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Abstract—A fundamental recurring task in many machine
learning applications is the search for the Nearest Neighbor in
high dimensional metric spaces. Towards answering queries in
large scale problems, state-of-the-art methods employ Approx-
imate Nearest Neighbors (ANN) search, a search that returns
the nearest neighbor with high probability, as well as techniques
that compress the dataset. Product-Quantization (PQ) based ANN
search methods have demonstrated state-of-the-art performance
in several problems, including classification, regression and infor-
mation retrieval. The dataset is encoded into a Cartesian product
of multiple low-dimensional codebooks, enabling faster search
and higher compression. Being intrinsically parallel, PQ-based
ANN search approaches are amendable for hardware accelera-
tion. This paper proposes a novel Hierarchical PQ (HPQ) based
ANN search method as well as an FPGA-tailored architecture
for its implementation that outperforms current state of the
art systems. HPQ gradually refines the search space, reducing
the number of data compares and enabling a pipelined search.
The mapping of the architecture on a Stratix 10 FPGA device
demonstrates over ×250 speedups over current state-of-the-art
systems, opening the space for addressing larger datasets and/or
improving the query times of current systems.

Index Terms—Approximate search, similarity search, nearest
neighbor search, online indexing, high-dimensional indexing,
product quantization, vector quantization, artificial intelligence

I . I N T R O D U C T I O N

Searching a high dimensional space for the Nearest Neigh-
bors (NN) of a query point is a fundamental recurring task
in many machine learning applications. Computer vision
(specifically classification [1] and recognition [2]), information
retrieval [3], robotics [4], and other machine learning tasks, all
benefit from NN similarity search. With the rapid increase of
data scale, exact search is becoming more cost-prohibitive in
term of query time and memory space. To alleviate computation
and memory complexity of this task, an Approximate Nearest
Neighbors (ANN) search is used to find highly probable nearest
neighbors.

Many CPU-based ANN search techniques have been pro-
posed to accelerate the search process. The most popular are
metric trees [5], e.g., KD-trees [6], R-trees [7], K-D-B-tree [8],
VP-trees [9] and their variants. A branch-and-bound is applied
of these metric trees to perform space partitioning where the
search space is gradually subdivided. However, these structures
suffer from the curse of dimensionality and perform poorly
for high-dimensional spaces in which their performance is not
better than a brute-force exhaustive search [10].

Hashing [2], [11]–[14] and Product Quantization (PQ) [15]
are recent approaches for ANN search which involve encoding
the high-dimensional dataset into shorter codes. Encoding
the data into compact codes dramatically reduces storage
consumption and accelerates the search process since distances
are preserved and embedded in the codes. In hashing, Hamming
distance is used to approximate the similarity between two
vectors, whereas PQ-based techniques partition the original
space into a Cartesian product of several low-dimensional
subspaces and quantizes each partition into clusters. The data
is quantized by selecting the appropriate code from each
low-dimensional codebook and a distance is approximated by
summing the distances from the query vector to each subspace
quantization code.

PQ-based methods demonstrate higher accuracy than hashing-
based techniques [15], mainly because of their large effective
codebook. Despite having small sub-codebooks, the effective
codebook is actually the Cartesian product of these codebooks,
thus the size of the effective codebook is the product of all sub-
codebook sizes. Furthermore, PQ is computationally efficient
since distances between the query vector and each subspace
codes can be stored in small tables, and retrieved for total
distance computation.

Product quantization and its extensions are leading ap-
proaches for high-dimensional large-scale Approximate Nearest
Neighbors (ANN) search. Compared to other state-of-the-art
methods, the advantages of PQ-based techniques are threefold.
(1) The encoding methods and the data structure are simple,
which make it a perfect candidate for parallel hardware
acceleration and more promising for high-performance search.
(2) The distances are computed and compared efficiently by
performing codebook lookups. (3) The compression of the
dataset into shorter codes enables higher storage efficiency.

The PQ quantization process incurs a distortion in the
quantized data which introduces distance errors and impacts
the accuracy of the ANN search. To reduce the quantization
distortion, several improvements to the original PQ-based ANN
search has been proposed. Optimized Product Quantization
(OPQ) [16] and Cartesian K-Means (cK-Means) [17] reduce
the quantization distortion by applying arbitrary rotation and
dimension reordering to enhance the alignment to the data
distribution. Locally Optimized Product Quantization (LOPQ)
[18] also applies local optimization for the product quantizer
by space decomposition to fit the underlying data distribution.
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PQ-based methods can efficiently leverage FPGA devices
to accelerate queries. FPGA devices contain several thousand
distributed on-chip memory blocks, known as Block RAMs
(BRAMs), and several thousand Digital Signal Processing
(DSP) blocks. In modern devices, these DSP blocks also support
Floating-Point (FP) arithmetic. While distributed memories
can be utilized to store the codebooks and the coded dataset
for fast and parallel retrieval, DSP blocks can be used to
compute and compare distances in parallel. Since a query
requires multiple access to codebooks and performs multiple
distance computations, this combination of distributed BRAMs
and DSPs is capable of alleviating the performance bottleneck.

