Vut-OUt-Urder Asynchronous dynchronizer
Design, syntheses, implementation
and performance investigation

multimillion transistor systems running with multiple asynchronous clocks with
frequencies as high as multiple gigahertz. SoC (System on Chip) systems have
multiple interfaces, some using standards with very different clock frequencies
or even asynchronous. Several modern serial interfaces are inherently
asynchronous from the rest of the chip or interfaced to a variety of external
busses ticking at different frequencies or different asynchronous protocols
GALS (globally asynchronous, locally synchronous) systems. There is also a
trend toward designing major sub-blocks of SoCs to run on independent clocks
to ease the problem of clock skew across large chips besides the gain of area,
power and design time. Synchronization is needed for crossing clock domain or
passing asynchronous events to synchronous domain, for that we use a
synchronizer. The basic synchronizer consumes high throughput and latency;
many academic researches have been done in order to investigate and invent
new synchronization methodologies, our research is one among these, which
investigates a parallel out-of-order synchronizer for packed data (data bus,
group of bits) synchronization. The main idea is to synchronize each coming
data synchronization request in different basic synchronizer; the data will be
committed to the synchronous domain at the same order of its coming. A full
specification, design, and simulation of the proposed synchronizer are
presented. We compare and contrast our implementation with existing
synchronous versions, the FIFO synchronizer and the basic brute-force two
flops synchronizer.

a'xpPn

ay N12YAY 727217 NN213 NI MWD A0 OTMYRYR DUIpNT YW 2T YT
710 YW 071702 2°112100 X? DWW S 9173 1900 OV X 00000 110 1
-1

97N IR 20w oUW 07PN QY DTAWY DOpwHn and (22w SY noavn) SoC noavn?
RS 07170101 K7 OMINTIM OTIW DPwRn 59D NYER 110101 K2 RIW 190N 10w e
R? NMPPN 23710179 IR AW 1TN2 TW AW 2NN PUOXY 110107 pwnn YW IR 2awn
111795 11701 W f013 (11720 MIpn ,111153°0 X7 9275 ,GALS moayn) anw o170
723077 7792 ,70X 70 o°bn N2 ot ay X1 79 SoC S npty M1 Pw 11an
Seawa .50 a0 P90 ,AUwA MNP 012 ,0°7173 0722w TR 2UWwa a0 nMwa by
0°2771 ,°117123°0 MR DWMN? *11123°0 KY 2WND N2vah o, 2O QMY RN 172 avn
1277 ,0°1123 R 7PN 3T TNE 0702 112307 100K YEIAN I R ,IRINN010
X1 W APnnT MR 10010 NPAATIND DWW ARXAM P2 2Ypovnn OTRTRPR 0pnn
DNYDT 770 297 XPNT R? H7apna (MX12p2) 01N 11210AW 12101 PN 1987 TN
PR W YT S 11N510 NWRA PO 11210 X 100t 1w L(out-of-order) 107102
0%%11 PNN2 .A0192 INYDIT 170 797 TNI31°0T DIMNT 01N YT , 7791 70702 1101012
PRI 1123077 PW ARNMWA 13X A0 VI 7101077 YW 17K 01 PION LX) 019

smamm AthTRTor I mamnt (e Tareem Arme e) RTREO) 3mm9m smsmmse marmaam Ban

£, LBCOTCHCAL DACKETOMIIL. . o ooy min simim e wa e v b it o im w7 12

Tl o i) ¢ L — 12
] - Ot e o B A e S A e S P, ST i 12
2.1.2. Classification of signal-clock synchronization.......................... 14

D INRBEREDRIRINY . im0 S A S A A 14

2.3. Mean Time Between Failures (MTBF).........ccooviiiiiiiiiiiiiiiiiiineennns 17

2.4. Brute-Force (Waiting) Two flons svnchronizer...............ooooiieii . 20

rigure Z:

Figure 3:

Figure 4:

Figure 5:

Figure 6:

Figure 7:

Figure 8:

Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:

Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:
Figure 38:

