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+ Immune to process, voltage, 
and temperature (PVT) 
variations.

+ Tolerate non-uniform 
switching

+ Tolerate unbalanced loads

+ Low skew, variations, and 
jitter

+ Overcome late design 
changes

– Difficult to analyze or 
automate

– Require significant 
resources

– dissipate higher power, due 
to:

Non-tree Clock Topologies (1)

Animations by Phillip J. Restle,

P. J. Restle, "Technical visualizations in VLSI design: visualization," Proc. DAC, pp. 

494-499, 2001.

Tree driving 10.6pF load 
Non-Uniform load at 2GHz

Trees driving a Grid with 
68pF Non-Uniform load at 

2GHz

YY XX

V V

Multi-path signal propagation
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Non-tree Clock Topologies (2)

[1] N. A. Kurd et al., “A Multigigahertz Clocking Scheme for the Pentium 4 Microprocessor,” JSSC 36(11):1647–

1653, 2001.

[2] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing Clock Skew Variability Via  Crosslinks,” Proc. DAC,  pp. 18–

23, 2004.
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[2]

Leaf level global 
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Driving 
tree

Global mesh with local trees 

(MLT) [3]

Global tree with local meshes 

(TLM) [3]
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Motivation

Power 
dissipatio

n

Variation
s 

reduction

Clock 
variations

Process 
scaling

Mesh

Goal: reducing clock skew variations while 
keeping minimal power dissipation overhead
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Method

Mesh

densit

y

Clock 

variation

s

Power 

dissipatio

n
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Path 

Criticality

Sensitivity to 

clock

variations

⇧ ⇧

⇩ ⇩

- Path criticality prioritization
- Managing skew tolerance

Nonuniform
clock mesh

Selective reduction of clock skew variations 
based on circuit timing criticality
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Clock mesh design 
automation:

 Segment wire width sizing 
[1]

 Start from a clock tree and 
add crosslinks [2],[3]

 Start with a fully uniform 
mesh, remove redundant 
segments [4],[5]

Circuit timing is not 
exploited

Previous Work

[1] M. P. Desai, R. Cvijetic, and J. Jensen, “Sizing of Clock Distribution Networks for High Performance CPU Chips,” Proc. DAC, pp. 389-394, ‘96.

[2] A. Rajaram, J. Hu, and R. Mahapatra, “Reducing Clock Skew Variability Via Crosslinks,” IEEE TCAD, 25(6): 1176-1182, ‘06.

[3] I. Vaisband, R. Ginosar, A. Kolodny, and E. G. Friedman, “Power Efficient Tree-Based Crosslinks for Skew Reduction,” Proc. GLSVLSI, pp. 285-

290, ‘09.

[4] A. Rajaram et al., “MeshWorks: an Efficient Framework for Planning, Synthesis and Optimization of Clock Mesh Networks,” Proc. ASP-DAC, pp. 

250-257, ‘08.

[5] G. Venkataraman, Z. Feng, J. Hu, and P. Li “Combinational Algorithms for Fast Clock Mesh Optimization,” Proc. ICCAD, pp. 563-567, ‘06.

Segments sizing

Croslinks

Remove segments
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 Presents the circuit’s connectivity

 Vertices represent clock sinks:
GC

V=S={s1, s2, …, sn} 
 Edges represent data paths:

GC
E={ei,j=vi~vj|Pdelay

ij<∞,vi,vj∈GC
V}

 Edges’ weights are maximum skew 
constraint (permissible):
(∀e∈GC

E) we= skewi,j

 Vertices also have attributes:
 Sink capacitance:

(∀vi∈GC
V)  C(vi)=Capacitance(Si)

 Location:
(∀vi∈GC

V)  bbox(vi)=[[x0,y0],[x1,y1]]

Timing Constraint Graph
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 Given:
 Circuit connectivity

 Static timing analysis

 Relative tolerance parameter ξ
 user defined

 upper  bound  of  the maximum  skew  variation  ratio  
overall maximum skew constraints:

(∀ei,j∈GC
E) ξ≥δi,j

max/skewi,j

While:
 δi,jmax is the maximum skew variation between register Si and 
Sj

 skewi,j is the maximum permissible skew between register Si
and Sj

Construct a clock mesh that satisfies the δi,jmax
requirement

Timing–Driven Variation–Aware Problem 

Formulation
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1
Derive Timing Constraint Graph 
from Static Timing Analysis 
(STA) T

C
G

2
Generate skew map

 Rectangular shapes

 [skew,cap,bbox] triples

F
lo

o
rp

a
ln

3
Remove overlapping

 Polygon shapes

 [skew,cap,polygon] triples

4
Mesh Generation

 Mach a mesh to each polygon

 Mesh density satisfies skew 
variations

Solution Stages
1 2 3 4
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Skew3

Skew1

Skew2

Skew1

Skew2Skew3

Skew3

Skew1

Skew2
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 Find regions with deferent skew 
requirements

 Graph theoretic algorithm

 Inputs:
 Gc: Constraint Graph

 T: Thresholds vector
 Contains skew thresholds

 Granularity of skew regions

 Output:
 Skew map with rectangular shapes

 [skew,cap,bbox] triples stack

 Ascending order by skew

 Method:
 Remove edges with skew lower than 

threshold

 Connected components define skew regions

 Merge connected components with original 
graph

Phase II: Generate Skew Map (1)
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Phase II: Generate Skew Map
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1. foreach tT T=[1,2,3] t=1 t=2 t=3