In this paper, we introduce Hierarchical PQ (HPQ), a
novel PQ-based ANN search method. HPQ benefits from the
previously-mentioned PQ attributes and utilizes hierarchical
search to refine the search space gradually, and thus avoids
time-consuming exhaustive search. Simple Vector Quantization
(VQ) is used for refinement of the PQ search space. The closest
VQ centroid is found and its attached points (Voronoi cell) are
solely used for the next level PQ search. To find the closest VQ
centroid, PQ is employed recursively on VQ centroids. This
technique allows a gradual partitioning of the search space.
The suggested structure is also more suitable for hardware
acceleration since the search process can be pipelined through
the hierarchy. Our HPQ method is highly amendable for parallel
hardware acceleration. We provide a custom accelerator for
HPQ and implement it on Intel Stratix 10 and Arria 10 devices.
The hardware implementation utilizes the on-chip distributed
memory blocks and DSP blocks for massive parallel processing.
In addition, we provide a mathematical analysis of memory
and hardware consumption, performance, latency, and accuracy,
and provide a guideline for tuning the design hyperparameters
based on user requirements and hardware limitations.

Notation and abbreviations used for the rest of the paper
are listed in Table I. The rest of this paper is organized
as follows. Section II reviews related ANN techniques and
quantization methods. Section III describes our Hierarchical
Product Quantization (HPQ) ANN approach. Section V presents
our experimental framework and results and Section VI
concludes the paper with future suggestions.

I I . B A C K G R O U N D A N D P R E L I M I N A R I E S

In this section, we discuss different techniques for ANN
search, in particular PQ-based approaches, the basis of our
proposed method. In addition, a formal description of the
Nearest Neighbor (NN) problem and different quantization
methods is provided.

A. Related Work: Compact Codes for ANN Search

Hashing-based methods. To enable nearest neighbor search,
hashing-based techniques create several hash functions that
map points from the dataset into hash codes. The probability
of two points to hash to the same code is proportional to the
proximity of these points. In other words, two points have a
high probability to be hashed into the same code if they are
close. Conversely, it is unlikely that two far away points are

TABLE I: List of Notations and Abbreviations
Architectural hyperparameter:
h Number of PQ Search levels in the hierarchy.
Ni Number of entries in level i. For top level Nh−1 = N .
Mi Number of subspaces in level i.
D Dimension of search space.
D̃i Dimension of each subspace in level i (D̃i = D/Mi).
k̃i PQ Codebook size in level i.
αi Tapering factor (αi > 1;Ni = αiNi−1).
βi Voronoi cell centroid occupancy factor (βi > 1).
w Width of data format in bits (e.g., 32 for single-precision FP).
p̃, p̂ Parallelism of phase 1 (update) and phase 2 (compare), respectively.
d(., .) A distance metric between two argument vectors.

Variables, arrays, and matrices:
x Query vector x ∈ RD .
um(x) The m’th subspace of x ∈ RD . um(x) = (xmD, ..., x(m+1)D−1)

Yi Search space of level i; a dataset of Ni D-dim vectors
Yi = {yi0, ..., yiNi−1} ⊂ RD. For top level Yh−1 = Y = {y0, ..., yN−1}.

Ỹi PQ-Encoded dataset. Ỹi = (ỹi
0
, · · · , ỹi

N−1
) ⊂ (0, · · · , k̃i − 1)M .

Ci
m Codebook of subspace m in level i. Ci

m = {Ci
m,0, · · · , Ci

m,k̃i−1
}

dim,j Meta-deta of codebook Ci
m. dim,j = d2(um(x), Ci

m,0).

ni
m,j Number of points attached to centroid Ci

m,j .

Vi
j,k VQ Voronoi cells. Point k of cell j from Yi with indices to Ỹi+1.

Design attributes:
Si Storage consumption (in bits) of level i. (S is the total consumption)
F̃i, F̂i DSP consumption of phase 1 (distance update) and phase 2 (distance

compare) of level i, respectively. (F is the total DSP consumption)
L̃i, L̂i Latency of phase 1 & 2 of level i, respectively. (L is the total latency)
Ti Throughput of level i. (T is the overall throughput)
R@r Recalls. Probability that an identified NN is among the actual r NNs.

hashed into the same code. A popular class of hashing-based
methods is Locality Sensitive Hashing (LSH) [19] and its
extensions. LSH methods use multiple random projections to
hash database points. For querying, LSH maps the query vector
into its corresponding code and finds the closest neighbors from
this code only. LSH is data-independent; it does not guarantee
that the data will be hashed evenly for every distribution. In
some cases, the majority of data points may be hashed into
the same code, which will adversely increase the search time.
Conversely, data-dependent hashing learns to hash from data.
Spectral Hashing [12] is an example of data-dependent hashing
where similarity graphs of the inputs are encoded into hash
functions. Other examples are Iterative Quantization (ITQ) [20]
and Isotropic Hashing [21] (IsoH), both using a rotation matrix
of the projected data.

