia

{ameer@ece.ubc.ca, mrg@cs.ubc.ca}

the get-controller using a separate synchronizer for each bit.

Because at most one bit will be changing at a clk_get
edge, at most one synchronizer will enter metastability. When

that bit resolves, the synchronizer outputs either the “before”

or “after” value of the write-pointer. Either is valid. The

disadvantage of Gray codes is the difficulty of comparing

two Gray code values to determine which is greater. Typical

designs convert the Gray code value to standard binary, and

then perform the comparison. The conversion requires a chain

of XOR gates whose length is the number of bits in the pointer

(minus one). This tends to be a slow operation that limits

FIFO performance.

An alternative to Gray code pointers is to use some kind

of unary encoding [4], [7], [8]. Such FIFOs offer very high

throughputs because the counters are fast, and comparing

unary values is easy. However, FIFOs with unary control

suffer from a large flip-flop count. In particular, an N-

stage FIFO requires 2N synchronizers, N for the put-to-

get synchronization, and N for get-to-put. Each synchronizer

consists of multiple flip-flops, and more flip-flops are needed

to implement the unary counters and other state such as per-

stage full-empty status. The area and power for such designs

dominated by the control logic. While the performance is

attractive, we seek to mitigate the large flip-flop counts.

In addition to Gray code and unary counters, many other

designs have been proposed. Keller [9] presents a novel

implementation for GALS applications based on “pointer-

increment” signals. Keller’s design uses mutex elements

to arbitrate between communication and clock generation;

because metastability is rare and usually resolves quickly,

Keller’s design, like most pausible clock designs, achieves

very low latency for cross-domain communication. While we

note a growing interest in pausible clock GALS (e.g. [1],

[9]), the most common clock-domain-crossing designs remain

synchronous-to-synchronous, and we focus on that scenario

here.

Another approach to synchronization is to use a ripple

FIFO instead of a pointer based design. Seizovic [10] showed

synchronization can be incorporated into the control path of

a ripple FIFO. More recently, Jackson and Manohar [11]

showed a generalization of Seizovic’s scheme where some

pipeline processing can be done along the datapath of the

FIFO while the control path accomplishes synchronization.

These are clever designs, but they use special handshaking

cells that are not amenable for standard synthesis flows.

Finally, there has been extensive work on mesochronous

designs where the sender and receiver operate at identical

clock frequency with an unknown phase relationship. Ex-

amples include [12]–[16]. When the communicating clock

domains have a common source, these methods offer excellent

performance and efficiency. We are addressing the more

general, and common case, where either there is no common

source to the clocks, or where it is impractical to bound

the variation in the skew under operation. We note that [16]

provides an excellent survey of prior work in clock-domain

crossing that transcends the space limitations of this paper.

clk_get

DQ

sync

sync
get

control
DQ

N

put
control

Nv

Nv

D Q

a few gates

w
QD

a few gates

w

a few gates

spaceav D Q

data_out

dl_oe
N

data_in

dl_we

data store

D Qreq_put

data_in

clk_put

data_out

req_get

datav

Fig. 1. The Synchronizing FIFO

III. THE FIFO ARCHITECTURE

Fig. 1 shows the structure of our synchronizing FIFO.

The “put interface” operates synchronously with the sender’s

clock, clk_put, and the “get interface” operates syn-

chronously with the receiver’s clock, clk_get. The signal

spaceav indicates that the FIFO has space available and that

the sender may insert a data word of w bits into the FIFO by

asserting req_put. Likewise, datav indicates that a valid

data word is available for the receiver at data_out and can

be removed by asserting req_get. The flip-flops in Fig. 1

indicate the clock domains for each signal.

Data is stored in an array of latches. The put-control uses

a pair of ring counters to generate the write-enable signals

for these latches. Likewise, the get-control uses a pair of ring

counters to generate data latch output-enable signals. By using

two counters, the FIFO has a capacity set by the product

of the counter lengths. This leads to a logical organization

of the FIFO as an “array” of rows and columns. We show

later in this section, that it is sufficient to synchronize empty

and full information on a per-row basis. This dramatically

reduces the number of synchronizers needed in the FIFO

compared with other designs based on unary-counters. In

addition to simplifying synchronization, organizing the FIFO

as an array allows many internal operations to be performed

in an interleaved fashion. This interleaving is crucial for the

performance of our design.

Another critical feature of our design is that we explicitly

prevent the “flow-through” path that is common in other syn-

chronizing FIFOs. In many designs, the value of data_out
can change asynchronously with respect to clk_get when

the FIFO is empty (and therefore, data_valid is false).

While a designer might expect such ill-defined values to be

ignored, aggressive optimizations performed by logic synthe-

sis can introduce glitch failures. Section III.3 describes our

solution to this glitch problem.

