Timing–Driven Variation– Aware Nonuniform Clock Mesh Synthesis

Ameer Abdelhadi, Ran Ginosar, Avinoam Kolodny, and Eby G. Friedman* Technion – Israel Institute of Technology Department of Electrical Engineering

* Also with Dept. of Electrical and Computer Engineering, University of Rochester

This research was supported in part by the Technion ACRC and by the ALPHA research

Bepartment of Electrical Engineering

Non-tree Clock Topologies (1)

Multi-path signal propagation

Trees driving a Grid with

68pF Non-Uniform load at

- + Immune to process, voltage, and temperature (PVT) variations.
- Tolerate non-uniform switching
- + Tolerate unbalanced loads
- Low skew, variations, and jitter
- + Overcome late design changes
- Difficult to analyze or automate
- Require significant resources

Х

Tree driving 10.6pF load

Non-Uniform load at 2GHz

Non-tree Clock Topologies (2)

3/17

Pre-drivers

Mesh

Sinks

mesh

Global tree

Local Meshes

Sinks

[2] A. Rajaram, J. Hu, and R. Mahapatra, "Reducing Clock Skew Variability Via Crosslinks," Proc. DAC, pp. 18–

Motivation

Goal: reducing clock skew variations while keeping minimal power dissipation overhead

Method

- Managing skew tolerance

clock mesh

Selective reduction of clock skew variations based on circuit timing criticality

Previous Work

Clock mesh design automation:

- Segment wire width sizing
 [1]
- Start from a clock tree and add crosslinks [2],[3]

Segments sizing

Croslinks

Remove segments

[1] M. P. Desai, R. Cvijetic, and J. Jensen, "Sizing of Clock Distribution Networks for High Performance CPU Chips," Proc. DAC, pp. 389-394, '96.

Timing Constraint Graph

- Presents the circuit's connectivity
- Vertices represent clock sinks:
 G_C^V=S={s₁, s₂, ..., s_n}
- Edges represent data paths: $G_C^E = \{e_{i,j} = v_i \sim v_j | P_{delay}^{ij} < \infty, v_i, v_j \in G_C^V\}$

Floorplan and connectivity

- Edges' weights are maximum skew constraint (permissible):
 (Ve ∈G_C^E) w_e= skew^{i,j}
- Vertices also have attributes:

Electrical Engineering

- Sink capacitance:
 (∀v_i∈G_C^V) C(v_i)=Capacitance(S_i)
- Location: $(\forall v_i \in G_C^V) bbox(v_i) = [[x_0, y_0], [x_1, y_1]]$

Corresponding graph

Timing–Driven Variation–Aware Problem Formulation

- Given:
 - Circuit connectivity
 - Static timing analysis
- Relative tolerance parameter ξ
 - user defined
 - upper bound of the maximum skew variation ratio overall maximum skew constraints:

$(\forall e_{i,j} \in G_C^E) \xi \ge \delta^{i,j}_{max} / skew^{i,j}$

While:

- $\delta^{i,j}_{max}$ is the maximum skew variation between register Si and Sj
- $skew^{i,j}$ is the maximum permissible skew between register S_i and S_j

Construct a clock mesh that satisfies the $\delta^{i,j}_{max}$ 8/17

Solution Stages

Phase II: Generate Skew Map (1)

- Find regions with deferent skew requirements
- Graph theoretic algorithm
- Inputs:
 - G_c: Constraint Graph
 - T: Thresholds vector
 - Contains skew thresholds
 - Granularity of skew regions
- Output:
 - Skew map with rectangular shapes
 - [skew,cap,bbox] triples stack
 - Ascending order by skew
- Method:
 - Remove edges with skew lower than threshold
- Dept. of Electrical Engineering Steeled components define skew regions
- Meige connected components with original

Phase II: Generate Skew Map

Phase II: Generate Skew Map (2)

