
Modular Multi-ported SRAM-
based Memories

Ameer M.S. Abdelhadi

Guy G.F. Lemieux

Multi-ported Memories:
A Keystone for Parallel Computation!

1

• Enhance ILP for processors and accelerators, e.g.
– VLIW Processors

– CMPs

– Vector Processors

– CGRAs

• DSPs

✘Major FPGA vendors provide dual-ported RAM
only!

✘ASIC RAM compilers provide limited ports!

Multi-ported SRAM Cell

Word

B
it B
it

Word1..n

B
it
1
..
n

B
it
1
..
n

2

✘ASICs / custom design only!

✘Increasing ports incurs higher delays and
area consumption

RAM Multi-pumping

✘Performance degradation

✘Data dependencies

1 Write/1 Read
Dual-port RAM

RData1

RDatanR-1

RData0

RAddr1

RAddrnR-1

RAddr0

RAddr

RData

WAddr

WData

R
e

ad
-p

o
rt

W
ri

te
-p

o
rt

Mod nR
Counter ÷nRMod nW

Counter÷nW

WData1

WDatanW-1

WData0

en
d

d

d

d
e

co
d

e
r

WAddr1

WAddrnW-1

WAddr0

en

en

ü Resources sharing

ü Low area

3

Multi-banking

• Divide memory into smaller banks
• Distribute data using fixed hashing scheme
• Access to same bank is resolved by multiple request
• The Pentium (P5) has 8-way two port interleaved cache*

• Area efficient
• Long arbitration delays
• Variable access latency

RAM Bank m

Hashing; Arbitration; Conflict resolver

RAM Bank 2RAM Bank 1

Port 1 2 n

*[Alpert & Avnon, IEEE Micro, June 1993] 4

Multi-read by Bank Replication

• Example: Alpha 21264*

– Each integer cluster has a replicated 80-entry register file
– The 72-entry floating-point cluster register file is

duplicated
– number of read ports is doubled
– Support two concurrent units each

1W/1R Dual-port RAM Array

Read Addr
-Port Data

Addr Write
Data -Port

Read
Port 1

Write
Port

Read Addr
-Port Data

Addr Write
Data -Port

Read
Port 2

Read Addr
-Port Data

Addr Write
Data -Port

Read
Port n

Read- Addr
Port 1 Data
Read- Addr
Port 2 Data

Read- Addr
Port n Data

Write
-Port

Data

Addr

1W/nR Multi-read RAM

*[Ditlow et al., IEEE ISSCC , Feb. 2011] 5

Register-based Multi-ported RAM

Infeasible on Altera’s high-end Stratix V with our smallest test-case!

Register-based Array

Width (w)

RData1

RAddr1

RDatanR-1

RAddrnR-1

RData0

RAddr0

D Q

En

D Q

En

D Q

En

D Q

En

WData1

WDatanW-1

WData0

D
ep

th
 (
d
)

WAddr1

WAddrnW-1

WAddr0

A
d

d
re

ss
 D

e
co

d
e

rs

✘ High resources consumption
for deep memories (scaling)

ü High performance for
small caches (<1k lines)

6

LVT-based Approach

• Stores the ID of latest written bank
• LVT is a multi-ported RAM for banks IDs
– Implemented with registers
– Still has scaling issues: infeasible for deep memories!

WAddr0

WData0

WAddr1

WData1

WAddrnW-1

WDatanW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

Bank0ID

Bank1ID

BanknW-1ID

nW wrire/nR read RAM

RAddrWAddr

BankSelnW wrire/nR read LVT

RAM 0
1 Write/nR Read

W
A

d
d

r

R
A

d
d

r

RData0

RData1

RDatanR-1

WData0

WData1

WDatanW-1

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

7

LVT-based Multi-ported RAM Example (1)

WAddr0

RAddr0

RData0

RData1

WData0

WData1

Data Banks 1: 1W / 2R

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1:
2:
3: ...

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1:
2:
3: ...

Data Banks 0: 1W / 2R

WAddr0

WData1

RAddr0

RData0

RAddr1

RData1

0:
1:
2:
3: ...

