Accelerated Approximate Nearest Neighbors Search Through Hierarchical Product Quantization

Ameer M.S. Abdelhadi

Dept. of Electrical & Computer Engineering University of Toronto Christos-Savvas Bouganis and George A. Constantinides

Dept. of Electrical & Electronic Engineering Imperial College London

The Edward S. Rogers Sr. Department
of Electrical & Computer Engineering
UNIVERSITY OF TORONTO

Imperial College London

Nearest Neighbor Search

What's the nearest restaurant to my hotel? - 2D space, Manhattan distance

Approximate Nearest Neighbor Search

Find a restaurant whose distance to the hotel is at most $1 + \varepsilon$ times the distance from the hotel to its nearest restaurant

k-Nearest Neighbor Search

Find the k nearest restaurants to the hotel - e.g. 8 nearest restaurants

k-ANN Applications

- Data compression
- Databases and data mining
- Information retrieval
- Image and video databases
- Machine learning
- Pattern recognition
- Statistics and data analysis
- Recently: Memory-Augmented Neural Networks (Google DeepMind)

Memory-Augmented Neural Networks

- DNNs with local memory (e.g. LSTM)
 - Store the memory via weight adjustment
 - Cannot store data over long time scale
 - Incapable to efficiently solve complex structured tasks
- Solution:
 - Explicit external memory with differentiable attention
 - Allows teaching using end-to-end backpropagation
- Differentiable memory is compute- and memoryintensive, thus is not scalable!

Sparse Memory-Augmented Neural Networks

- A DNN with differentiable memory units is not scalable
- The system does a lot of computations just to access a small chunk of memory
- Heavy computational resources are needed to make this scale up
- Scalability in training: unfolding the memory dramatically expands the network
- <u>Solution</u>: sparse reads and writes based on *k*-ANN
 - Online updates are not supported
 - Storage and querying performance are not scalable

Approximate Nearest Neighbors (ANN) Search

- Leading ANN methods:
 - Space splitting metric trees:
 - branch-and-bound space partitioning, *e.g.* KD-trees, R-trees, K-D-B-tree, VP-trees...
 - Suffer from the "curse of dimensionality"!
 - Hashes:
 - Hamming distance is used to approximate similarity e.g. Locality sensitive hashes (LSH)
 - Product quantization (PQ):
 - Quantizes several subspaces separately
- Disadvantages:
 - Software-optimized: hardware acceleration is not supported
 - Memory-intensive: require intensive external memory access
 - Static database: updates require reconstructing the data structure

Product Quantization

- Partitions space into a Cartesian product of low-dimensional subspaces
- Quantizes each partition into clusters
- Data is regenerated from codebooks
- Distance is approximated by summing the distances from each subspace
- Advantages:
 - Dimension-wise scalability
 - High accuracies
 - Amendable to massively-parallel hardware acceleration on FPGAs
 - 1000's × distributed memories (Block RAM) \rightarrow distributed codebooks
 - 1000's × DSPs \rightarrow FP operations for distance calculation
 - Amendable to support online updates
 - Storage efficient: only quantized data need to be stored

Multi-dimensional quantization: a two-dimensional example (D = 2)

Vector Quantization (VQ) *k*-means with k = 64

Le gend: • Data point; • VQ centroid;

Multi-dimensional quantization: a two-dimensional example (D = 2)

9/17

Hierarchical Product Quantization Key idea

Objectives:

- Avoid exhaustive search
- Enhance parallelism
- Support online updates

Key idea:

- Enhance PQ by using space partitioning techniques
- Gradually refine search space with hierarchical search
- VQ gradually subdivides the PQ search space

×250 speedup compared to other OpenCL-FPGA & GPU methods

Initialization (training, offline)=

 $D=M=2; \tilde{D}=1; a=4; h=3$ Data point; \diamond VQ centroid; PQ centroid; PQ subcode

 $|D=M=2; \tilde{D}=1; a=4; h=3 || \odot Data point; \diamond VQ centroid; \square PQ centroid; \square PQ subcode|$

 $D=M=2; \tilde{D}=1; a=4; h=3 \bigcirc Data point; \diamond VQ centroid; \Box PQ centroid; \Box PQ subcode$

Hierarchical Product Quantization Querying through Voronoi Cells

VQ gradually subdivides the PQ search space PQ is used to search within the refined subspace