Quantization-based methods. Quantization-based methods
for ANN search quantize the dataset into smaller subsets
of compact codes. Using these codes, the original data and
the corresponding distances can be efficiently regenerated.
Quantization-based methods revolve around minimizing the
quantization distortion and thus reducing the search error. Other
objectives are accelerating the search process and minimizing
the storage consumption by quantizing to more compact codes.
Product Quantization (PQ) [15] and its extensions decompose
the search space into the Cartesian product of several smaller
codebooks to compose a large effective codebook. To reduce
the quantization distortion Optimized Product Quantization
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(OPQ) [16] and Cartesian K-Means (cK-Means) [17] apply
arbitrary rotation and dimension reordering for better alignment
to the data distribution. Locally Optimized Product Quantization
(LOPQ) [18] also applies space decomposition to match
the underlying data distribution. Other quantization-based
ANN methods include Additive Quantization (AQ) [22], Tree
Quantization (TQ) [23], and Composite Quantization (CQ) [24].
These methods suggest an alternative quantization and aim to
reduce quantization distortion.

B. Nearest Neighbor (NN) Search

Nearest Neighbor (NN) Search finds closest neighbors to a
query point in a D-dimensional metric space RD. Given a finite
dataset of N D-dimensional vectors Y = {y0, · · · , yN−1} ⊂
RD, a D-dimensional query vector x ∈ RD, and a distance
metric d(., .), a Nearest Neighbor search of the query vector
x, NN(x), finds the index i of a vector in the dataset yi ∈ Y
with the smallest distance to the query vector x. Namely,

NN(x) = argmin
0≤i<N

d(x, yi). (1)

On the other hand, a k Nearest Neighbor (kNN) Search finds
a set of k indices {i0k−1} of k vectors from the dataset with
the smallest distance to the query

kNN(x) = k argmin
0≤i<N

d(x, yi) (2)

C. Vector Quantization (VQ)

Vector Quantization (VQ) subdivides the search space into
several clusters. Each cluster has a centroid and database vectors
are attached to their nearest centroid. A quantization function
q maps a D-dimensional vector y ∈ RD to the index i ∈
{0, 1, · · · , k − 1} of its nearest centroid ci from a k-centroid
codebook C = {c0, · · · , ck−1}, namely,

q : RD → {0, · · · , k − 1}; y 7→ q(y) = argmin
0≤i<k

d(y, ci).

(3)
A Voronoi cell Vi is a set of vectors mapped to a centroid ci,

Vi = {y ∈ RD : q(y) = i}. (4)

An example of a two-dimensional VQ, including Voronoi
cells, is illustrated in Fig. 1 (left). 64 centroids are found using
k-means clustering with k = 64.

D. Product Quantization (PQ)

Product quantization splits a high-dimensional vector into
several orthogonal subspaces, where each subspace is quantized
using a different vector quantizer. An input D-dimensional
vector y ∈ RD is split into M uniform sub-vectors
(u0, · · · , uM−1) of D̃ = D/M dimensions such that

uj(y) = (yjD̃, · · · , yjD̃+D̃−1), (5)

that is,

y=(
u0(y)︷ ︸︸ ︷

y0, · · · , yD̃−1,
u1(y)︷ ︸︸ ︷

yD̃, · · · , y2D̃−1, · · · ,
uM−1(y)︷ ︸︸ ︷

y(M−1)D̃, · · · , yMD̃−1). (6)

Legend:      Data point;      VQ centroid;      PQ centroid;      PQ subcode

Fig. 1: Multi-dimensional quantization—a two-dimensional example. (left)
Vector Quantization (VQ); k-means with k = 64. (right) Product Quantization
(PQ); k-means for each of two single-dimensional subspaces with k = 8)

Two-dimensional PQ is illustrated in Fig. 1 (right). The
two-dimensional space is split into two single-dimensional
subspaces. k-means clustering is applied to each subspace
individually with k = 8. The generated centroids are the
Cartesian product of centroids of all subspaces. For only two
codebooks with eight codes each, a total of 82 = 64 centroids
will be generated.

E. Quantization Quality

The quality of a quantizer is affected by the difference
between the original vector, y, and the quantized vector, q(y),
using a quantizer q. To measure the quantization quality, it is
common to use the mean square error of these values, namely,

MSE(q) = E[d (y, q(y))
2
] =

∫
p(y)d2(y, q(y))dy, (7)

where E is expected value, and p(y) is the probability density
function.

For a uniformly distributed dataset of N elements, {yi}N−1i=0 ,

MSE(q) = E[d (y, q(y))
2
] =

1

N

N−1∑
i=0

d2(yi, q(yi)). (8)

The quality of a product quantizer is affected by each
subspace quantizer. All subspaces of a product quantizer are
orthogonal, thus the MSE of a product quantizer and the sum
of all subspaces MSEs, thus

MSE(q) =

M−1∑
j=0

MSE(qj), (9)

where qj is the subquantizer of subspace j.

