

Interleaved Architectures for High-Throughput
 Synthesizable Synchronization FIFOs

Ameer Abdelhadi and Mark Greenstreet
University of British Columbia

{ameer@ece.ubc.ca, mrg@cs.ubc.ca}

May 22, 2017

Synchronization FIFOs
The Interleaved FIFO Architecture
Design Flow
Hazards
Results

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 1 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
http://mcgill.ca
http://ubc.ca
mailto:ameer.abdelhadi@gmail.com
mailto:mrg@cs.ubc.ca
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017
http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Multi-Synchronous Designs

...

core core

core core

L
2

$

NOC

DSP crypto

DDR4 PCIe 3.0 h.264

Multi-Synchronous Design

Typical chip designs consist of
I A large number of synchronous, synthesized blocks –

this is the easy part!
I There are many different clocks.
I Designers need easy to use, synthesizable interfaces.

The big challenges are ones of design integration.
I This is where asynchronous methods excel.

FIFOs are a commonly used for these interfaces

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 2 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Prior Work: Gray-Code FIFOs

get_datar_data

r_addr

sync sync Q

compare

space_avail w_en

w_data

r_en

get_req

data_valid

w_addr

Dual−Port SRAM

gray

counter

en

control
read

gray2bin

gray2bin

gray

counter

en

control
write

gray2bin

gray2bin
Q

compare

put_data

put_req

Legend:

code

clocked by put_clk clocked by get_clk

code

critical path (for cycle time)

+ Textbook solution – familiar to many designs.
− Gray-to-binary conversion a bottleneck.
• See [Cummings+Alfke2002].

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 3 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Prior Work: One-Hot FIFOs

sync

gf ge

sync

empty full

stage 1

stage N−1
..

.

..
. g
et

 c
o
n

tr
o
l

p
u

t
co

n
tr

o
l Q

D D en
Q

en

Note: data-store not shown.

+ Simple, fast control – very modular design.
− Per-stage synchronizers and control tends to dominate area and

power.
• See [Chelcea+Nowick2004,Ono+Greenstreet2009].

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 4 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Contributions

A novel, interleaved FIFO architecture
I Area and power efficient
I High throughput, minimal latency.

Synthesizable design
I Open-source Verilog

2 Supports standard, SynopsisTM design flow.
2 You can use it in your designs!

I Highly parameterized – synthesize the FIFO you want.
I Provides benchmark design for comparisons for further

research.
Identify a glitch hazard in synchronization FIFOs
I Many published designs have this hazard.
I We present our solution.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 5 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFO Architecture

clk_get

DQ

sync

sync

get
control

DQ

N

put
control

Nv

Nv

D Q

a few gates

w
QD

a few gates

w

a few gates

spaceav D Q

data_out

dl_oe

N

data_in

dl_we

data store

D Qreq_put

data_in

clk_put

data_out

req_get

datav

Similar to Gray-Code FIFOs
I Separate write and read pointers in put and get interfaces.
I Our design uses a pair of one-hot counters in each interface.

2 Avoids conversions to/from Gray code⇒ simple and fast
2 Has a small number of synchronizers between put and get
⇒ area and power efficient.

Simple interface to sender and receiver
I Looks like flip-flop (in each domain) with standard flow control.
I Minimal exposure of internal timing details.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 6 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

A Thermometer Counter

clk

enable
D Q
en

q[2]

D Q
en

q[3]q[1]

D Q
en

D Q
en

q[0]

Initialized to all zeros.
Fills left-to-right with ones, then fills with zeros, then with ones, . . .
Current position marked by state with transition (or 0 if all stages
are the same).

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 7 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Dual Thermometer Counters

qv[0]

qv[1]

qv[2]

qv[3]

D Q
en

qh[2]

D Q
en

qh[3]

D Q
en

D Q
en

qh[0]

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

qh[1]

clk

enable

Increment the horizontal counter with
each wrap-around of the vertical counter.
Sequence length is the product of those
for the two counters.
Avoids the O(N) control-complexity that
is the bane of one-hot designs.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 8 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

0

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D Q
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

1

0 0 0

0 0 0

00 0 0

0

00 0 0

0

00 0 0

0

0

1

0

0

a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D Q
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

a1a0a0a1 a1a0a0

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

0

0

00 0 0

0

0 0 0

00 0

0

0

0

1

00 0 0

1

1 0 0

0

a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D Q
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

a1a0a0a1 a1a0a0

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

0

00 0

0

0

0

1

01 0 0

1

1 0 0

00 0 0

00 0 0

0

1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

Q

a1a0a0a1 a1a0a0a1

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

0

00 0

0

0

0

1

01 0 0

1

1 0 0

01 0 0

00 0 0

1

1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

Q

a1a0a0a1 a1a0a0a1

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

1

00

0

1

0

1

01 0 0

1

1 0 0

01 0 0

00 0

1

1

1

0

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D
en

D Q
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

Q

a1a0a0a1 a1a0a0a1

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Decode to produce full-thermometer code