III.1. The Control Path

The put- and get-control blocks are very similar. This

section describes the put-control in detail noting a few details

that are specific to the get-control. The put-control performs

three functions: it manages the enables for the data latches

to store values from the sender; it notifies the get-interface

(through the synchronizers) of available data; and it notifies

the put-client when space is available to insert a value into

the FIFO.

42

enqH[0]

clk

do_put counter
vertical

counter
horizontal

qH[NH−1]

D Q
en

D Q
en

qV[NV−1]qV[0]
D Q
en

D Q
en qV[1]

D Q
en qH[1]

D Q

Fig. 2. Ring counters in the put-control

To insert a word into the FIFO, the sender must present the

data at data_in and assert req_put satisfying the set-up

and hold requirements of the input flip-flops (see Fig. 1). If

spaceav was asserted on the same cycle as req_put, then

the word will be recorded on the rising edge of put_clk and

stored in the FIFO. If req_put is asserted on a cycle when

spaceav is false, the put request is simply ignored. This

allows the sender to eagerly attempt inserts and use spaceav
as a confirmation that the insert succeeded. The sender can

persist with attempts to insert a value until the insert operation

succeeds. The maximum throughput of one data word per

cycle can be achieved by holding req_put high as long as

there is space available.

Each control block is based on a pair ring counters, the

“vertical” and “horizontal” counters as shown in Fig. 2.

Logically, we can think of the vertical counter as specifying

which of Nv smaller FIFOs of Nh stages is selected for the

next put operation, and these smaller FIFOs are written in

a round-robin fashion. We refer to the logic and data-store

for each value of the vertical counter as a “row” even though

the physical layout is unconstrained (and thus place-and-route

finds a roughly linear arrangement). A reset initializes the

counters qV= qH= 0. We require Nh and Nv to be even. The

counters implement a “thermometer code” that we interpret

as an integer count as shown below:

count(q) =

{
0, if q[n−1]= q[0]

i, if q[i] �= q[i−1]
(1)

where n is the number of stages in the ring counter. Note that

negating all of the bits of q does not change count(q). The

numeric value for the pair of counters is

count(qH,qV) = count(qV) + Nvcount(qH) (2)

We will treat qV, qH, and (qV,qH) as bit-vectors or integers

(i.e. a short hand for count(qV), etc.) when the interpretation

is clear from context.

Using two counters reduces the total number of flip-flops

for the counters from N to Nv + Nh. More significantly, it

reduces the number of synchronizers from the put-control to

the get-control from N to Nv, and likewise for the number

of synchronizers from get to put. This allows the FIFO to

have the performance of one-hot control with only modest

area overhead.

Figure 3 sketches the latch and counter control circuit. The

counters are post-incremented on put operations to avoid cre-

ating a long combinational path on req_put. In a bit more

do_put

clk_put

D Q
en

D Q

D Q

en

en

req_put_l

req_put

space_av

space_av_l

do_put_l

dl_we[i,j]

ohH_l[j]
ohV_l[i]

Fig. 3. Latch and Counter Control

detail, req_put and data_in are latched on clk_put↑.
The data is immediately written into the data storage latch;

this minimizes the FIFO latency. The ring-counter pointers

are then incremented on the next clk_put↑.
The ohV_l and ohH_l are one-hot recodings of the

thermometer counters that are latched when put_clk is low.

The one-hot representation is obtained by XORing adjacent

bits of the thermometer counter (XNOR for the wrap-around

case). Note that the latch control signals are updated on the

falling edge of clk_put. In particular, data is presented to

an enabled data latch on the rising edge of clk_put and the

latch goes opaque a half-period later on the falling edge.

When put operations are performed on two consecutive

cycles, the counter increment for the first put occurs after
latching the counter values in ohV_l and ohH_l. We retimed

these signals so that ohV_l and ohH_l take on the values

that correspond to the state the ring counter will have after

then next clk_put↑. The rest of the write control is simple:

when do_put is asserted, the latch selected by ohV_l and

ohH_l is written during the high phase of clk_put.

The empty or full status of each data latch is determined

by converting the two counters for each into their combined

thermometer values as illustrated in Fig. 4 and specified by

the equations below:

therm(i, j)=

⎧⎪⎨
⎪⎩
¬qH[Nh−1], if j = 0, qV[i] = (j mod 2)

qH[j−1], if j > 0, qV[i] = (j mod 2)

qH[j], if qV[i] �= (j mod 2)

(3)

We write therm(i+Nv j) as a synonym for therm(i, j) and

note that values of therm(0) through therm(N− 1) mimic

the outputs of a N = NvNh stage thermometer counter. Let

thermput denote the thermometer values derived from the

counters in the put-control, and thermget to those from the get-

control. The empty and full functions indicate the status

of the data latches:

empty(i, j) = thermput(i, j) = thermget(i, j)
full(i, j) = ¬empty(i, j) (4)