™ alal

Vutput at Intermediate Level pue 10 bala edge witnin iU Apertre...... 14

D Hlip-Flap fiing SEheiie. ... uaiissipossnumseioi s i 15
Output of Flip-Flop oscillation at metastable state........................... 15
Quasi-Stable sate on the topof the hill.......................iil 16
Typical MTBE Of a tHo-Hap. ...ccscrvvnvnmammmsimmssmsvservismmissssss 18
Two flip-flops in serial........ccociviiiiiiiiiiiiiiiiiiiiiiiiiieiiinininne. 19
Brute-Force (Waiting) Two flops synchronizer.............................. 20
A prash SYDCBIONIEEE: ..c. s s smmsnasnsssnnmmsuns sesmsbamsss was e oss s iia 20
Four-phase handshake push synchronization protocol STG.................21
Push synchronizer logicand protocol FSM....ccuviswmismi s 21
Synchronization failure, still in metastable state.......................... .5
Apertire time ta, clock PEriod tEY. u. i susuiiesvis ssusmaisimvivaisesing 22
Initial voltage difference AVs, and final voltage difference AVT..........23
FIECE Synehromizerl SEREIMIE oo i unniivisissasessmssslain iatdainds saansm 25
Plesiochronous FIFO synchronizer scheme..................ooooiinaen. 26
General Purpose Asynchronous FIFO Synchronizer........................ 27
Out-Of-Order asynchronous synchronizer...............ccooceeiiiiiinennnn. 29
Wave form for important interface signals and timing constants.......... 31
“ACO/ACI” — Asynchronous Controllers STG.................cceceeeeee.... 33
4-phase handshaking with outer interface user waveform/simulation.....34
Cyclic trigger protocol waveform/simulation..................o.ovveeeenan.n. 34
REn, gating requests signal, with Prv and RqO waveform/simulation....35
Latching signals waveform/simulation.................ooooiiiiiiiiiiiin. 35
Rql/Acl 4-phase protocol/simulation..............coeoevieeiiiiniiiinaneannn.. 35
“ACO/ACI” — Asynchronous Controllers STG — critical path.............. 36
“ACO” — critical transmissions on “ACO0” - waveform/simulation.........37
“ACI" — critical transmissions on “ACI” - waveform/simulation......... 37
NFF — N Flip-Flops Synchromizer...........c..ooviiieirieiiiiiiiieaneennnn. 39
OO0 DT ORIET TR ..oonnivvisnianiviss il snaiiiisasasnisniis 42
00O — Out Of Order Unit — Bit-Slice Design.............cccooeiveiannn. 43
SY N =SohMITEE. - oo i s s i S A S T sl 46
CHE = CROCKRE . .« isnsomsmmswsansnnmssmssbsnsmhsssposmmsmssemmemsh s asets 49
Top simulation with Clk @ 1.23GHZ (max freq).......c..ccccvvnvennee... .52
Top simulation with Clk @ 100MHZ..............ccoovviiiiiiiiiiinanannnn 52
Top simulation with Clk @ 10MHZ............coooiiiiiiiiiiiiiiiiinnnn, 32
AL BIACOD RIS i vuninsvocmumvmmnss a5 R R A 57
T B 1 57

Lauviv L.

Table 3:
Table 4:
Table 5:
Table 6:
Table 7:
Table 8:
Table 9:
Table 10:
Table 11:
Table 12:
Table 13:
Table 14:

[a0 BB | -

Lriua A ALIDOLELILD . s e s s s as s sasssssasssasssssassssssssssssssesssanssssnssssnssnsansanat wr

IR DA IVPES. 1.0 0 snibim b smasbenssinis A R A A A, s K 30
RBE FUDERODE v corvmumesisn e s R i T R S S A 30
Critical path delay by arcs........ccovevviiiiiiiiiiiiiiiieiiiiienieiaenneenann 36
CARCOTACT" Infetface BEnals. ..o e s s 38
o L Sl DR C NS SR S N 39
TR TlEnal SUEDBIR. ... oo - il A A S b s S A A A S 39
RIOO” BUTERCE BRBNBIS . ovanmmmimmmonsmiman s s oA a5 40

OO0 THErna] SIBORIS. .o ir s sesmimmmn s smmensrnssindmins ss st 40
“STN" Intertice Sigiils.. .oyl Gmediadsis 44
D G T Y S SO eSS T 44
SN OB o st i e L A T S AN AR s Ra S +4
M 15 LGl P T T L O A 47

LJESIZNErs O algltdl SYSIems are Constantly CONIronted witn me propiem of
synchronizing two systems that operate at different frequencies. The problem is
usually resolved by synchronizing one of the signals with the local clock generator
using a flip-flop. But such a solution, of necessity, leads to a violation of the
operating conditions for the flip-flops, in these cases, the setup time and hold time
are not maintained. Therefore, a flip-flop can go into a metastable state,
endangering the operability of the circuit and, thereby, the reliability of the whole
system.

Synchronization is a challenging topic that has been investigated intensively; large
VLSI chips tend to employ asynchronous intermodule timing due to two principal
reasons. First, it is sometimes more economical (in terms of area, power and
design time) to break a large synchronous chip (or section of a chip) into multi-
synchronous modules, which use the same basic clock frequency but do not
require the exact same phase of the clock. Multi-synchronous timing can be based
on thrifty clock distribution networks, which avoid the heavy area and power
penalty of assuring minimal skew across a large chip. Second, interfacing the chip
to a variety of external busses ticking at different frequencies imposes a
requirement for the chip to contain multiple unrelated clock domains. Both types
of multiple-clock domain chips are sometimes termed GALS (globally
asynchronous, locally synchronous) systems.