1.1 GC
undirected=getUndirected(GC)

Initial 

graph

Undirecte

d graph

1.2 foreach eGC
E

1.2.1 if we>t
GC

undirected=GC
undirected/e

Remove 

edges 

with we>t

1.3 UCC=getConnComp(GC
undirected)

1.4 foreach uccUCC
1.4.1 vmerge=mergeVertices(GC,ucc)

Merge 

connected 

componen

t

1.4.2 skewucc= min(we|e=vi~vj;vi,vjucc)
1.4.3 bboxucc=bbox(vmerge)
1.4.4 capucc=cap(vmerge)

Get [skew, 

cap, bbox] 

triples

1.4.5 push(
skewBbox,skewucc,capucc,bboxucc])

Push 

triples into 

stack [1,C1,[[0,0],[1,2]]]

[2,C2,[[1,1,[2,2]]]

[1,C1,[[0,0],[1,2]]]

[3,C3,[[0,0],[2,2]]]

[2,C2,[[1,1],[2,2]]]

[1,C1,[[0,0],[1,2]]]

Phase II: Generate Skew Map (2)
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 Generate polygons from 

rectangles

 Geometric algorithm

 Input:

 [skew,cap,bbox] triples stack

 Generated at phase II

 Output:

 [skew,cap,polygon] triples stack

 Non-overlapping polygons

 Method:

 Higher skew regions cover lower 

regions

Phase III: Remove Overlapping 

(1)

Skew1

Skew2Skew3

Skew3

Skew1

Skew2

Phase III: Remove 

Overlapping
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2. while skewBbox≠Ø init Iteration 1 Iteration 2 Iteration 3

2.1 revSkewBbox=
reveresed(skewBbox)

revSkewBb

ox

[1,C1,[[0,0],[1,2]]]

[2,C2,[[1,1],[2,2]]]

[3,C3,[[0,0],[2,2]]]

[2,C2,[[1,1],[2,2]]]

[3,C3,[[0,0],[2,2]]] [3,C3,[[0,0],[2,2]]]

2.2 [skew,cap.,bbox]=
pop(revSkewBbox)

Skew 1 2 3

capacitance C1 C2 C3

Bbox

[[
0

,0
],

[1
,2

]]

[[
1

,1
],

[2
,2

]]

[[
0

,0
],

[2
,2

]]

2.3 polygon=
coveredc∩bbox polygon

[[
0

,0
],

[0
,2

],

[1
,2

],
[1

,0
]]

[[
1

,1
],

[1
,2

],

[2
,2

],
[2

,1
]]

[[
1

,0
],

[1
,1

],

[2
,1

],
[2

,0
]]

2.4 covered=
covered bbox

uncovered=

coveredc

covered

[[
0

,0
],
[0

,2
],

[1
,2

],
[1

,0
]]

[[
0

,0
],
[0

,2
],

[2
,2

],
[1

,1
],
[1

,0
]]

[[
0

,0
],
[0

,2
],

[2
,2

],
[2

,0
]]

2.5 push(skewPolygon,
[skew,cap,polygon])

skewPolygo

n Stack
[1,C1,[[0,0],[0,2],[1,2],[1,0]]]

[2,C2,[[1,1],[1,2],[2,2],[2,1]]]

[1,C1,[[0,0],[0,2],[1,2],[1,0]]]

[3,C3,[[1,0],[1,1],[2,1],[2,0]]]

[2,C2,[[1,1],[1,2],[2,2],[2,1]]]

[1,C1,[[0,0],[0,2],[1,2],[1,0]]]

Phase III: Remove Overlapping 

(2)

∩ ∩ ∩

∩ ∩ ∩
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 Mesh to each polygon

 Mesh density is tuned 

to satisfy skew 

variations

 Optimized drivers by 

solving set-covers 

problem

 Global and local trees 

are design by the EDA 

tool clock router

Phase IV: Mesh Generation

Phase IV: Mesh 

Generation
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 Algorithms:

 Graph-theoretic
 for timing constraints

 Geometric
 for layout generation

 Quasi-linear (nlogn) 
runtime

 Design Environment:

 RTL to layout design flow

 Standard EDA tools

 Standard 65nm library

 ISCAS89 benchmarks

Implementation

Results

Logic Synthesis:

Synopsys Design Compiler Ultra

ISCAS89 Testbench

Place  and  Route:

Cadence  SoC  Encounter™
Generate 

Connectivity 

Graph (Perl)Calculate Timing Arches (TCL)

Generate Clock Mesh (Perl)

Route Clock Mesh (Perl)

Encounter pre-drivers & localroute

Encounter Mesh Analysis:

Cadence Virtuoso UltraSim

s
d

c

v
hTiming

Constraints

Verilog

Netlist

X
M

L Timing

Constraints

Graph

s
ro

u
te Special 

Route

Input/

Output

Original 

Flow

Hook 

Flow

Legend:
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Results

 A. Rajaram and D.Z. Pan, “MeshWorks: an efficient framework for planning, synthesis and optimization of 

clock mesh      networks,” Proc. ASPDAC, pp. 250-257, 2008.

▲ G. Venkataraman et al. “Combinational algorithms for fast clock mesh optimization,” Proc. ICCAD,  pp. 563-

567, 2006.

37% average reduction in metal

39% average reduction in power dissipation

Wire length (um) Power (mw) Maximum skew (ps)
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Conclusion

Clock mesh design could be 

effectively automation

Consider non-uniform clock 

mesh
Consider selective reduction of 

skew variations based on circuit 

timing
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