This very simple logic for comparing the write and read

pointers enables high throughput operation. Eq. 4 is the

“bridge” from Fig. 4 to Fig. 5. Due to space limitations, we

have not included a figure for this circuitry; it’s just an array

of XNOR gates (for empty) with inverters (for full), with one

such pair for each (i, j).
Figure 5 shows the synchronization for the space available

signal. The FIFO has space available if any data latch is

43

horizontal ring counter

a0a1a1a0 a0a1a1a0
qv[1]

therm[1,0] therm[1,1] therm[1,2] therm[1,3]

a0a1a1a0 a0a1a1a0
qv[2]

therm[2,0] therm[2,1] therm[2,2] therm[2,3]

a0a1a1a0 a0a1a1a0
qv[3]

therm[3,0] therm[3,1] therm[3,2] therm[3,3]

therm[0,0] therm[0,1] therm[0,2]

a0a1a1a0 a0a1a1a0

therm[0,3]

qv[0]

ve
rt

ic
al

 r
in

g
co

un
te

r

qh[0] qh[1] qh[2] qh[3]

Fig. 4. Combining Thermometer Codes

empty; thus, the space-available logic is based on an OR-

tree with N inputs. We again exploit an interleaved approach

to simplify the design. The synchronizers are in the middle

of the OR-tree with one synchronizer for each row of the

design. Figure 5 shows an implementation with three flip-

flop synchronizers. The logic to the left of the synchronizer

flip-flops determines, for each row, if there is an empty

latch in that row. The logic to the right of the synchronizer

determines if there is any row with an empty latch. The next

few paragraphs describe this approach in more detail.

Rising transitions of empty are synchronous to clk_get,

and must be synchronized to clk_put. If any latch in row

i is empty and that latch is not being written in the current

cycle, then there is space available in the row. Detecting that

there is an empty latch in row i is simple, this is the OR over

empty[Nh−1 : 0][i]. We need to check that such an empty

latch is not being written in the current cycle. A safe approach

would be assume that any write to the row might fill any latch

in that row. As we will show in Section V, minimizing the

number of cycles that must elapse between consecutive puts

(or consecutive gets) to the same row has a large impact on

throughput. This motivates giving more attention to how we

can distinguish writes to different latches in the same row.

The simplest case occurs if there is no put in the current

cycle (i.e. do_put is false) or if the put controller’s row

counter points to a different row (i.e. ohV[i] is false), then

no latch in this row will be written in this cycle. Thus, if

empty[j][i] holds for some j, then there is an empty slot

available in row i. This is the condition checked by indicator

“a” in Fig. 5. The other possibility is that there is a write to

this row, but to a different column; this is checked by indicator

“b”. With this logic, the FIFO can perform a put to row i,
and still determine that some other latch in the row is empty.

When a put is performed to row i, an empty slot is

consumed for the row. Thus, we clear all but the first flip-flop

of the synchronizer. If there is another empty slot in the row,

then the D-input of the first flip-flop will remain high. Because

rising edges of empty are asynchronous to clk_put, the

indicator that there are other empty slots in the current row

must be properly synchronized.

After synchronization, the per-row indicators for empty

slots are combined with a second OR-tree. In this case, we

b D Q D Q D Q

synchronizer

Nh
Nv

D Q

even

odd

!req_put_l

spaceav

clk_put

empty[NH−1:0][i]

!ohV[i]
!do_put

!ohH[NH−1:0]

a

Fig. 5. Synchronization

divide the tree into two parts: one for even-indexed rows and

the other for odd-indexed. If there is no put request in the

current cycle, then the presence of an empty slot in either

half is sufficient to assert spaceav. On the other hand, if

there is a put request, then we can only assert spaceav if

there are at least two empty slots: one for the current request,

and one to offer for a subsequent put. Empty slots occupy

consecutive locations in the FIFO. If there are two empty

slots, there must be one in an even-indexed row and another

in an odd indexed row. Thus, if both subtrees indicate that they

have empty slots, then spaceav can be asserted regardless

of the value of req_put.

We observe that the put-interface can attempt a write to

row i at most once for every Nv cycles of put_clk. Let S
denote the number of flip-flops in each synchronizer. A put

to row i will clear the last S−1 flip-flops of the synchronizer

on the cycle that the put is performed. It will take S− 1

cycles of put_clk for this to propagate to the output of

the synchronizer for row i. To sustain a maximal throughput

of one put for every cycle of put_clk, the interleaving

factor for the synchronizers must be at least as large as each

synchronizer’s depth; in other words, Nv ≥ S.

A final note on synchronization is “the glitch that doesn’t

matter”. Consider the case where qVget = Nv − 1, qHget =
j, and a get is performed. On the next edge of get_clk,

qVget← 0, and qHget← j+1. If qVget transitions before qHget,

then there may be a high-low-high glitch on empty[0, j].