A clock domain is defined as that part of the design driven by either a single
clock or clocks that have constant phase relationships. A clock and its inverted
clock or its derived divide-by-two clocks are considered a clock domain
(synchronous). Conversely, domains that have clocks with variable phase and time
relationships are considered different clock domains.

In synchronous design, the master clock acts as a timing reference signal for all
basic modules of the design. A welldesigned global clock distribution network,
with additional circuitry for keeping clock skew under reasonable limits is
required to make sure that local clock signals reaching different computational
blocks are synchronized. However, due to the increasing number of transistors and
complexity of today’s designs, a continuous reduction in clock skew is possible
only by careful design and simultaneous consideration of global interconnect
delay increase.

In recent years, the GALS approach has been explored to tackle this problem.
Such a solution eliminates the requirement of a global reference clock signal by
assuming that the system is comprised of several synchronous blocks
communicating asynchronously.

Two separate clock domains are ‘mesochronous’ if they are clocked at the same
frequency but at a fixed relative phase difference. If the phase difference drifts
over time, they are called ‘multi-synchronous’. If the clock frequencies are close
but different, they are ‘plesiochronous’. Periodic signals have arbitrary
frequencies but the phase difference is periodic. This information can be used to
predict which signal events occur during the unsafe portion of the clock.
Asynchronous signal is not periodic, which means that the signal events may
occur at arbitrary time, this compels full brute-force (two flops) synchronizer.

In multi-synchronous GALS systems, all modules receive the same clock
frequency. The design of inter-module communications can take advantage of that

Technion-IIT

Ameer Abdel-hadi, Rami Busool Page 10/63

00O Synchronizer

fact and employ mesochronous synchronizers for higher bandwidth than possible
with the more general two-flop synchronizers.

However, relative clock phases drift over time (typically due to intra-die
temperature and voltage temporal variations) thus requiring adaptive
multisynchronous synchronizers that either periodically or continuously adapts to
the varying phase differences. Similar conditions often arise among separate chips
on a board, where the chips are clocked by the same system clock. The analysis of
synchronizers for on-chip cross-clock domain communications is quite difficult.
Circuit simulations of synchronizers only provide a partial characterization.
Typical logic validation tools are totally ignorant of synchronization failures.
Postproduction testing also provides very little help. The only useful metric
proposed in the literature is that of MTBF, which is only indirectly driven out of
approximately defined parameters.

Large systems on chip (SoC) typically contain multiple clock domains.
Inter-domain communications require data synchronization, which must
avoid metastability while typically facilitating low latency, high
bandwidth, and low power safe transfer. The synchronizer must also
prevent missing any data or reading the same data more than once.
Communicating clock domains can be classified according to the relative
phase and frequency of their respective clocks.

Heterochronous or periodic domains operate at nominally different
frequencies, plesiochronous domains have very similar clock
frequencies, multi-synchronous domains have the same clock frequency
but a slowly drifting relative phase, and mesochronous domains have
exactly the same frequency.

The simplest solution for inter-domain data transfer is the two-flip-flop
synchronizer. The main problem with that synchronizer is its long latency
(1-2 cycles): Typically, a complete transfer incurs waiting about one to
two clock cycles at each end. Although it is a very robust solution, it is
sometimes misused or even abused in an attempt to reduce its latency.
Another commonly used synchronizer is based on dual-clock FIFO. In
certain situations, especially when a complete data packet of a pre-
defined size must be transferred, this may be an optimal solution.
Another advantage is that synchronization is safely contained inside the
FIFO, relieving designers of the communicating domains of this delicate
design task.

The main drawback of FIFOs is their one-to-two cycle latency that is
incurred when the FIFO is either full or empty, and that scenario is
highly typical with periodic clock domains where the clock frequencies
are different.

Mesochronous synchronizer is a rational clocking synchronizer for a
special case of periodic domains in which the two clocks are related by
the ratio of two small integers.

Another synchronizer for a limited cases of periodic the plesiochronous

PESETRES SESRE S e - . LA R

L)IEI].CU 11dd UIC >alue llCLIUCll\ly dliu IJ].lﬂbC dd LT CIUChK.
It is safe to sample the signal directly with the clock (synchronizer is not
needed)

Mesochronous

Signal has the same frequency as the clock but is potentially out of phase,
with a phase difference ¢c.

It is safe to sample the signal if the clock or signal is delayed by a
constant amount

Plesiochronous

Signal and clock have nearly the same frequency, and hence the phase
difference varies slowly.

It is safe to sample the signal if the clock or signal is delayed by a
variable amount.

Periodic

Signal and clock have arbitrary frequencies but the phase difference is
periodic.