1

0

1

0

1

01 0 0

0

1 1 0

01 0 0

00 0

1

1

0

1

0 0

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

a1a0a0a1 a1a0a0a1

clk

enable
D Q
en

D
en

D Q
en

D Q
en

D
Q

e
n

D
Q

e
n

D
Q

e
n

D
Q

e
n

Q

a1a0a0a1 a1a0a0a1

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 9 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Detecting Data Availability

clk_getneeds to be synchronized to

full[2,*]full[0,*] full[1,*] full[3,*]

full[i,j]

[i,j]
therm_put

[i,j]
therm_get

data_available

A stage holds valid data if the value of the get-thermometer differs from
the value of the put-thermometer.
An OR-tree can determine if any stage holds valid data.
But we need to synchronize.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 10 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Synchronization with Interleaving

D

sync

Q

D

sync

Q

D

sync

Q

D

sync

Q
clk_get

full[2,*]full[0,*] full[1,*] full[3,*]

data_available

One synchronizer per row.
Nvertical ≥ Latencysync required for full throughput.
Can use fewer synchronizers than Gray-Code designs – if the synchro-
nizer latency is less than the number of address bits.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 11 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Synchronization: Achieving Full Throughput

data_available

!ohH_get[*]

full[0,*]

b

clk_get

D Q
clr

sync

D Q
clr

D Q
clr

D Q
clr

do_get
even

odd

d

c

e

...

...

...

...

...

...

Nh

Nh

ohV[i]

do_get a

data available is registered, we need to know if there will be data
available after the next clk get↑.
I If any row has a valid value and there isn’t a req get on this cycle,

then data will be available on the next cycle.
I If two consecutive rows have valid data (one even, the other odd),

then data will be available on the next cycle.
We clear the synchronizer after removing a data word from that row.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 12 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Synchronization: Achieving Full Throughput

data_available

!ohH_get[*]

full[0,*]

b

clk_get

D Q
clr

sync

D Q
clr

D Q
clr

D Q
clr

do_get
even

odd

d

c

e

...

...

...

...

...

...

Nh

Nh

ohV[i]

do_get a

data available is registered, we need to know if there will be data
available after the next clk get↑.
We clear the synchronizer after removing a data word from that row.
I If there is data available in another column, we allow the first stage

of the synchronizer to record that on clk get↑

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 12 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

The Data Path

w data_out

datav

req_get

w

w

put control

get control

D Q
en

w
data_in

space_av

clk_put

req_put

clk_get

data_even

data_odd

sel_odd

en

oe
D Q

en

oe
D Q

en

oe
D Q

D Q

D Q

sel_even

w

w

w

w

w

Input latch gives FIFO the same set-up and hold timing as a flip-flop.
Output path uses even/odd interleaving:
I We found that the data output path could not maintain GHz clock fre-

quencies.
I Key observation: data is available on the output of the data latches

for nearly the full synchronizer latency. This ensures data validity.
I Alternating paths provides an extra clock-cycle for the path to settle,

and the timing requirements are easily satisfied.
The output logic is to block glitches (see next slide).

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 13 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFOs and CDC Hazards

...

g

state

local

state

local

data_out

FIFO

data_valid

get_req

f

a1

a2

D Q
...

control

What the designer intended

A designer might (reasonably) assume that
assign foo = data valid ? f(data out, . . .) : g(. . .);

is safe.

BUT, synthesis can introduce glitches the designer never imagined.
This hazard is present in many published clock-domain-crossing (CDC) FIFOs.
Our design ensures data out is all 0s when no valid data is available.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 14 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFOs and CDC Hazards

f, g, & control

merged and

optimized by

synthesis

...
data_out

data_valid

get_req

D Q

...

state
local

What synthesis can do

A designer might (reasonably) assume that
assign foo = data valid ? f(data out, . . .) : g(. . .);

is safe.
BUT, synthesis can introduce glitches the designer never imagined.

This hazard is present in many published clock-domain-crossing (CDC) FIFOs.
Our design ensures data out is all 0s when no valid data is available.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 14 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFOs and CDC Hazards

1

...

state

local

0

1

1

...

...

...
...data_out

data_valid

get_req

D Q

0

0
1

...

What synthesis can do

A designer might (reasonably) assume that
assign foo = data valid ? f(data out, . . .) : g(. . .);

is safe.
BUT, synthesis can introduce glitches the designer never imagined.