For this to occur, it must be the case that

therm(0, j) < therm(qVput,qHput) < therm(0, j+1) (5)

Therefore, empty[0, j+1] is making a low-to-high transi-

tion, and there is an empty slot available in this row. Thus,

the glitch on empty[0, j] is benign.

III.2. The Data Path

Figure 6 shows the data path through the FIFO. Data is

acquired with a low-enabled latch at the input of the FIFO. As

described above, the put-controller asserts the write enables of

the data latches when clk_put is high. Together, the input

latch and the selected data latch implement the behaviour of a

positive, edge-triggered flip-flop. Thus, the timing is familiar

to designers. The data is stored in the latch immediately

following the rising edge of clk_put.

The output path is a bit more involved. We observed that the

output select logic, whether tri-state drivers or multiplexors,

was a critical cycle time limiter. Once again, interleaving

provided a solution. The FIFO has two output buses driven by

44

sel_odd

put control

en

oe
D Q

en

oe
D Q

en

oe
D Q

get control

w
w

wD Q
enwdata_in

space_av
clk_put

req_put

D Q

D Q

w

w

sel_even w data_out

datav

req_get

w

w

clk_get

data_even

data_odd

Fig. 6. The Data Path

the data latches: data_even is driven by latches with even

row indices, and data_odd is driven by the odd-indexed

latches. A key observation is that each data value must dwell

in its data latch for at least the synchronization delay. Thus,

when the get-controller is ready to read a value from a latch, it

has already been there for at least one cycle of clk_get. The

get-controller exploits this observation by enabling the output

driver for a data latch when its predecessor is being accessed.

Because the data latches are accessed at alternating even and

odd indices, the current latch and the “next up” latch drive

different buses. The get-controller generates sel_even and

sel_odd signals to control which bus drives data_out. If

both sel_even and sel_odd are false, then data_out
will be driven with all zeros.

The signal datav indicates that the value on data_out
is valid data. It will remain asserted until a req_get requests

a new word. If that word is immediately available, it will be

output following clk_get↑, and datav will remain high.

Otherwise, datav will drop until valid data is output, and

in the interim, both sel_even and sel_odd will be false,

and data_out will be driven with driven with all zeros. We

use this to suppress the glitch hazard described below.

III.3. Blocking the Glitch Path

While developing the FIFO, we realized that the hazards
described in [5] can occur in synchronization FIFOs. Logic
synthesis tools can introduce glitches when a logic block in-
cludes inputs from other clock domains. Consider the Verilog
fragment:

always @posedge(get_clk) begin
if(data_valid) qq <= f(data_out, local1)
else qq <= g(local2)

end

where f and g are combinational logic functions, and

local1 and local2 are state variables local to the

get_clk clock domain. The designer may expect the if-

then-else to be implemented with a multiplexor circuit, but

the logic synthesis tools can generate a network of gates that

intermixes the operations of f, g, and the multiplexor. The

synthesized network is logically equivalent to the RTL source

if all of the inputs to the network from the FIFO, are stable

between clock events. If this stability assumption is violated,

then glitches can occur and cause the circuit to malfunction.

In particular, if the FIFO’s output, data_out, has unstable

signals on cycles when data_valid is false, a glitch failure

can occur.

Such glitch hazards are prevalent in published designs

of clock-domain crossing FIFOs, and we are aware of no

prior work that has reported this hazard. Most of the bi-

synchronous FIFOs cited in Section II produce outputs that

can be unstable on cycles where data validity is not guaran-

teed. For example, data can flow from the sender, through

a dual-ported SRAM, to the data_out port of the FIFO

and change asynchronously with respect to clk_get [1],

[3], or data_out may be driven by a flip-flop or latch that

is updated on clk_put [2], [7]. The ripple FIFO designs

in [10], [11] avoid this problem by ensuring that data is

properly synchronized by the time it reaches the final, output

FIFO stage. This comes at a cost of extra power consumption

because of the repeated copying of the data value from

stage to stage. The design in [4] does not allow the get

pointer to be advanced until the corresponding data register

is known to hold valid data. This avoids the glitch hazard

because the receiver can only issue a get request when the

FIFO has asserted that it has data available. This data is

output following on the following clock cycle. Mesochronous

designs such a such as [13]–[16] avoid these glitches because

the metastability is resolved during initialization and does not

occur under subsequent operation.
Our solution forces data_out to be all zeros when

data_valid is false. In a bit more detail, the get-controller

has an interleaved synchronizer to identify full data latches;

this synchronizer is equivalent to the one in the put-controller

shown in Fig. 5. As in the put-controller, the get-controller

divides the final OR-tree into two subtrees, one for even

indexed rows and the other for odd. These provide separate

data-validity signals for the even and odd paths: dv_even
and dv_odd. A toggle enabled by req_get identifies

whether the next data word should come from the even

or odd latches. Combining the output of this toggle with

dv_even and dv_odd provides sel_even and sel_odd
respectively. If neither path has valid data, the FIFO outputs

a word of all zeros for that clock cycle. This ensures that

the FIFO produces no ill-timed signals that could trigger

synthesis-induced glitches in the receiver’s logic.
The cost of this design is an extra pipeline stage in the

output of the FIFO, and our FIFO incurs an extra clock cycle

of latency like the one in [4]. As described below, the fan-out

tree for these enables is a critical timing path when designing

for high-frequency clocks. Thus, we believe that this extra

latency is necessary. An alternative would be to expose the

glitch and use a tool like the one described in [5] to identify

any resulting glitches and then take corrective measures. We

are not aware of any open source implementation of that tool.