I I I . H I E R A R C H I C A L P R O D U C T Q U A N T I Z AT I O N
( H P Q )

In this section, we present the proposed HPQ method.
Subsection III-A motivates and explains the key idea for this
work. Offline initialization of the HPQ database is described
in Subsection III-B, whereas searching the HPQ database for
the k-nearest neighbors is described in Subsection III-C.
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Fig. 2: A toy example of two-dimensional HPQ with three levels.

A. Motivation and Key Idea

In this paper, we propose a PQ-based ANN search via
space-partitioning hierarchical search. The search space is
efficiently and gradually refined by employing hierarchical
search, preventing time-consuming exhaustive search. Vector
Quantization (VQ) is utilized to subdivide the PQ search
space gradually. For each level in the hierarchy, PQ is used to
efficiently search within the refined subspace.

An example of two-dimensional (D = 2) HPQ with three
levels (h = 3) is illustrated in Fig. 2. For each level, the
search space is subdivided by four (α = 4). PQ includes
two subspaces (M = 2), whereas each subspace has a single
dimension (D̃ = 1). The initialization process starts from the
higher level, creates PQ codebooks, and subdivides the search
space down to the lower level. Querying the database starts
from the lower level and searches a partial subspace that has
been selected by the previous level.

Fig. 3 shows a recursive data structure for HPQ. The search
space of the current level, Yi is quantized using two methods.
(1) PQ (Fig. 3, blue) to simplify the search process using
multiple PQ codebooks, and (2) VQ (Fig. 3, red) to refine
the search space and avoid exhaustive search. The PQ process
clusters the D-dimensional search space into Mi subspaces,
each of which is D̃i = D/Mi dimensional.

B. Training: Initializing the HPQ Data Structure

k-means clustering is the core of the initializing (training)
process, and is defined as a function returning a 3-tuple of

(C,V, Ỹ) = k-means(Y) (10)

Where Y is a dataset of N D-dimensional vectors, k is the
number of clusters required, C is an array of k D-dimensional
centroids, V is an array of k Voronoi cells, and Ỹ is the encoded
dataset, an array of N indices to centroids from C.

A Voronoi cell Vi is a set of vectors mapped to the nearest
centroid ci, satisfying Lloyd’s first optimality condition [25],
thus,

V = {Vi}k−1i=0 ; Vi = {y ∈ RD : ci = argmin
c∈C

d(y, c)} (11)

Each centroid ci is the expectation of all vectors within
its Voronoi cell Vi, satisfying the second Lloyd’s optimality
condition [25], thus

C = {Ci}k−1i=0 ; ci = E[y ∈ Vi] =
∫
Vi
p(y)ydy. (12)

The encoded dataset matches each data point to its closest
centroid, namely

Ỹ = {ỹi}N−1i=0 ; ỹi = argmin
0≤i<N

d(y, ci). (13)

The HPQ data structure initialization process is described in
Algorithm 1. For each level 0 ≤ i < h, both PQ and VQ are
performed. PQ splits the D-dimensional spaces into Mi equal
subspaces. For each subspace 0 ≤ m < Mi, a codebook is
generated (Line 3). The m’th codebook is generated from the
m’th subspace of the current level, that is Yi[mD̃i · · · (m +
1)D̃i − 1]. On the other hand, the VQ process reduces the the
search space by αi times. Thus the number of point in level
i−1, N−1, will be αi times less than its upper level i, namely,
Ni−1 = Niαi. The VQ process finds those Ni−1 centroids and
their corresponding Voronoi cells by employing Ni−1-means on
the dataset Yi (Line 6). The initial training values of this data
structure will be used to initialize the content of the relevant
on-chip memories as will be described in Subsection IV-A.

C. Querying the k-nearest neighbors

Searching for the k nearest neighbors of a query vector x is
performed in two phases. In the first phase, distances between
the query vector and each centroid from all PQ codebooks are
calculated. In the second phase, a hierarchical search is per-
formed. In each level of the hierarchy, the codebooks are used
to lookup the sub-distances. Each level will gradually refine the
search space as shown in Fig. 4. Algorithm 2 describes both
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Fig. 3: A recursive definition of the HPQ data structure. Shaded tables will be
combined and partitioned as shown in Subsection IV-A and Fig. 5 (middle).
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Algorithm 1: Initialize HPQ data structure (train, offline)

1 for i = h− 1 to 0 do
// initialize PQ codebook for each subspace

2 for m = 0 to Mi − 1 do
3 (Cim, Ṽim, Ỹim)← k̃i -means(Yi[mD̃i, · · · , (m+ 1)D̃i − 1])

4 nim ← |Ṽim|
// Initialize VQ codebook

5 Ni−1 ← Ni/αi
6 (Yi−1, V̂i−1,−)← Ni−1 -means(Yi)

V

C ×C ×⋯ ×C 

VV
V
V
V ∈C ×C ×⋯ ×C 

Fig. 4: HPQ search through levels of the hierarchy. Centroids are PQ-encoded

of these phases in detail. The distance computation process
is described in Line 4. The distance between a centroid j of
subspace m in level i, namely cim,j , and the m’th subspace of
x, namely um(x) = (xmD̃i

, · · · , x(m+1)D̃i−1) is assigned to
the corresponding distance dim,j .