This information can be used to predict which signal events occur during
the unsafe portion of the clock, i.e., close to the sampling edge of the
clock

Asynchronous
Signal is not periodic, which means that the signal events may occur at
arbitrary times.

IVIETastaniity n aigiial systems occurs wnen [wo asynchronous signals
combine in such a way that their resulting output goes to an indeterminate
state. A common example is the case of data violating the setup and hold
specifications of a latch or a flip-flop.

In a synchronous system, the data always has a fixed relationship with respect
to the clock. When that relationship obeys the setup and hold requirements for
the device, the output goes to a valid state within its specified propagation
delay time. However, in an asynchronous system, the relationship between
data and clock is not fixed; therefore, occasional violations of setup and hold
times can occur. When this happens, the output may go to an intermediate
level between its two valid states and remain there for an indefinite amount of
time before resolving itself or it may simply be delayed before making a
normal transition. In either case, a metastable event has occurred.

Metastable events can occur in a system without causing a problem, so it is
necessary to define what constitutes a failure before attempting to calculate a
failure rate. For a simple D Flip-Flop, as shown in Figure 2, valid data must
be present on the input for a specified period of time before the clock signal
arrives (setup time) and must remain valid for a specified period of time after
the clock transition (hold time) to assure that the output functions predictably
(see figure 3). This leaves a small window of time with respect to the clock
(t0) during which the data is not allowed to change. If a data edge occurs
within this aperture, the output may go to an intermediate level and remain
there for an indefinite amount of time before resolving itself either high or
low, as illustrated in Figure 2. This metastable event can cause a failure only
if the output has not resolved itself by the time that it must be valid for use
(for example, as an input to another stage); therefore, the amount of resolve

Figure 3: D Flip-Flop timing Scheme

When Flip-Flop is in metastable state, the output of the flip-flop oscillate
between '0' and '1" as shown in figure 4 below (here the flip-flop output settles
down to '0") . How long it takes to settle down, is depending on the
technology of the flip-flop

1Caliicd WIICH d LHIP-1I0P S SCLUp did UL LIHES d1€ VIUIALICU. ANSUILIITE T
use of a positive edge triggered "D" type flip-flop, when the rising edge of the
flip-flop's clock occurs at a point in time when the D input to the flip-flop is
causing its master latch to transition, the flip-flop is highly likely to end up in
a quasi-stable state . This rising clock causes the master latch to try to capture
its current value while the slave latch is opened allowing the Q output to
follow the "latched" value of the master. The more perfectly "caught" quasi-

A AEREL W W e W UALATE L/LGARSAL (JHELL WAL LAAL LASQS WA LAAL ARARR

How long does it stay in this state?

The relative stability of states shown in Figure 5 shows that the logic 0 and
logic 1 states (being at the base of the hill) are much more stable than the
somewhat stable state at the top of the hill. In theory, a flip-flop in this quasi-
stable hilltop state could remain there indefinitely but in reality it won't. Just
as the slightest air current would eventually cause a ball on the illustrated hill
to roll down one side or the other, thermal and induced noise will jostle the
state of the flip-flop causing it to move from the quasi-stable state into either
the logic 0 or logic 1 state.

What are the cases, when metastability occurs?
As we have seen, when ever setup or hold time violation occurs, metastability
occurs, so when does this signal violate this timing requirement?
e The input signal is an asynchronous signal
e The clock skew (rise time and fall time) is more than the tolerable
values).

¢ Interfacing two domains operating at two different frequency or same
freanencv hit different nhace

AVL L 1L 1D IVEIGALL LT UCLWUOLILD 1Aalluled, WIlAalL UuUey Lildal ireati

MTBEF gives us information on how often a particular flip-flop will fail, in
other words, it gives the time interval between two successive failures.
Figure 6 below shows a typical MTBF of a flip-flop and also it gives the
MTBF equation.

The probability of a metastable state persisting longer than a time 7, decreases
exponentially as 7, increases. This relationship can be characterized by
equation 2.1:

. A=)
2.1) f(r)=e
Where the function f(r) is the probability of non-resolution, as a function of
resolve time allowed ¢, and circuit time constant 7 .

For a single-stage synchronizer with a given clock frequency and an
asynchronous data edge that has a uniform probability density within the clock
period, the rate of generation of metastable events can be calculated by taking
the ratio of the setup and hold time window previously described to the time
between clock edges and multiplying by the data edge frequency. This
generation rate of metastable events coupled with the probability of non-
resolution of an event as a function of the time allowed for resolution gives the
failure rate for that set of conditions. The inverse of the failure rate is the mean
time between failures (MTBF) of the device and is calculated with the formula
shown in equation 2.2:

T = metastapility tume constant 1or a Tip-110p

t = a constant related to the width of the time window or aperture
wherein a data edge triggers a metastable event

5 = clock frequency

g = asynchronous data edge frequency

The parameters 7, and ¢ are constants that are related to the electrical

characteristics of the device in question. The simplest way to determine their
values is to measure the failure rate of the device under specified conditions
and solve for them directly. If the failure rate of a device is measured at
different resolve times and plotted, the result is an exponentially decaying
curve. When plotted on a semi-logarithmic scale, this becomes a straight line

— & {frE;r)
- MTFB, =<—xe
IO ctd

Where:
1, = resolve time allowed for the first stage of the synchronizer
t, = resolve time allowed in excess of the normal propagation delay

f.. [, t,and f, are as previously defined, with 7 and 7, assumed to
be the same for both stages.