Furthermore, we expect that most designers prefer a design

that always produces a correct FIFO. That is the Verilog code

that we provide.

III.4. Timing Details

An “ideal” synchronizing FIFO would look to the sender

and receiver as if it were a flip-flop with two clock-inputs:

clk_put and clk_get. Because these clocks may run at

45

different frequencies, the FIFO must have flow control signals

as well: spaceav an output of the FIFO that asserts there

is space available for a put operation; req_put an input to

request a “put” operation – i.e. insert the value of data_in
into the FIFO; datav an output of the FIFO that asserts that

the data currently being output is valid; req_get an input

to request a “get” operation – i.e. update data_out with

the next value when it is available. For an ideal FIFO, we

would like the signals data_in, req_put, and spaceav
to be synchronous to clk_put. It should be sufficient for

data_in and req_put to settle within the set-up and

hold times for a standard flip-flop in the implementation

technology. Likewise, spaceav should settle within the

clock-to-Q delay for such flip flops. Furthermore, we would

like data_out, req_get, and datav to be synchronous

to clk_get.

No real FIFO can meet these constraints. The value of

spaceav on one cycle of clk_put depends on the value

of req_put on the previous cycle. Thus, there must be a

few logic gates in this path. Our design requires req_put
to settle two gate delays before the flip-flop set-up time.

However, our design also allows the sender to “aggressively”

assert req_put. The put will only be performed on cycles

where spaceav was true. Thus, spaceav can be treated

as an acknowledgement that the requested put will take place

on the next rising edge of clk_put. In the same way, the

values of data_out and datav on one cycle of clk_put
depend on the value of req_get on the previous cycle. In

this case, the critical cycle includes the fan-out of the control

signals to all of the data-bits of the output word. In our design,

req_get must settle two gate delays before the flip-flop set-

up time. The fan-out delays are incurred after the rising edge

of clk_get, and data_out does not settle until the control

signals and selected data value propagate through the output

multiplexor. The receiver can “aggressively” assert req_get
and treat datav as an acknowledgement.

IV. AN OPEN SOURCE FIFO

In order to verify and simulate the suggested approach,

we wrote a fully parameterized Verilog module. To simulate

and synthesize the proposed designs with various parameters

in batch using Synopsys Synthesis tools, we also provide

a run-in-batch flow manager. The Verilog modules and the

flow manager are available online [6]. The design package

is composed of a Verilog description of the proposed FIFO,

a Verilog testbench, tool configuration scripts, and a run-

in-batch manager. The Verilog description of the proposed

FIFO is parameterized and can be instantiated in other Verilog

projects as a stand-alone IP.

The Verilog testbench emulates five use cases as follows.

(1) Fast: the sender will put data in the FIFO whenever space

is available, and the receiver will get data whenever data valid

is asserted. (2) Random: when space is available, the sender

chooses randomly to put data or to remain idle and likewise

for the receiver. (3) Empty: the sender and receiver keep the

TABLE I
“EFFICIENCY” VS. Nv AND S

S = 2 S = 3 S = 4
Nv = 2 [0.48 0.50 0.50] [0.38 0.47 0.50] [0.33 0.38 0.40]
Nv = 4 [0.87 0.97 1.00] [0.73 0.93 1.00] [0.62 0.72 0.75]
Nv = 6 [1.00 1.00 1.00] [1.00 1.00 1.00] [0.95 0.98 1.00]
Nv = 8 [1.00 1.00 1.00] [1.00 1.00 1.00] [0.99 0.99 1.00]

Each entry is [min mean max].

FIFO close to empty. (4) Half: the FIFO is kept close to half

full. (4) Full: the FIFO is kept close to full.

The run-in-batch manager allows synthesizing and simu-

lating a number of FIFOs in batch. A list of design parame-

ters (e.g. vertical stages, horizontal stages, data width, and

synchronizers’ depth) can be provided to the run-in-batch

manager, together with the required flow stages. The design

stages are implemented using Synopsys tools and ordered

as follows. (1) Logic synthesis using Design Compiler. (2)

Placement and routing using IC Compiler; this include delay

and parasitic extraction. (3) Static timing analysis using

PrimeTime (4) Gate-level-Simulation using VCS with the

placed and routed netlist, delays and parasitics data, and the

Verilog testbench. The testbench will generates input vectors

checks the outputs, comparing them against a generic FIFO.