After computing the distances in the first phase, a hierarchical
search is performed in the second phase. This phase consists
of three steps, based on the location of each level in the
hierarchy. In Phase 2.a the lowest level of the hierarchy is
processed (Line 5). An exhaustive search PQ of the lowest level
is performed. The number of points in this level is the lowest
among all levels as it is refined αi times by each higher level
1 ≤ i < h, namely N0 = N/

∏h−1
i=0 αi. The squared distance

between each one of the N0 − 1 points in this level (indxed
with 0 ≤ j < N0) and the query vector x is computed and
the index of the point with the minimum distance is returned
as ANN0(x). The squared distance between each point and
the query vector is the summation of all squared distances in
each subspace 0 < m ≤ M0. These distances are computed
and stored in PQ codebooks (as meta-data) in Phase 1, and
are retrieved in Phase 2.

The distance between the m’th sub-vector of the query
vector and a point, j, is retrieved from the distance stored in
the codebook C0m. The encoded dataset of level 0, ỹ0, stores
for each point j in the subspace m its corresponding codebook
index ỹ0j,m. The search of the lowest level returns ANN0(x),
the index of the Voronoi cell in the upper level with the nearest
centroid to the query point. In the second step (Phase 2.b) the
intermediate levels are searched (Line 8). First we find the
Voronoi cell from the previous level with the nearest centroid
to the query viANNi−1(x),p

(points are indexed with p), then we
search this Voronoi cell using the same method as in Phase 2.a.
The search in the top level (Phase 2.c) is performed similarly
to the intermediate levels, however, k nearest neighbors are
found (Line 10).

Algorithm 2: HPQ k-ANN search (query, online)
input : x: a D-dimensional query vector
output : kANN(x): k indices in Y for x’s k ANN
// Phase 1: compute distances to query

1 for i = 0 to h− 1 do
2 for m = 0 to Mi − 1 do
3 for j = 0 to k̃i − 1 do
4 dim,j ← d2(cim,j , (xmD̃i

, · · · , x(m+1)D̃i−1))

// Phase 2: hierarchical search

// 2.a: ANN PQ search for the lowest level

5 ANN0(x)← argmin0≤j<N0

∑M0−1
m=0 d0

m,ỹ0m,j

6 for i = 1 to h− 1 do
7 j(p) := viANNi−1(x),p

// 2.b: ANN HPQ search for intermediate levels

8 ANNi(x)← argmin0≤p<βiαi

∑Mi−1
m=0 di

m,ỹi
m,j(p)

9 if i == h− 1 then
// 2.c: k-ANN HPQ search for the top level

10 return kANN(x)← k argmin0≤p<βiαi

∑Mi−1
m=0 di

m,ỹi
m,j(p)

IV. HPQ HARDWARE ACCELERATION

In this section we apply custom hardware acceleration to our
HPQ method. The search process is pipelined through the hier-
archy to increase the search throughput. To accelerate queries,
FPGAs’ massive parallelism is utilized to perform concurrent
codebook lookups, distance computation, and comparison.

FPGAs contain several thousand distributed on-chip BRAMs
and several thousand DSP blocks. These distributed memories
are used to store the codebooks and the coded dataset for
fast and parallel retrieval, whereas DSP blocks are utilized to
compute and compare distances in parallel. Since a query re-
quires multiple accesses to codebooks and performs multiple FP
computations, this combination of distributed memory blocks
and FP resources is capable of alleviating the performance
bottleneck.

In Subsection IV-A, considerations for hardware acceleration,
including memory partitioning are discussed. Memory and
hardware consumption are estimated in Subsection IV-B and
Subsection IV-C, respectively. Finally, the support of accessing
an external memory is discussed in Subsection IV-D.

A. Hardware Considerations

The proposed HPQ accelerator is illustrated in Fig. 5. The
search pipeline is shown in Fig. 5 (bottom). The implementation
of each level in the hierarchy is shown in the rest of the
figure. Fig. 5 (middle) shows memory partitioning for the
encoded dataset, codebook lookup, and finding the minimal
distance (Algorithm 2, Phase 2). The codebooks and distance
computation (Algorithm 2, Phase 1) is shown in Fig. 5 (top).

Deep pipelining of the search hierarchy. The HPQ pipeline
is shown in Fig. 5 (bottom). All intermediate levels of the
hierarchy are identical. The first and the last levels minimally
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differ, as will be shown later. Pipelining is possible since the
search is hierarchical. Each level gradually refines the search
and sends the index of the nearest centroid, minidxi, forward.
The next level will only search the Voronoi cell of this centroid.
The whole pipeline is controlled by an FSM. Once a valid
query x is received and start is asserted, codebooks in all
levels will be concurrently updated with squared distances
(Algorithm 2, Phase 1), then the search indices will propagate
through the pipeline (Algorithm 2, Phase 2). To maximize
throughput, all FP computations are internally pipelined.