LVT Bank: 2W / 2R

WData0

WAddr1

0

1

WAddr1

RAddr1

@3

0x8C

@1

0x24

8

LVT-based Multi-ported RAM Example (2)

WAddr0

RAddr0

RData0

RData1

WData0

WData1

Data Banks 1: 1W / 2R

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1:
2:
3: 0x8C...

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1: 0x24
2:
3: ...

Data Banks 0: 1W / 2R

WAddr0

WData1

RAddr0

RData0

RAddr1

RData1

0:
1: 1
2:
3: 0...

LVT Bank: 2W / 2R

WData0

WAddr1

0

1

WAddr1

RAddr1

@3

0x8C

@1

0x24

@3

@1

8

LVT-based Multi-ported RAM Example (3)

WAddr0

RAddr0

RData0

RData1

WData0

WData1

Data Banks 1: 1W / 2R

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1:
2:
3: 0x8C...

WAddr

WData

RAddr0

RData0

RAddr1

RData1

0:
1: 0x24
2:
3: ...

Data Banks 0: 1W / 2R

WAddr0

WData1

RAddr0

RData0

RAddr1

RData1

0:
1: 1
2:
3: 0...

LVT Bank: 2W / 2R

WData0

WAddr1

0

1

WAddr1

RAddr1
@3

0x8C

@1

0x24

1

0

@3

@1

8

XOR-based Multi-ported RAM*

• SRAM-based
• XOR is used to embed and extract data back:

Embed: DATA=OLD⊕NEW
Extract: DATA⊕OLD=OLD⊕NEW⊕OLD=NEW

BRAM
0,0

BRAM
nW-2,0

BRAM
0,0

BRAM
1,0

BRAM
nR-1,0

BRAM
0,1

BRAM
nW-2,1

BRAM
0,1

BRAM
1,1

BRAM
nR-1,1

BRAM
0,nW-1

BRAM
nW-2,nW-1

BRAM
0,nW-1

BRAM
1,nW-1

BRAM
nR-1,nW-1

WData0

WData1

WDatanW-1

RData0

RData1

RDatanR-1

Replicas of
read-portXOR all

other
rows

1 Write / 1 Read RAM Arrays

9*[Laforest et al. ACM/SIGDA FPGA, Feb. 2012]

XOR-based Multi-ported RAM Example (1)

WAddr0

RData0

RData1

WData0

WData1

Data Banks 1: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr2

RData2

0: I1,0

1: I1,1

2: I1,2

3: I1,3...

WAddr1 RAddr1

Data Banks 0: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr1

RData1

0: I0,0

1: I0,1

2: I0,2

3: I0,3...

RAddr2

RData2

RAddr1

RData1

RAddr0

D3

@3

D1

@1

10

XOR-based Multi-ported RAM Example (2)

10

XOR-based Multi-ported RAM Example (3)

10

XOR-based Multi-ported RAM Example (4)

10

Motivation

#Registers #BRAMs

Register-
based LVT û ü
XOR-
based ü û
Proposed
I-LVT ü ü

11

Motivation

#Registers #BRAMs

Register-
based LVT û ü
XOR-
based ü û
Proposed
I-LVT ü ü

11

Motivation

#Registers #BRAMs

Register-
based LVT û ü
XOR-
based ü û
Proposed
I-LVT ü ü

11

Method

• Based on LVT approach
• The LVT is a multi-ported RAM

with constant inputs (bank IDs)
• SRAM-based LVT
– Can be implemented with XOR-

based multi-ported RAM
– Is generalized by the proposed I-

LVT approach
– Two special cases are provided:

• Binary-coded I-LVT
• One-hot-coded I-LVT

12

RAM 0
1 Write/nR Read

W
A

d
dr

R
A

d
dr

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

Method

• Based on LVT approach
• The LVT is a multi-ported RAM

with constant inputs (bank IDs)
• SRAM-based LVT
– Can be implemented with XOR-

based multi-ported RAM
– Is generalized by the proposed I-

LVT approach
– Two special cases are provided:

• Binary-coded I-LVT
• One-hot-coded I-LVT

12

RAM 0
1 Write/nR Read

W
A

d
dr

R
A

d
dr

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

WAddr0

WData0

WAddr1

WData1

WAddrnW-1

WDatanW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

Bank0ID

Bank1ID

BanknW-1ID

nW wrire/nR read RAM
RAddrWAddr

BankSelnW wrire/nR read LVT

Method

• Based on LVT approach
• The LVT is a multi-ported RAM

with constant inputs (bank IDs)
• SRAM-based LVT
– Can be implemented with XOR-

based multi-ported RAM
– Is generalized by the proposed I-

LVT approach
– Two special cases are provided:

• Binary-coded I-LVT
• One-hot-coded I-LVT

12

RAM 0
1 Write/nR Read

W
A

d
dr

R
A

d
dr

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

WAddr0

WData0

WAddr1

WData1

WAddrnW-1

WDatanW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

Bank0ID

Bank1ID

BanknW-1ID

nW wrire/nR read RAM
RAddrWAddr

BankSelnW wrire/nR read LVT

SRAM

Method

• Based on LVT approach
• The LVT is a multi-ported RAM

with constant inputs (bank IDs)
• SRAM-based LVT
– Can be implemented with XOR-

based multi-ported RAM
– Is generalized by the proposed I-

LVT approach
– Two special cases are provided:

• Binary-coded I-LVT
• One-hot-coded I-LVT

12

RAM 0
1 Write/nR Read

W
A

d
dr

R
A

d
dr

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

WAddr0

WData0

WAddr1

WData1

WAddrnW-1

WDatanW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

Bank0ID

Bank1ID

BanknW-1ID

nW wrire/nR read RAM
RAddrWAddr

BankSelnW wrire/nR read LVT

SRAM

X
O

R
-b

as
e

d

Method

• Based on LVT approach
• The LVT is a multi-ported RAM

with constant inputs (bank IDs)
• SRAM-based LVT
– Can be implemented with XOR-

based multi-ported RAM
– Is generalized by the proposed I-

LVT approach
– Two special cases are provided:

• Binary-coded I-LVT
• One-hot-coded I-LVT

12

RAM 0
1 Write/nR Read

W
A

d
dr

R
A

d
dr

RAM 1
1 Write/nR Read

RAM nW-1
1 Write/nR Read

Register-based LVT

BankSel

WAddr0

WAddr1

WAddrnW-1

RAddr0

RData0

RAddr1

RData1

RAddrnR-1

RDatanR-1

RAddrWAddr

BankSelnW wrire/nR read LVT

SRAM

I-
LV

T

Invalidation Table Approach (I-LVT)

• A bank for each write
• A single write to a

specific bank invalidates
all the other banks

• Feedbacks are received
from all other banks

• ffb generates a new data
that contradicts all the
other banks

• fout detects the non-
contradicting bank ID

Bank i

ü

Bank 0

Bank n-1

û

û

..
.

..
.

13

Invalidation Table Approach (I-LVT)

• A bank for each write
• A single write to a

specific bank invalidates
all the other banks

• Feedbacks are received
from all other banks

• ffb generates a new data
that contradicts all the
other banks

• fout detects the non-
contradicting bank ID

Bank i

ü

Bank 0

Bank n-1

..
.

..
.

...

û

û

13

Invalidation Table Approach (I-LVT)

• A bank for each write
• A single write to a

specific bank invalidates
all the other banks

• Feedbacks are received
from all other banks

• ffb generates a new data
that contradicts all the
other banks

• fout detects the
uncontradicted bank ID

Bank i

ü

Bank 0

Bank n-1

..
.

..
.

...

û

û

ffb

13

Invalidation Table Approach (I-LVT)

• A bank for each write
• A single write to a

specific bank invalidates
all the other banks

• Feedbacks are received
from all other banks

• ffb generates a new data
that contradicts all the
other banks

• fout detects the
uncontradicted bank ID

Bank i

Bank 0

Bank n-1

..
.

..
.