The simulation also generates the activity data for power

analysis. (5) Power analysis using PrimeTime to estimate

both dynamic and leakage power of the FIFO.

V. RESULTS

To validate the design, we used the batch-in-run scripts to

test all combinations of the following parameters: number

of vertical stages, Nv ∈ {2,4,6,8}; number of horizontal

stages, Nh ∈ {2,4,6,8}; data word width, w∈ {8,16,32}; and

synchronizer depth, S ∈ {2,3,4} flip-flops. We synthesized

each FIFO with different speed targets, and used binary search

to find the top operating frequency for each design. We used

the cell library for a 65nm process. Each FIFO was tested with

thousands of cycles for the various usage scenarios described

above. Performance numbers are based on extracted layout.

The results with Nv = 2 are primarily for checking that

the design and scripts work in the corner cases. These FIFOs

achieve clock rates of 1.7GHz for Nv = Nh = 2 and a data

word width of 8 or 16 bits. These high clock frequencies

are useless for realistic applications because the FIFOs are

nearly always stalled due to inadequate synchronizer in-

terleaving. The same FIFOs achieve throughputs of 520-

850M transfers/second. For 4 ≤ Nv ≤ 8, the designs achieve

clock frequencies from 1.0 to 1.6 GHz. The highest clock

frequencies are again for imbalanced designs, but there are

many choices of parameters that achieve clock rates of 1.2

or 1.3 GHz and sustain one transfer per clock cycle. We will

focus on these “practical” designs, along with some trends

that illustrate the key trade-offs.

We first look at the impact of interleaving on FIFO through-

put. Let “Efficiency” denote the throughput of the FIFO

46

(transfers per second) divided by the clock frequency – if the

FIFO could sustain one transfer per cycle on both interfaces,

then the Efficiency would be 1.00. For Nv ≤ S we see that the

FIFO is often stalled waiting for the synchronizers. When

Nv > S, efficiency approaches 100%. There are two reasons

for the lower numbers: the main cause is that for small values

of Nh, the FIFO does not have enough slots to cover the

latency of the put and get control and the synchronizers. In

particular, when Nv > S and Nh ≥ 4 the efficiencies are always

above 99%. The remaining fraction of a percent appears to

be a simulation artifact.

The synthesizable clock frequency decreases for larger

values of Nv and Nh, and has little sensitivity to the data word

width, w, and no significant dependency on the synchronizer

depth, S. The data fits a model of

T = [74log2(Nv)+112log2(Nh)+36log2(w)+293]ps (6)

where T is the clock period. The RMS error is 52ps. As we

only tried clock frequencies that are multiples of 100MHz,

this is roughly the same as the frequency resolution from

the dataset. Using the logarithms of the parameters reduced

the fitting error by about 10% compared with using a linear

model. This suggests that the critical structures are trees, for

example, the OR-trees in the empty and full synchronizers.

For the choices of parameters we used in our sweep, the

operating frequencies are in the range of 1GHz to 1.5GHz.

For example, a 16 stage FIFO (Nv = Nh = 4) with 8-bit data

words and two or three flip-flop synchronizers achieves full

throughput at an operating frequency of 1.3GHz. The same

configuration but with 16 or 32-bit data words achieves full

throughput at 1.1GHz. These frequencies and throughputs are

well-above typical target frequencies for an ASIC in a 65nm

process.

By itself, clock frequency is not a very meaningful mea-

sure of performance. Thus, we also consider throughput and

latency. To achieve full throughput, the Nv must be large

enough to maintain synchronizer interleaving without any

stall cycles. Furthermore, the total capacity, N =NvNh must be

large enough to accommodate a round-trip from the sender

to the receiver and back – intuitively, the sender consumes

an empty slot when it performs a put, and the FIFO must

have sufficient capacity to operate until that slot can be

used by the sender again. Both of these conditions depend

on the synchronizer latency. From the simulation data, full

throughput i.e. one put and get per clock cycle – requires

Nv ≥ 4. Furthermore, when the synchronizer depth, S, is 2 or

3, then full throughput is achieved if NvNh ≥ 12. When the

synchronizer depth is increased to 4, then full throughput is

achieved when NvNh ≥ 16.

The latency of the FIFOs is given by

L = (S+1)Tget +368ps (7)

where S is the number of synchronizer stages and Tget is

the period of clk_get. The RMS error is 55ps (1.2%).

The latency is composed of the synchronizer delay, STget

plus one more cycle for the glitch blocking FFs plus some

combinational logic delay. Any further reductions in the

latency would require reducing the combinational logic delay

which Eq. 7 shows is already fairly small.