D-dim dataset

D-dim dataset

• K-means for each sub-space

D-dim dataset

- K-means for each sub-space
- Meta-data: #points & distances

D-dim dataset

- K-means for each sub-space
- Meta-data: #points & distances
- Encoded dataset

- D-dim dataset
- K-means for each sub-space
- Meta-data: #points & distances
- Encoded dataset
- Vector quantization

- D-dim dataset
- K-means for each sub-space
- Meta-data: #points & distances
- Encoded dataset
- Vector quantization
- Encoded dataset is stored within Voronoi cells

• Layer-wise deep pipeline of refinement indices

- Layer-wise deep pipeline of refinement indices
- Each Voronoi cell is distributed over multiple BRAMs
- $M \times \tilde{p}$ indices from each BRAM are read in parallel

- Layer-wise deep pipeline of refinement indices
- Each Voronoi cell is distributed over multiple BRAMs
- $M \times \tilde{p}$ indices from each BRAM are read in parallel
- Relevant distances of these indices are retrieved from codebooks

- Layer-wise deep pipeline of refinement indices
- Each Voronoi cell is distributed over multiple BRAMs
- $M \times \tilde{p}$ indices from each BRAM are read in parallel
- Relevant distances of these indices are retrieved from codebooks
- Squared sub-distances are accumulated to find total squared distance

- Layer-wise deep pipeline of refinement indices
- Each Voronoi cell is distributed over multiple BRAMs
- $M \times \tilde{p}$ indices from each BRAM are read in parallel
- Relevant distances of these indices are retrieved from codebooks
- Squared sub-distances are accumulated to find total squared distance
- Distances are compared to find the minimum

- Layer-wise deep pipeline of refinement indices
- Each Voronoi cell is distributed over multiple BRAMs
- $M \times \tilde{p}$ indices from each BRAM are read in parallel
- Relevant distances of these indices are retrieved from codebooks
- Squared sub-distances are accumulated to find total squared distance
- Distances are compared to find the minimum
- Distances in each code book are updated for each query (preprocessing)
- \hat{p} distances are processed in parallel

Experimental Results: Accuracy Trade-offs

Accuracy			Parallelism				Resources		Performance ^a		
R@100	M	$ ilde{k}$	α	h	\tilde{p}	\hat{p}	BRAMs	DSPs	F _{max}	Latency	1 Throughput
							Mb		MHz	us/c	luery
0.973	16	64	128	3	8	64	204	5508	334	0.37	0.078
0.89	16	32	128	3	8	64	174	5514	357	0.34	0.062
0.752	8	64	128	3	8	128	110	5703	368	0.33	0.073
0.57	8	32	128	3	8	128	90	5698	412	0.29	0.056

^a Measured on Stratix10 GX2800 FPGA using on-chip memory only.

- SIFT1M Benchmark A dataset of 1M 128-dim SIFT vectors
- Accuracy metric: recalls R@r The probability that the nearest neighbor retrieved is ranked within the first r true nearest neighbors

Experimental Results: Comparison of Performance and Accuracy

Platform	Method	Latency us/qu	1 Throughput lery	R@100
CPU^a	LOPQ IVFPQ		51.1k 11.2k	0.97 0.93
GPU^b	PQT FAISS		20 20	0.86 0.95
OpenCL FPGA ^c	LOPQ		20	0.97
Custom FPGA d Custom FPGA e	$\begin{array}{c} HPQ_1 \\ HPQ_2 \end{array}$	0.85 0.37	0.33 0.078	0.973 0.973

^a Xeon E5-1630v3 CPU: quad core, 8 threads, 10MB cache, 3.7GHz.

^b Nvidia GTX Titan Xp GPU: 3840 CUDA cores, 1.6GHz, 12 TFLOPs.
^c Intel HARPv2: 14 core Broadwell Xeon CPU + Arria10 GX1150 FPGA.

- ^d Arria10 GX1150 FPGA: 427K ALMs, 53Mb BRAMs, and 1518 DSPs.
- Optimal design parameters: $(M, \tilde{k}, \alpha, h, \tilde{p}, \hat{p}) = (16, 64, 16, 5, 1, 4)$ ^e Stratix10 GX2800 FPGA: 933K ALMs, 229Mb BRAMs, and 5760 DSPs. Optimal design parameters: $(M, \tilde{k}, \alpha, h, \tilde{p}, \hat{p}) = (16, 64, 128, 3, 8, 64)$

×250 speedup compared to other OpenCL-FPGA & GPU methods

Future Work

- Hierarchical Product Quantization with online updates
- Integration with memory-augmented neural networks

Thank You!