...
i

...
foutffb ü

û

û

13

Invalidation Table Approach (I-LVT)

• A bank for each write
• A single write to a

specific bank invalidates
all the other banks

• Feedbacks are received
from all other banks

• ffb generates a new data
that contradicts all the
other banks

• fout detects the
uncontradicted bank ID

Write-
Port

Write-
Port

Waddr0

Waddr1

WaddrnW-1

Raddr0
Raddr1

RaddrnR-1

RBankSelnR-1

Feedback Read-Ports (Address,Data) Pairs

f f
b
,n
W
-1

f f
b
,0

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data
Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read
RAM Bank 0

Write-
Port

Data

Addr

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data
Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read
RAM Bank 1

Data

Addr

Out Read- Addr
Port nR-1 Data

Out Read- Addr
Port 0 Data
Out Read- Addr
Port 1 Data

FB Read- Addr
Port 0 Data

FB read- Addr
port nW-2 Data

1 Write/nW+nR-1 Read
RAM Bank nW-1

Data

Addr

f f
b
,1

0 nW-2

0

Port#

Bank#

0 nW-2

0

0 nW-2

nW-1

f o
u
t

f o
u
t

f o
u
t

RBankSel1

RBankSel1

13

Bank ID Embedding: Binary-coded
Bank Selectors

Feedback function for bank k:

Output function (all banks):

14

Mutual-exclusive Conditions: One-hot-
coded Bank Selectors

Feedback function for bank k:

Output function (check if condition match):

15

Mutual-exclusive Conditions Examples

• Each lines pair has a negated conditions

• One and only one line is logically true

�� = 2: �
���,�: ����� 0 ← ����� 0

���,�: ����� 0 ← ����� 0

�� = 3:

���,�: ���k� 1: 0 ← ����� 0 , ����� 0

���,�: ����� 1: 0 ← ����� 1 , ����� 0

���,�: ����� 1: 0 ← ����� 1 , ����� 1

16

One-hot/Binary Coded 2W/2R Example (1)

WAddr0

RBankSel0

RBankSel1

Data Banks 1: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr2

RData2

0: 0
1: 0
2: 0
3: 0...

WAddr1 RAddr1

Data Banks 0: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr1

RData1

0: 0
1: 0
2: 0
3: 0...

RAddr2

RData2

RAddr1

RData1

RAddr0
1 bit

1 bit

@3

@1

17

Condition:
����� = �����

Condition:
����� ≠ �����

One-hot/Binary Coded 2W/2R Example (2)

WAddr0

RBankSel0

RBankSel1

Data Banks 1: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr2

RData2

0: 0
1: 0
2: 0
3: 0...

WAddr1 RAddr1

Data Banks 0: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr1

RData1

0: 0
1: 0
2: 0
3: 0...

RAddr2

RData2

RAddr1

RData1

RAddr0
1 bit

1 bit

@3

@1

@1

@3

0

1

17

Condition:
����� = �����

Condition:
����� ≠ �����

One-hot/Binary Coded 2W/2R Example (3)

WAddr0

RBankSel0

RBankSel1

Data Banks 1: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr2

RData2

0: 0
1: 1
2: 0
3: 0...

WAddr1 RAddr1

Data Banks 0: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr1

RData1

0: 0
1: 0
2: 0
3: 0...

RAddr2

RData2

RAddr1

RData1

RAddr0
1 bit

1 bit

@3

@1

@1

@3

0

1

17

Condition:
����� = �����

Condition:
����� ≠ �����

One-hot/Binary Coded 2W/2R Example (4)

WAddr0

RBankSel0

RBankSel1

Data Banks 1: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr2

RData2

0: 0
1: 1
2: 0
3: 0...

WAddr1 RAddr1

Data Banks 0: 1W / 3R
WAddr

WData

RAddr0

RData0

RAddr1

RData1

0: 0
1: 0
2: 0
3: 0...