Power consumption is dominated by the vertical and hori-

zontal counters and associated control logic. Normalizing for

frequency, a linear regression yields a model for the energy

per clock cycle of:

E = [95Nv +83Nh +42w+20NvS−395] fJ (8)

with a relative error of ±7.5%. Using the linear terms, Nv and

Nh produced a better fit than their logarithms – these terms

are effectively a measure of the flip-flops and logic gates in

the control. In a similar fashion, the NvS term accounts for the

synchronizer flip-flops. This suggests that power consumption

is dominated by the control flip-flops and the associated

logic. Including the number of FIFO stages, N = NvNh, in the

regression only produced a slight reduction in the error term,

but it did it by making fairly large, “cancelling” changes to

the other coefficients. This shows that for FIFOs of practical

sizes, the power consumption for our architecture is largely

independent of the number of stages. Including N in the power

model risks overfitting the data; so, we didn’t. To get power

(in mW), multiply the energy per operation from Eq. 8 (in

fJ) by the operating frequency (in GHz). For the choices of

parameters we used in our sweep, power consumption ranges

from 0.98mW to 3.4mW.

Area is dominated by the data-storage latches and associ-

ated circuitry. A linear regression yields:

A = [10NvNhw+119Nv +30NvS+112Nh +208]μ2 (9)

with a relative error of ±2.9%. For example, consider a small

FIFO with Nv = 4, Nh = 2, w = 8, and S = 2. Equation 9

predicts an area of 1791μ2 and the actual, synthesized FIFO

has an area of 1745μ2. Our model predicts that 640
1791 = 36%

of the area is for the data-storage array. The data from the

synthesis tools shows that 18.5% of the area goes to the

storage latches themselves. Other area goes to the tri-state

buffers and perhaps other, per-data-latch logic – we have

not as yet, fully reverse-engineered the synthesized design.

For a FIFO with Nv = 8, Nh = 8, w = 32, and S = 2, our

model predicts an area of 23,710μ2 (23,702μ2 for the actual,

synthesized FIFO) of which 87% is for data storage. For

moderate sized FIFOs and larger, the area is dominated by

the data store and not the control logic.

We would like to compare our design with other published

FIFO, such as those surveyed in Section II. Alas, many of

these design make use of full-custom logic elements and

cannot be synthesized using standard cell library. Only one of

the designs, [3] provides open-source Verilog. Unfortunately,

their design requires a SRAM generator, and we did not have

a license for such a tool at the time of writing this paper.

We believe that this underscores the value of providing an

open-source design, and hope that by making our design

available, other designers will benefit from using it, and other

researchers can compare their designs with ours.

47

VI. CONCLUSIONS

We have presented a novel, high-performance synchroniza-

tion FIFO for crossing clock domains. The key feature of the

design is its “interleaved” approach. The current write and

read locations are each maintained by a pair of thermometer

(unary) counters. This enables our FIFO to achieve fast

read/write location comparisons of a unary design using

significantly less control logic. Most parts of the control scale

roughly as the square-root of the FIFO capacity rather than

linearly. The per-row synchronization for communicating full

and empty status between the put- and get-interfaces is a novel

approach that offers excellent performance and efficiency. The

interleaving style simplifies many other challenges in achiev-

ing a high performance, synthesizable design. We showed

how we use interleaving in the computation of control signals

for maximizing the throughput of the FIFOs data path.

We described how the synthesis-induced glitches reported

in [5] can arise from the use of synchronization FIFOs. Many

published designs have flow-through paths that allow the

data output from the FIFO to change asynchronously with

respect to the receiver’s clock domain. While the data valid

indicator is false during such asynchronous data transitions,

standard synthesis tools can combine signals and logic from

a “non-selected” path with those from the intended path and

create glitches. We have not seen this vulnerability previously

reported. Our FIFO is safe with respect to such hazards.

We constructed analytical models for performance, power

consumption, and area based on the synthesis and simulation

results. These models match the actual, synthesized FIFOs to

with a few percent. Such models allow architects or module

designers to evaluate trade-offs quickly without needing to

actually synthesize and simulate each alternative. By their

simplicity, these models provide insight into where the bot-

tlenecks and trade-offs are in the design.

Our FIFO is available as an open-source, highly parameter-

ized design [6]. We provide scripts for an industry standard

design flow based on Synopsis tools. This includes synthesis,

layout generation, extraction, timing analysis, simulation, and

power estimation. We include a simulation test bench, and

scripts for batching sweeping design parameters to enable

exploration of the design space. Our design should be both

useful to designers and provide a repeatable reference case

for other researchers.

Acknowledgements

We appreciate helpful discussion with Brad Quinton and

Tarik Ono in the early phases of this work. Many thanks to

the anonymous reviewers for their feedback and suggestions.

This research would not have been possible without the

access to design tools and libraries that we obtained through

the Canadian Microelectronics Corporation. This work was

supported by the NSERC Discovery Grant programme.