The first term calculates the MTBF of the first stage of the synchronizer,
which in effect becomes the generation rate of metastable events for the next
stage. The second term then calculates the probability that the metastable

CLILLILY. DU A llule ap/piaupl idic JuodLIUID IINELIL U LIUW UUY yul il ate
metastability?"

In the simplest case, designers can tolerate metastability by making sure the
clock period is long enough to allow for the resolution of quasi-stable states as
well as whatever logic may be in the path to the next flip-flop. This approach,
while simple, is rarely practical given the performance requirements of most
modern designs.

The most common way to tolerate metastability is to add one or more
successive synchronizing flip-flops to the synchronizer. This approach allows
for an entire clock period (except for the setup time of the second flip-flop) for
metastable events in the first synchronizing flip-flop to resolve themselves.
This does, however, increase the latency in the synchronous logic's
observation of input changes.

Neither of these approaches can guarantee that metastability cannot pass
through the synchronizer; they simply reduce the probability to practical
levels.

In quantitative terms, if the Mean Time Between Failure (MTBF) of a
particular flip-flop in the context of a given clock rate and input transition rate
is 33.33 seconds then the MTBF of two such flip-flops used to synchronize the
innmt wonld be (33 33%* 33 33) = 1R 514 Minutes Well T have taken a worst

1 N€ SECONA TIIP-TIOP TECEIVES e Output signal o tne TIrst stage one clock
period later and can go into a metastable state only if its input conditions
are also violated. That is, the output of the first flip-flop is still
metastable during its setup and hold time.

At Figure 7, the Brute-Force synchronizes the asynchronous input A to
the clock Clk, First flip-flop FF1 samples A (may go into a metastable
state, depending on the timing of A and Clk) then we await the possible
metastable state to end for a waiting period tw. Usually the waiting time
is one clock cycle, which means that the output of FF1 is sampled by the
second flip-flop FF2 to generate the final synchronized signal AS. In
general, to implement an N-cycle waiting period, we need N cascaded
flip-flops in addition to the sampling flip-flop FF1; Total
synchronization latency is N+1 clock cycles.

i L
Figure 9: A push synchronizer

Bundled data is employed. The “synchronizer” actually comprises two
synchronization circuits that envelope the data lines, implementing a

Anvmmlata handohalbba meatanal Tha Daasoan + MDY aemd Aalrmawdadas AN

udid 1> avaliavie (at v dudiuet f, LW) LIV ALD U1at I H1ay Ub 1viiuvyvie, alug

“LL” means data latched by the receiver. (A two-phase protocol may also
be employed; the circuits are a bit more complex, and this is typically
used in order to minimize latency on long lines.) The complete logic and
FSM are shown in Figure 11. A send request (V, true for a single cycle)
latches data into REGs and starts the sender’s FSM. The synchronized
request (R2) latches the data into REGR and triggers the receiver’s FSM.
The receiver is given a single-cycle “data received” (D) signal. The
protocol is sometimes modified so that A is set as soon as the received
data are latched, but removed only after the receiver has had an
opportunity to use the data.

/"

Flip-flop can enter a metastable state, when its data input D changes the
state during the aperture time or sampling window of the flip-flop.
Probability of an input transition to occur during the sampling window is
computed by dividing the aperture time ta by the clock period tcy (figure
13).

Flip-tlop 1s still 1n the metastable state after the waiting period 7, , it the
initial voltage difference AV, was too small to be exponentially

amplified to the full value 1 during the waiting period. Hence, the final
value AV, is smaller than 1.

Probability of this to happen is defined to be the ratio of such a small
initial difference

FIZUre 142 mMital voltdage aurercnce Ayvs, ana iidal vollage aunierence

AVE

Synchronization failure probability P, is the product of the probabilities
of entering and staying in the metastable state P, and P, .

Potentially, every event at the flip-flop data input D can cause a
synchronization failure with the probability P, .

The synchronization failure frequency (synchronization error rate) f. is
calculated by multiplying the failure probability P, by the event
frequency F), .

Assume that a I MHz data signal (fD) 1s sampled with a 100 MHz
clock signal (fClk)

Aperture time ta and the regeneration time constant ts of the
sampling flip-flop are both 200 ps.