Computation parallelism. To enhance querying performance,
computation parallelism is required in both phases of the search
process (Algorithm 2). In Phase 1, p̃ squared distances in each
codebook are computed in parallel. As shown in Fig. 5 (top),
p̃ centroids are retrieved from each codebook and distances to
the corresponding query sub-vector are computed in parallel.
Writing to the squared distances meta-data portion of the
codebook is delayed by the same latency of the computing
the squared distances, L(SQD). The squared distance between
two n-dimensional vectors, x and y, in the Euclidean space is
d2(x, y) =

∑n−1
j=0 (xj − yj)2. This sum is implemented as an

addition-tree.
In Phase 2 of the search process (Fig. 5, middle) p̂ different

distances are computed and compared. The encoded dataset is
organized in BRAMs. Indices to codebooks are retrieved from
these BRAMs to lookup the codebooks for distances in each
subspace. For each vector, an adder tree sums squared distances
from all subspaces to find the total distance to the query vector.
A min tree is then applied on all p̂ to find the minimal distance.
The top level of the hierarchy requires finding k vectors with
minimal distances, thus the min-tree will be replaced with a
k-selection mechanism as follows.

Memory partitioning. As depicted in Fig. 5, level i of the
hierarchy receives from its previous level i−1 the index of the
Voronoi cell that should be searched (minidxi−1). Only points
in Viminidxi−1

should be searched. To accelerate the search,
p̂ points are searched in parallel. Consequently, p̂ points of
Viminidxi−1

should be concurrently read from the BRAMs. To
support reading p̂ points from any Voronoi cell, we divide each
Voronoi cell into p̂ chunks, each with αiβi/p̂ points. (each
Voronoi cell can accommodate up to αiβi points). Each chunk
out of the p̂ chunks is stored in a separate BRAM. To read
p̂ point from the same Voronoi cell minidxi−1, all BRAMs
will be addressed with the same address. The base address is
(αiβi/p̂)minidxi−1. The address offset will iterate over all
chunk content, thus will count up to αiβi/p̂− 1.

B. HPQ Memory Consumption

As depicted in Fig. 5, HPQ requires two memory structures,
(1) the PQ codebooks (Fig. 5, top) , and (2) the encoded dataset
(Fig. 5, middle). In total, each level, i, consumes

Si =

Codebook of level i︷ ︸︸ ︷
Mik̃i( D̃iw︸︷︷︸

sub-
centroid

+ log2Ni︸ ︷︷ ︸
#points
attached

+ w︸︷︷︸
dist-
ance

)+

partitioned memory︷ ︸︸ ︷
βiNiMi log2 k̃i . (14)
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Fig. 5: Hardware architecture of a single level i. (top) Query Phase 1: updating
codebook Cim with distances between query point and centroids. (middle)
Query Phase 2: finding the point index with the minimum distance to the
query. Batcher’s odd–even mergesort sorting network [26] is used instead of
min-tree for k-selection. (bottom) The complete pipeline.

Assuming that the dataset index is narrower than the FP
representation, log2Ni < w, and given that βi > 1, the storage
consumption of level i can be bounded by

Si <Mik̃iw(D̃i + 2) + βiNiMi log2 k̃i

=k̃iw(D + 2Mi) + βiNiMi log2 k̃i.
(15)

The total storage consumption is thus bounded by

S =

h−1∑
i=0

Si

<wD

h−1∑
i=0

k̃i + 2w

h−1∑
i=0

k̃iMi +

h−1∑
i=0

βiNiMi log2 k̃i

(16)

Assuming that the depth of each codebook k̃i, number of
subspaces Mi, tapering factor αi, and centroid occupancy factor
βi are the same across all levels, namely, k̃i = k̃, Mi = M ,
D̃i = D̃, αi = α, and βi = β, we obtain

S < hwk̃(D + 2M) + βM log2 k̃

h−1∑
i=0

Ni. (17)
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Using the tapering ratio, Ni/Ni−1 = αi, and applying a
constant tapering factor, α, the ratio between then number of
points in the top level and any other level, i, is

Ni/N = αi−h+1. (18)

A sepcial case of (18) is

αh = N ⇒ h = logαN. (19)

The total number of points in all levels is obtained from the
sum of the geometric series in (18) as

h−1∑
i=0

Ni =
N − 1

1− 1/α
. (20)

Using (19) and (20) in (17) provides

S <hwk̃(D + 2M) + βM
N − 1

1− 1/α
log2 k̃

<wk̃(D + 2M) logαN︸ ︷︷ ︸
codebooks

+
β

1− 1/α
MN log2 k̃︸ ︷︷ ︸

partitioned memory

. (21)

For large datasets, N , and large tapering factor, α, the
codebooks size is negligible compared to the partitioned
memory. The dominating term of the total memory consumption
is therefore

S ≈ βMN log2 k̃ (22)

C. Hardware Consumption and Performance Estimation

As depicted in Fig. 5, querying is performed in two phases.
In the first phase (Fig. 5, right top) all PQ codebooks are
updated with the distances between the query point and the
PQ codebook centroids. p̃ distance computations are done in
parallel, this requires