REFERENCES

[1] R. Apperson, Z. Yu, J. Meeuwsen, T. Mohsenin, and B. Baas, “A
scalable dual-clock FIFO for data transfers between arbitrary and
haltable clock domains,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 15, no. 19, pp. 1125–1134, Oct. 2007.
[Online]. Available: http://dx.doi.org/10.1109/TVLSI.2007.903938

[2] A. Strano, D. Ludovici, and D. Bertozzi, “A library of dual-clock FIFOs
for cost-effective and flexible MPSoC design,” in 2010 International
Conference on Embedded Computer Systems: Architectures, Modeling
and Simulation, July 2010, pp. 20–27. [Online]. Available: http:
//dx.doi.org/10.1109/ICSAMOS.2010.5642098

[3] C. Cummings and P. Alfke, “Simulation and synthesis techniques for
asynchronous FIFO design with asynchronous pointer comparison,”
in SNUG-2002, San Jose, CA, 2002. [Online]. Available: http://www.
sunburst-design.com/papers/CummingsSNUG2002SJ FIFO1.pdf

[4] T. Chelcea and S. M. Nowick, “Robust interfaces for mixed-timing
systems,” IEEE Transactions on VLSI Systems, vol. 12, no. 8, pp.
857–873, Aug. 2004. [Online]. Available: dx.doi.org/10.1109/TVLSI.
2004.831476

[5] Y. Peng, I. W. Jones, and M. R. Greenstreet, “Finding glitches
using formal methods,” in 2016 22nd IEEE International Symposium
on Asynchronous Circuits and Systems (ASYNC). IEEE Computer
Society, May 2016, pp. 45–46. [Online]. Available: http://dx.doi.org/
10.1109/ASYNC.2016.12

[6] A. Abdelhadi, “Cell-based mixed fifo,” Open source repository,
2017. [Online]. Available: https://github.com/AmeerAbdelhadi/
Interleaved-Synthesizable-Synchronization-FIFOs

[7] I. M. Panades and A. Greiner, “Bi-synchronous FIFO for synchronous
circuit communication well suited for network-on-chip in GALS
architectures,” in First International Symposium on Networks-on-
Chip (NOCS’07), May 2007, pp. 83–94. [Online]. Available:
http://www.dx.doi.org/10.1109/NOCS.2007.14

[8] T. Ono and M. R. Greenstreet, “A modular synchronizing FIFO
for NoCs,” in 3rd Network on Chip Symposium, ser. NOCS’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 224–233.
[Online]. Available: http://dx.doi.org/10.1109/NOCS.2009.5071471

[9] B. Keller, M. Fojtik, and B. Khailany, “A pausible bisynchronous
FIFO for GALS systems,” in 2015 21st IEEE International Symposium
on Asynchronous Circuits and Systems, May 2015, pp. 1–8. [Online].
Available: http://dx.doi.org/10.1109/ASYNC.2015.9

[10] J. N. Seizovic, “Pipeline synchronization,” in Proceedings of the
First International Symposium on Advanced Research in Asynchronous
Circuits and Systems. IEEE Computer Society Press, 1994, pp. 87–96.
[Online]. Available: http://dx.doi.org/10.1109/ASYNC.1994.656289

[11] S. Jackson and R. Manohar, “Gradual synchronization,” in 22nd

IEEE International Symposium on Asynchronous Circuits and
Systems (ASYNC), May 2016, pp. 29–36. [Online]. Available:
http://dx.doi.org/10.1109/ASYNC.2016.21

[12] D. G. Messerschmitt, “Synchronization in digital system design,”
IEEE Journal on Selected Areas in Communications, vol. 8,
no. 8, pp. 1404–1419, Oct. 1990. [Online]. Available: http:
//dx.doi.org/10.1109/49.62819

[13] M. R. Greenstreet, “STARI: A technique for high-bandwidth
communication,” Ph.D. dissertation, Department of Computer Science,
Princeton University, Jan. 1993. [Online]. Available: http://citeseerx.ist.
psu.edu/viewdoc/download?doi=10.1.1.42.9349&rep=rep1&type=pdf

[14] A. Chakraborty and M. R. Greenstreet, “Efficient self-timed interfaces
for crossing clock domains,” in Proceedings of the Ninth International
Symposium on Asynchronous Circuits and Systems, May 2003, pp.
78–88. [Online]. Available: http://dx.doi.org/10.1109/ASYNC.2003.
1199168

[15] W. Dally and S. Tell, “The even/odd synchronizer: A fast, all-digital,
periodic synchronizer,” in Proceedings of the 16th International
Symposium on Asynchronous Circuits and Systems, 2010, pp. 75–84.
[Online]. Available: http://dx.doi.org/10.1109/ASYNC.2010.20

[16] D. Verbitsky, R. Dobkin, R. Ginosar, and S. Beer, “StarSync: An
extendable standard-cell mesochronous synchronizer,” Integration, the
VLSI Journal, vol. 47, no. 2, pp. 250–260, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167926013000497

48