1. foreach $t \in T$	T=[1,2,3]	t=1	t=2	t=3
11 C undirected= α ot] Indirected(C)	Initial graph	$ \begin{array}{c} 1 & 3 & 2 & 3 & 3 \\ 1 & 3 & 2 & 3 & 3 \\ 1 & 3 & 2 & 3 & 3 \\ 1 & 3 & 2 & 5 & 3 \\ 1 & 3 & 2 & 5 & 2 & 6 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 \\ 1 & 3 & 3 & 3 & 3 & 3 & 3 & 3 $	3 2 3 3 2 3 3 2 8 1 5 2 6 3 2 3 2 9 1 9	
1.1 G _C -get anutrecteu(G _C)	Undirecte d graph	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
1.2 foreach $e \in G_C^E$ 1.2.1 if $w_e > t$ $G_C^{undirected} = G_C^{undirected}/e$	Remove edges with <i>w_e>t</i>	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 N 1' 5 2 6 9	
1.3 UCC=getConnComp($G_C^{undirected}$) 1.4 foreach ucc \in UCC 1.4.1 v_{merge} =mergeVertices(G_C ,ucc)	Merge connected componen t			3'
1.4.2 $skew_{ucc} = min(w_e e = v_i \sim v_j; v_i, v_j \in ucc)$ 1.4.3 $bbox_{ucc} = bbox(v_{merge})$ 1.4.4 $cap_{ucc} = cap(v_{merge})$	Get <i>[skew,</i> <i>cap, bbox]</i> triples			- 4 a x c - 6 x - 6 x - 7 - 6 x - 7 - 6 x - 7 - 6 x - 7 - 6 x - 7 - 6 x - 7 - 6 x - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -
1.4.5 push(skewBbox,skew _{ucc} ,cap _{ucc} ,bbox _{ucc}])	Push triples into stack	[1,C ₁ ,[[0,0],[1,2]]]	[2,C ₂ ,[[1,1,[2,2]]] [1,C ₁ ,[[0,0],[1,2]]]	[3,C ₃ ,[[0,0],[2,2]]] [2,C ₂ ,[[1,1],[2,2]]] [1,C ₁ ,[[0,0],[1,2]]]

Phase III: Remove Overlapping (1) Generate polygons from

- Generate polygons from rectangles
- Geometric algorithm
- Input:
 - [skew,cap,bbox] triples stack
 - Generated at phase II
- Output:
 - [skew,cap,polygon] triples stack
 - Non-overlapping polygons
- Method:

Dept. of Electronics

Phase III: Remove Overlapping

Phase III: Remove Overlapping

(2)								
2. while skewBbox≠Ø		init	Iteration 1	Iteration 2	Iteration 3			
2.1 revSkewBbox= reveresed(skewBbox)	revSkewBb ox			[2,C ₂ ,[[1,1],[2,2]]] [3,C ₃ ,[[0,0],[2,2]]]	[3,C ₃ ,[[0,0],[2,2]]]			
2.2 [skew,cap.,bbox]= pop(revSkewBbox)	Skew		1	2	3			
	capacitance		C ₁	C ₂	C ₃			
	Bbox		[[0,0],[1,2]]		[[0,0],[2,2]]			
2.3 polygon= covered ^c ∩bbox	polygon		[[0,0],[0,2], [1,2],[1,0]]	[[1,1],[1,2], [2,2],[2,1]]	[[1,0],[1,1], [2,1],[2,0]]			
2.4 covered= covered∪ bbox	uncovered= covered ^c	•						
	covered		[[0,0],[0,2], [1,2],[1,0]]	[[0,0],[0,2], [2,2],[1,1],[1,0]]	[[0,0],[0,2], [2,2],[2,0]]			
2.5 push(skewPolygon, [skew,cap,polygon])	skewPolygo n Stack		[1,C ₁ ,[[0,0],[0,2],[1,2],[1,0]]]	[2,C ₂ ,[[1,1],[1,2],[2,2],[2,1]]] [1,C ₁ ,[[0,0],[0,2],[1,2],[1,0]]]	$\begin{matrix} [3,C_3,[[1,0],[1,1],[2,1],[2,0]]]\\ [2,C_2,[[1,1],[1,2],[2,2],[2,1]]]\\ [1,C_1,[[0,0],[0,2],[1,2],[1,0]]\end{matrix}$			
pt. of Electrical Engineering								

Electronics Computers Communications

Phase IV: Mesh Generation

- Mesh to each polygon
- Mesh density is tuned to satisfy skew variations
- Optimized drivers by solving set-covers problem
- Global and local trees are design by the EDA tool clock router

Implementation

- Algorithms:
 - Graph-theoretic
 - for timing constraints
 - Geometric

echnion

Electronics Computers

- for layout generation
- Quasi-linear (nlogn) runtime
- Design Environment:
 - RTL to layout design flow
 - Standard EDA tools
 - Standard 65nm library
- ISCAS89 benchmarks

 Dept. of Electrical Engineering

Results

37% average reduction in metal 39% average reduction in power dissipation

A. Rajaram and D.Z. Pan, "MeshWorks: an efficient framework for planning, synthesis and optimization of clock mesh networks," Proc. ASPDAC, pp. 250-257, 2008.
 G. Venkataraman et al. "Combinational algorithms for fast clock mesh optimization," Proc. ICCAD, pp. 563-

Dept. of Electrical Engineering

schnion

16/17

Conclusion

Clock mesh design could be effectively automation

Consider non-uniform clock

Consider selective reduction of skew variations based on circuit

19/17

20/17