F̃i = p̃M(D̃ + D̃ − 1) (23)

FP-DSPs for each stage. In the second phase (Fig. 5, bottom), p̂
points are compared. M sub-distances are added using an adder
tree, requiring p̂(M − 1) FP adds for each stage. p̂ distances
are compared using a min-tree, requiring p̂− 1 FP compares
for each stage, in total

F̂i = p̂(M − 1) + p̂− 1 (24)

Since both search phases are performed serially, they can share
FP hardware without performance degradation. The complete
hierarchy thus requires

F = max(F̃i, F̂i)h (25)

The latency of querying consists of the latency of both
search phases. In the first phase (Fig. 5, right top), p̃ out of
k̃ FP square computations are processed in parallel, whereas
the pipeline depth is L(FPSQR), in addition to two memory
accesses, thus the latency of the first phase is

L̃ = k̃/p̃+ L(FPSQRSUB) + L(FPADD) log2 D̃ + 2. (26)

in the second phase (Fig. 5, bottom), p̂ out of αiβi points
are processed in parallel, the depth of the add tree is

L(FPADD) log2M , whereas the depth of the min-tree is
L(FPSUB) log2 p̂. With the addition of two memory accesses,
the latency of the second phase is therefore

L̂i = αiβi/p̂+ L(FPADD) log2M + L(FPSUB) log2 p̂+ 2. (27)

The first phase is done in parallel, while the second phase
is a pipelined hierarchical search; the latency of the whole
hierarchy is therefore,

L =L̃+ L̂ih

=L̃+ L̂i logαN.
(28)

The proposed design is a pipelined hierarchical search, thus
the throughput of each stage is equal to the total throughput,
the reciprocal of the throughput is therefore,

T−1 = T−1i = L̃+ αiβi/p̂. (29)

D. External Memory Support

Modern high-end FPGA devices integrate several hard on-
chip DRAM controllers together with their configurable fabric.
Although the latency and bandwidth of external memories are
inferior to on-chip SRAM memory blocks, they are capable
of storing a large amount of data, not possible to store on
chip. In case the on-chip memory is not sufficient to store the
entire data structure, we propose to store a portion of the data
structure in the external memory. To maximize the benefits of
using external memory we propose to store the largest table in
our design while keeping the bandwidth requirement minimal.
The largest table of our data structure is the encoded dataset of
the top level Yh−1. The size of this table is NM log2 k̃ bits.

If this table is stored in an external memory, the total on-chip
memory consumption can be derived from (21) by substituting
the number of points in the second upper-most level N/α:

S <wk̃(D + 2M) logαN︸ ︷︷ ︸
codebooks

+
β

α− 1
MN log2 k̃︸ ︷︷ ︸

partitioned memory

.
(30)

The external memory is now required to transfer p̂ points, each
with M indices of log2 k̃ bits every cycle. Thus p̂ should be
tuned to satisfy

T (DRAM) > p̂M log2 k̃ bits/cycle, (31)

where T (DRAM) is the read throughput (bandwidth) of the
external memory.

Since reading from the external memory can be performed
in parallel with computing the codebook distances, the total
latency with external memory is derived from (28) where the
codebook distance computation latency L̃ is substituted with
max(L(DRAM), L̃), namely

L =max(L(DRAM), L̃) + L̂ih

=max(L(DRAM), L̃) + L̂i logαN,
(32)

where L(DRAM) is the read latency of the external memory,
measured by read transfer/cycle, and consists of the DRAM
Column Access Strobe (CAS) latency, in addition to the DRAM
controller latency.
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V. EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
proposed HPQ technique, show that these results match our
previous analysis, evaluate our proposed method, and compare
it to state-of-the-art techniques.

k-ANN benchmark. Our experiments are conducted on
SIFT1M [27], a popular, state-of-the-art, and publicly available
dataset for k-ANN evaluation. The SIFT1M is a dataset of 1M
128-dim SIFT vectors and 10K additional query vectors.

Accuracy metric. The search accuracy is measured in recalls,
a popular metric for retrieval performance of a similarity
search. The recall measure R@r is the probability that the
correctly identified nearest neighbor is among the actual r
nearest neighbors. Namely, the probability that the nearest
neighbor retrieved by the algorithm is ranked within the first
r true nearest neighbors, computed over several queries.

Platform settings. To evaluate query time and resources
consumption, all different HPQ instances were synthesized
using Intel’s Quartus Prime targeting a Stratix10 GX2800
1SG280HH1F55I1VG. This is the highest speed grade device
with 933K ALMs, 229Mb BRAMs, and 5760 DSPs. Each DSP
is capable of performing a single-precision FP operation.