Waiting period tw is one clock cycle (we have the second flip-flop):
tw =1/ fClk = 10 ns

Wa mrat:

(“Méan Time Between Failures™)

Example 2:

Assume that a 10 MHz data signal (fb) is sampled with a 500 MHz
clock signal (fcik)

Aperture time fa and the regeneration time constant Ts of the
sampling flip-flop are both 100 ps

L AL s a]llblllulllbbl 1D UL uouauy LEVIILL LRIl e aalupuns lllIJ"l.lUlJD lJ\ul (uZeiney
bit (3- place FIFO buffer), FIFO buffer is filled using the transmitter
clock xclk and the associated counter which provides the transmit pointer
xp, FIFO buffer is emptied using the receiver clock rclk and the
associated counter which provides the receive pointer rp, receive pointer
follows the transmit pointer one step behind, i.e., when xp is 0,1,2 , rp is
2,0,1, respectively.

Each flip-flop output x0, x1, or x2 is updated on every 3rd clock cycle
and passed to the MUX output xs as a clock-cycle-wide sample during
each 3-cycle round, this gives a clock-cycle-wide timing margin on both
sides of each sample.

The 3-place FIFO synchronizer provides a stable and correct output as
long as the phase difference between xclk and rclk is between — tcy and

1S TEMOVEd ITOM Ne F1FU DUITEr WIIN e recerver clock reik.
Receive pointer rp is periodically updated by synchronizing the transmit
pointer xp to the receiver clock rclk, rp is replaced with the previous xp
whenever the control signal resync is high.

rp is incremented normally whenever resync is low.

resync signal is driven by a controller which is designed to activate a
resvnchronization cvcle whenever the phase difference between xclk and

= OVENTWry LC 1CCCIvel, 11 ACIK 1lad d H’f,g“f:l' l].Cl..II.lCII.L«_Y LIECLEl FLEN
e adata symbol is dropped (lost)
= underruns the receiver, if xclk has a lower frequency than rclk
e adata symbol is replicated
e Data-rate mismatch problem is handled by inserting null into the data
stream
= extra signal — a presence bit
= reserved bit pattern
o If the receiver is overrun, the resynchronization event is performed
only when a null symbol is received
= anull symbol is dropped, not a data symbol
o If the receiver is underrun, it inserts a null symbol instead of
duplicating a data symbol after the resynchronization event
e In the open-loop flow control, the transmitter inserts nulls in the data
stream with a frequency high enough to meet the maximum update
latency constraint on the receiver
= rate of actual data symbols in the stream should be less than the
clock frequency of the receiver
e In the closed-loop flow control, the eceiver requests a null symbol
from he transmitter when it is about to be overrun

2.5.4. General Purpose Asynchronous FIFO Synchronizer

Data in inserted into the FIFO buffer with the transmitter clock xclk
keeping the control signal shift/n high.
Data in removed from the FIFO buffer with the receiver clock relk
keeping the control signal shiftOut high.
No actual synchronization delay or failures in the data path.
e Provides inherent flow control via the full and empty signals
= when the FIFO is about to be overrun, full is asserted, and the
transmitter pauses its data sending process by setting shiftin
low

1 NC UU-01-urdacr syncnromiZer, syncnromnizes cacn user s request separatcly,
independent on the previous request.

The main issue is that each request is routed to an individual slot, this is done
in serial, i.e. each request is gated (AND) with an internal enable, which
enables the current slot and generates the internal requests. At the next
request cycle, the next slot (cyclic counting) will be enabled.

Each internal request (at each slot accordingly) will trigger the input data, and
send the request as a “data valid” signal to the Out-of-Order unit, which is
responsible of the serial commitment of the data.

When the data is committed by the Out-of-Order, the input may be changed at
the same slot; therefore we send a “data written” signal back to the
asynchronous controller, which translated it an acknowledgment to the user.
The Out-of-Order unit commits the data depending on one-hot cyclic counter
which controls the data mux and enabled by the “data valid”.

Request path flow

o A request comes from a user

o For each slot the request input is gated, only one controller is enabled,
which will get the request.

o The asynchronous controller translated the request, to an internal
system requests.

o The internal system request enables the data latch.

o The internal system request enters the synchronizer in order to be
synchronized to the system clock; then it translated as a “data valid”
signal.

o A “data valid” signal enables the Out-of-Order counter.

Acknowledge path flow
o Starts from “data written” signal, which indicated that the data was
written into the Out-of-Order.
o Enters the asynchronous controller and translated to a user
acknowledge.
o Each acknowledge form any slot will be translated as a user
acknowledge.

Data path flow:
o The data starts from the data latch which is enabled by the internal
request signal.
o The stored data muxed by the Out-of-Order mux. which is controlled

I'his 18 an asynchronous block designed with Petrity, reter to the
theoretical section in order to see the asynchronous design using
petrify flow.