RAddr2

RData2

RAddr1

RData1

RAddr0
1 bit

1 bit

@1

@3

@1@1

0

0

@3

1

0

@3

1

0

17

Condition:
����� = �����

Condition:
����� ≠ �����

3W/2R I-LVT Implementation

Binary-coded I-LVT

Waddr0

Raddr0
Raddr1

RBankSel1

Feedback Read-Ports

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 0 - 2 Bits Width

‘00’

Port#

Bank#

0 1 0

1

1 0 1

20

{{{{{{
{ { {

FB Read Addr
-Port 1 Data‘10’

‘01’

Waddr1

Waddr2

FB Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

RBankSel0

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 0 - 2 Bits Width

Write
-Port

Data

Addr

1 Write/4 Read RAM
 Bank 0 - 2 Bits Width

OutRead Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 1 Data

Out Read Addr
-Port 0 Data

Waddr0

Raddr0
Raddr1

Feedback Read-Ports

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 0 - 2 Bits Width

Port#

Bank#

0 1 0

1

1 0 1

20

{{{{{{
{ { {

Waddr1

Waddr2

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

[1]

[1]

[0]

[1]

[0]

[0]

a

b

c

RBankSel1[0]

RBankSel[0] ← a={b[0],c[0]} ?

RBankSel[1] ← b={a[0],c[1]} ?

RBankSel[2] ← c={a[1],b[1]} ?

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 1 - 2 Bits Width

Write
-Port

Data

Addr

1 Write/4 Read RAM
Bank 2 - 2 Bits Width

[0]

[1]

[0]

[1]

[0]

[1]

RBankSel1[1]

RBankSel1[2]

a

b

c

RBankSel0[0]

[0]

[1]

[0]

[1]

[0]

[1]

RBankSel0[1]

RBankSel0[2]

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

FB Read Addr
-Port 1 Data

FB Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

Out Read Addr
-Port 0 Data

One-hot-coded I-LVT

18

SRAM Consumption

• XOR-based consumes fewer SRAM cells if:

� < ��� �� + 1,
���� �� ⋅ �������

����
(Unlikely!!)

• Otherwise, one-hot consumes fewer SRAM cells
than binary-coded if:

1 < �� ≤ 3		��		 �� <
�� − 1 ⋅ ���� �� − 1

�� − 1 − ���� ��
�
����

19

Register-based LVT � ⋅ � ⋅ �� ⋅ ��

XOR-based � ⋅ � ⋅ �� ⋅ �� + � ⋅ �														 ⋅ �� ⋅ �� − 1

Binary-coded I-LVT � ⋅ � ⋅ �� ⋅ �� + � ⋅ log� �� ⋅ �� ⋅ (�� − 1) + � ⋅ log� �� ⋅ �� ⋅ ��

One-hot-coded I-LVT � ⋅ � ⋅ �� ⋅ �� + � ⋅ �� + 1 	 ⋅ �� ⋅ (�� − 1)

Usage Guideline

20

I-LVT
X

O
R

-b
as

ed

Register-based LVT

Register-based RAM
width

d
ep
th

Experimental Environment

• Different ~1k designs have been synthesized with
various parameters sweep
– Altera’s Quartus II with Altera’s Stratix V device

• Verified with Altera’s ModelSim
– Over Million RAM cycles for each configuration

• Bypassing capability:
– New data read-after-write (same as Altera’s M20K)
– New data read-during-write (same as a single register)

• Parameterized Verilog and simulation/synthesis
run-in-batch manager are available online:

21

https://code.google.com/p/multiported-ram/https://code.google.com/p/multiported-ram/

Experimental Results
BRAM Consumption

• Compared to XOR-based approach:
Average of 19%; up to 44% BRAM reduction

• #BRAM compared to 32bit wide register-based LVT:
– Up to 200 % in XOR-based
– Up to 12.5% in I-LVT-based

22

Experimental Results
Fmax

• Compared to XOR-based approach:
Average of 38%; up to 76% Fmax increase

• One-hot-coded I-LVT exhibits the highest Fmax
– Due to fast feedback paths
– BRAM consumption still within 6% of the minimal

23

Conclusions

Modular multi-ported SRAM-based memories for
embedded systems
• Based on dual-ported BRAMs
• Dramatically lower resources consumption and

higher performance than previous approaches
Close to register-based LVT BRAM consumption;

No further significant improvement can be done

• Additional features e.g. bypassing and initializing
• Ready to use open source parameterized Verilog

and a run-in-batch manager are available online

24

https://code.google.com/p/multiported-ram/https://code.google.com/p/multiported-ram/