Accuracy vs. resources trade-off. Table II shows different
implementations of the SIFT1M dataset on Stratix10 GX2800
device. We are able to store all the data structure on-chip.
This table also shows the trade-off between accuracy and
memory requirements. This is in agreement with the original
PQ-based k-ANN work [15]. The parameters M and k̃ are
tuned to achieve a desirable accuracy within a memory storage
limitation as shown previously in (21). On the other hand,
the architectural parameters α, p̃, and p̂ has no impact on
the memory consumption. Instead, these parameter control the
parallelism of the design, thus affect search throughput ((29)),
latency ((28)), and DSP usage ((28)). This is in agreement
with our analysis in Subsection IV-C.

Comparison. Query times of CPU-based methods [15], [18]
and GPU based methods [28], [29] are reported on Xeon E5-
1630v3 CPU and Nvidia GTX Titan Xp GPU, respectively.
The FPGA-based OpenCL approch [30] is implemented on
Intel’s HARPv2 CPU+FPGA platform; an Arria 10 GX1150
FPGA together with a 14-core Broadwell Xeon CPU and
a 17GB/sec QDI interface. To campare with the later work,
we also implement our HPQ on Arria 10 GX1150, assuming
the same memory bandwidth and using out estimates from
Subsection IV-D. The QDA interface bandwidth limits our
compare parallelism to p̂ = 4 as deduced from (31). Given
a comparable accuracy, Table III shows that our query time
(on Sttratix10 GX2800) is at least 5 magnitudes lower than
CPU-based approaches [15], [18], ×255 lower than GPU
[28], [29] and FPGA-based OpenCL [30] approaches. For fair
comparison with the later FPGA-based OpenCL approach [30],
we implement our HPQ on the same FPGA device, Arria10
GX1150, assuming external memory overhead as estimated in
Subsection IV-D. These settings shows that HPQ query time
is ×61 lower than the FPGA-based OpenCL approach [30].

TABLE II: Accuracy Trade-offs of the SIFT1M Dataset.

Accuracy Parallelism Resources Performancea

R@100 M k̃ α h p̃ p̂ BRAMs DSPs Fmax Latency 1
Throughput

Mb MHz us/query

0.973 16 64 128 3 8 64 204 5508 334 0.37 0.078
0.89 16 32 128 3 8 64 174 5514 357 0.34 0.062
0.752 8 64 128 3 8 128 110 5703 368 0.33 0.073
0.57 8 32 128 3 8 128 90 5698 412 0.29 0.056

a Measured on Stratix10 GX2800 FPGA using on-chip memory only.

TABLE III: Comparison of Performance and Accuracy on SIFT1M dataset.

Platform Method Latency 1
Throughput R@100

us/query

CPUa LOPQ [18] 51.1k 0.97
IVFPQ [15] 11.2k 0.93

GPUb PQT [28] 20 0.86
FAISS [29] 20 0.95

OpenCL FPGAc LOPQ [30] 20 0.97

Custom FPGAd HPQ1 0.85 0.33 0.973
Custom FPGAe HPQ2 0.37 0.078 0.973

a Xeon E5-1630v3 CPU: quad core, 8 threads, 10MB cache, 3.7GHz.
b Nvidia GTX Titan Xp GPU: 3840 CUDA cores, 1.6GHz, 12 TFLOPs.
c Intel HARPv2: 14 core Broadwell Xeon CPU + Arria10 GX1150 FPGA.
d Arria10 GX1150 FPGA: 427K ALMs, 53Mb BRAMs, and 1518 DSPs.

Optimal design parameters: (M, k̃, α, h, p̃, p̂) = (16, 64, 16, 5, 1, 4)
e Stratix10 GX2800 FPGA: 933K ALMs, 229Mb BRAMs, and 5760 DSPs.

Optimal design parameters: (M, k̃, α, h, p̃, p̂) = (16, 64, 128, 3, 8, 64)

VI. CONCLUSIONS AND FUTURE WORK

In this paper, a novel modular ANN search method is
proposed. The proposed technique utilizes Product Quanti-
zation (PQ) to efficiently search for the closest neighbors
of a query point in a high dimensional metric space. Our
Hierarchical Product Quantization (HPQ) approach applies
space partitioning through hierarchical search and gradually
refines the search space; avoiding memory- and compute-
intensive exhaustive search. Vector Quantization (VQ) performs
a gradual subdivision of the PQ search space while PQ is
used to search efficiently within the refined subspace. The
HPQ approach is efficiently accelerated on custom hardware.
While PQ successfully compresses memory by encoding the
dataset into several codebooks, the hierarchical search allows
for a deeply pipelined design and dramatically reduces the total
amount of FP operations. The proposed method is implemented
on Intel Stratix 10 FPGA devices. Experimental results show
that the search performance of our technique significantly
outperforms other state-of-the-art methods.

While the vast majority of ANN search techniques only
support static databases, recent ANN search applications, such
as sparse memory augmented neural networks [31], require fast
online updates. To support these state-of-the-art applications,
we plan to support online updates as a future work. Furthermore,
the implementation of the codebooks would benefit greatly from
using SRAM-based multi-ported memories. While the use of
multi-ported memories in FPGAs has been cost-prohibitive, a
recent work provides a near-optimal BRAM-based multi-ported
memories [32].
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