This block takes user’s request (RqO), Acknowledge (Acl) and
trigger from previous controller (Prv) as inputs, and produce output
request (Rql), Acknowledge (AcO), trigger to the next controller
(Nxt), and Request enable (REn) as outputs.

The controller makes four handshakes, with its user’s input and its
output (OOO), with the previous controller and the subsequent
controller.

When the user send request (RqO) to the controller, that means that
the input data is ready, the controller sends request to the ooo (Rql),
via the n-flops synchronizer) and the rising of that request triggers
the flip-flop on the data, which means that the data is locked for the
000 use.

The controller send acknowledge to the user (AcO) to inform him
that the data may be changed, When the ooo finished with the data,
is sends (wrt) signal to the controller which translated as
acknowledge (Acl), and the controller May proceed with the next
shaking cycle.

Each controller is triggered by the falling of (Prv) input. When a
controller is triggered, it rises (Nxt), when it finishes, it falls (Nxt),
and thus the (Prv) input of the next controller is triggered. It doesn't
need any acknowledgement from the next controller because it will
keep the input until it take control again, then it will rise (Nxt)
signal, thus we have full control cycle (among all the controllers),
we assume that this time is enough for the controllers to get the
inputs, so we need no acknowledgment.

When the current controller is triggered by it’S (Prv) input from the
previous control it rises (REn), request enable input which permits
outer requests (RqO) to enter the controller.

juanbasqns juanaad
a|qeua jsanb

)10) Indul woyy 3senb
(yoie| 03) eyep pe
J3]|]o1u09 xau Jabb
8jul) apIsINo wouy *y
'suy wouy ebpesmouy
(yar8) 0}) Ut B3

1 snojaasd woyy 1a66
| episyno woly ysenb

» +p07 «——+QbY

N

\ +Hig \+Oo<
-Po7 \ -0Oby

- -uig -u3H

— L

reguiar 4-pnasc nanasnaxking, user senas request (xqguw) wnicn
indicated ready data at input and waits to the rise of
acknowledge (Acl), means that the data is latched and may be
changed, then the user falls (RqO) and waits to (AcO) fall.

jﬁ?l

~ — o —e

Cyclic triggers:

When the controller starts to work it send Nxt+ for the
subsequent controller, when it finished, it sends Nxt-. Each
controller waits to the subsequent signals Prv+ then Prv- in
order to take control. It doesn't need any acknowledgement
from the next controller because it will keep the input until it
take control again, then it will rise (Nxt) signal, thus we have
full control cycle (among all the controllers), we assume that
this time is enough for the controllers to get the inputs, so we
need no acknowledgment.

Failing of Prv input Prv-@ Na-| | When the cumant
mean that current dalni s | controller finishes, it
| controller takes control. the c!:illi:sl falls the Mxt cutput,
b | oo toatore || L5, || et b

the contT’oIler rises (Lod) signal to enable the latch, (Din) is an
input to the controller which equals to Lod after “delay (d,,,)"

and means that the data is inside, the “delay” is a time period
needed to latch the data.

the protocol is 4-phase, thus when (Din) goes high, (Lod)
drives ‘0’, and wait to the fall of (Din)

Figure 24: latching signals waveform/simulation

Handshaking with inner 0oo unit:

The asynchronous controller drivers request (Rql) high to the
000 unit which says that the data is latched and may be used,
this signal should be synchronized (we use n-flops
synchronizer) since it goes from asynchronous domain to
synchronous (000), when the ooo finished with the latched
data, it sends acknowledge (Acl) high back to the controller,
the protocol is 4 phase, so after we get (Acl) low, (Rql) goes
low, synchronized, and (Acl) goes low.

Talls, ana endas wnen e Current CoNtrolier grves Control to e next
controller, when Nxt falls. It contains the data latching controls,
because we must wait to the data latching before proceeding to the
next data, besides the 4-phase handshaking with the user
(interface), and the cyclic trigger of previous/next controller. At the
following table, you may see each transition delay, it’s clear that
the arc Din+=>Lod- is the delav heavv consumer.

| Total | 4.81 |
Table 5: Critical Path delay by arcs

Could we improve the critical path more? From the STG point
of view, it seems to be that we have the most optimized STG, at the
beginning we tried handshaking 4-phase protocol to move control
between controllers, but this consumes too much delay, so we
moved to the new cyclic trigger as shown above, more ideas to
boost the STG may arise, like parallelize Nxt+ and Ren+ (add Prv-
—->REn+, delete Nxt+=2REn+, add Nxt+=>REn-).

Using faster technology than the one we have (0.35um) would
make significant improve, we used “Petrify” to synthesize the
asynchronous controllers, the circuit may be more optimized with
better synthesizer or relative user constrains.