This hazard is present in many published clock-domain-crossing (CDC) FIFOs.
Our design ensures data out is all 0s when no valid data is available.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 14 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFOs and CDC Hazards

...

state

local

...

...
...

...

data_out

data_valid

get_req

D Q

0

1
11

1

1...

0

What synthesis can do

A designer might (reasonably) assume that
assign foo = data valid ? f(data out, . . .) : g(. . .);

is safe.
BUT, synthesis can introduce glitches the designer never imagined.

This hazard is present in many published clock-domain-crossing (CDC) FIFOs.
Our design ensures data out is all 0s when no valid data is available.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 14 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

FIFOs and CDC Hazards

...

state

local

...

...
...

...

data_out

data_valid

get_req

D Q

0

X1

X

X X... X

What synthesis can do

A designer might (reasonably) assume that
assign foo = data valid ? f(data out, . . .) : g(. . .);

is safe.
BUT, synthesis can introduce glitches the designer never imagined.
This hazard is present in many published clock-domain-crossing (CDC) FIFOs.
Our design ensures data out is all 0s when no valid data is available.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 14 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Design Flow

Design Generator & Run-in-Batch Manager (shell/tcl/perl scripts)

Interleaved FIFO
VERILOG Modules

Gates Synthesis
(Synopsys Design Compiler)

Pre-layout gates
netlist

Place & Route
(Synopsys IC Compiler)

Back-annotated
 Gate-level-simulation (GLS)

(Synopsys VCS simulator)

Timing

Power Estimates
(Synopsys PrimeTime)

CAD Tools
Setup

Cell-based
PDK

User s Design Requirements:
Number of vertical/horizontal stages, data width,

synchronizer depth

Design
Constraints

Verilog
Testbench

RC Extraction
Post-layout
gates netlist

Area/cell#/wire
length

Performance
 /Latency

Equiv-
alence

Delays
(sdf)

Nodes
 Activity

(VCD)

Switching/Dynamic/
Leakage Power Dissipation

Static Timing (STA)
(Synopsys PrimeTime)

Complete SynopsisTM design flow
I Includes synthesis, place-and-

route, back-annotation, simula-
tion, performance analysis, and
power estimation

Highly parameterized
I FIFO word-size, depth, and in-

terleaving specified by user.
I Number of synchronizer stages
I Target clock frequency

Open source
I The FIFO itself is about 200

lines of Verilog
I The test bench is about 300

lines of Verilog
I Plus about 2400 lines for 10

scripts.
I You can use it, you can build on

it!
I Get it from Github – details on

the last slide.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 15 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Performance
N Nh Nv w S freq power area
8 4 2 8 2 1300 1.2mw 1745µ2

16 4 4 8 3 1400 1.3mw 2618µ2

16 8 2 8 3 1500 1.9mw 3268µ2

32 8 4 8 4 1200 1.8mw 4875µ2

8 4 2 32 2 1400 2.2mw 2979µ2

16 4 4 32 2 1200 2.0mw 6725µ2

32 8 4 32 4 1100 2.9mw 12712µ2

A few examples from 144 test cases.

Frequency dominated by “tree structures”. Clock period is roughly
logarithmic in Nh, Nv , and w .
Power is dominated by the control circuitry and is roughly linear in
the number of control flip-flops.
Area is dominated by data storage and is roughly linear in the
number of data latches.
Results using a 65nm commercial library.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 16 / 17

http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

Conclusions
We have presented a fully synthesizable, general purpose,
clock-domain crossing FIFO.
I open source: https://ghithub.com/AmerAbdelhadi/

Interleaved-Synthesizable-Synchronization-FIFOs
I Supports complete Synopsis ASIC design flow.
I Highly configurable.
I Thoroughly evaluated for a wide range of configuration

parameters.
Novel interleaved FIFO architecture
I avoids the Gray-code conversion bottlenecks of Gray-code

FIFOs.
I smaller control logic and far fewer synchronizers than one-hot

FIFOs.
Identified a glitch hazard that is common in published designs.
I and our design avoids it.

Thanks: Tarik Ono, Brad Quinton, NSERC Canada.

Abdelhadi & Greenstreet Interleaved Synthesizable FIFOs ASYNC – May 22, 2017 17 / 17

https://github.com/AmeerAbdelhadi/Interleaved-Synthesizable-Synchronization-FIFOs
https://github.com/AmeerAbdelhadi/Interleaved-Synthesizable-Synchronization-FIFOs
http://ece.ubc.ca/~ameer/
http://www.cs.ubc.ca/~mrg
async2017.org
https://en.wikipedia.org/wiki/May_22
https://en.wikipedia.org/wiki/2017