From table 5 above the arc Din+=>Lod- is the heaviest delay
consumer, so it’s worth to try improving this transition.

-.I. ~— Nx ar.To-—‘ acO ; -— m\mf —| aci

LI IN LRy ddGIILGA LU W LLLED LIIUC . CULILALD UIII-Y L Illﬂpl}llls Ul a
library cells as they were generated by petrify by using —tm and —
lib option for mapping library cells, Petrify generated a Verilog file
with reset using the options —vl and —rst1, The Verilog file was
translated to vhdl using v2vhd script.

Please refer to the section which talks about using Petrify.

3.2.2.3. Circuit description:
No Special implementation, just the library cells.Please note the
“set_dont_touch” attribute on those cells in at syntheses in order to
have the same design after syntheses (no hazards).
SDF “Standard Delay Format™ file was generated “make_sdf” in
order to have the controller delays modeled at simulation.

~

WJelial 1131115 LU5L« l.l.llJ‘JJ.UlJD ¥YLILLL LwOulL.

This block behaves as n-flops synchronizer, it’s the basic
synchronization unit at our design; you may read about its
synchronization function at the theoretical part.

It’s simply built out of serial flip-flops: each flip-flop adds one more
cycle of latency on the output.

We intend to synchronize the Request signal (RqO), with the system

Dlgllal Lypc DILICL UCdLLipuuil

fft STD_LOGIC_VECTOR | Temporal signal; holds the
(FEN-1 DOWNTO 0) internal value ofd the serials ff's

Table 8: “NFF” Internal Signals

The architecture:

The flip-flop is sensitive to rest and clock signals, so we put then at
its process sensitivity list.

On reset mode, each flip-flop gets zero as output (fft=0).

When the block exits the reset mode then it functions on each
rising edge clock, the first flip-flop of the chain gets the input, the
last flip-flop on the chain generates the output, and the other flip-
flops at the middle, each one get the output of it’s previous flip-flip
as inputs and drives the input of the next flip-flop on the chain.

3.2.3.3. Circuit description:

No special implementation, it’s implemented as a serial flip-flops
chain with shared clock and reset.

1 NE purpose Or tnis unit 1s 10 re-arrange all e syncnronized data;
it’s a synchronous unit, which have a clock input.

The design has one-hot cyclic counter (cnt) which points to the
current data to commit (inp[cnt]), when that data is ready to
commit, it is muxed out, and the counter is increased to point to the
next data (slot), on the rising clock.

The data is ready to commit when the input to the current slot we
are pointing at is valid, that’s to say: ent(slt)=1 and vdi(slt)=1, (vdi)
indicated that the input data is valid at a specific slot.

The system gives also a feed-back to the inputs to indicate that the
data has been written and you may change your data (wrt), this is
equal the writing enable for each slot: ent(slt)=1 and vdi(slt)=1.
The (ovd) output valid signal, indicates that the data on the output
bus is valid, it sets up when cnt(slt)=1 and vdi(slt)=1 for any slot
(OR on all the slots), it’s also the same indicator for increasing the
counter.

Each data is valid for a one cycle, it’s sure that the data is stable due
that cycle due to the synchronization operation which takes more
than one cycle.

YWLILLGIL ALIW LIl udel lllﬂy bllﬂ.lls\- [§ B L llll}ul LIAala Wil Liatr aiut.

The combinatorial logic also contains the muxing of the input data,
it’s a pass-gates passed mux, which the control must be strongly
mutex, like the one-hot counter at our case.

We have (ovd) — output valid, if any slot has a valid data which has
been written out, in other words, any slot have (wrt) sat on,
therefore that signal is logically or for (wrt(slt)) for each slot.

3.2.4.3. Circuit description:
The one-hot cyclic counter is implemented from rising edge serial
cyclic flip-flops.
Only the first flip-flop have a “set” input, all the others have “reset”
inputs, thus the counter will be initialized to one.
Each clock, if the counter is enabled, the counter content is shifted
right cyclic, and this implements one-hot cyclic counter.
The counter output controls one big pass-gate based mux, the input
to that mux should be strongly mutex.
(wrt(slt)) is implemented for each slot with logical AND between
(vdi(slt)), valid input, and the counting bit value for this slot.
The counter enable, and the (ovd), out valid, which have the same
logical value, are implemented with a logical OR among all the
(wrt(slt)) for each slot.

3.2.4.4. Bit-Slice implementation:
The above implementation is suitable for bit slices, but the first slice
will differ, because it has a flip-flop with set instead of reset at the
other flip-flops.
The wide SLN-1 inputs OR gate can be replaced with SLN-1 OR
gates, each with two inputs, which have serial connection one gate
output to the next gate input (serial), the first OR must be connected
to Zero on one of it’s inputs.
This implementation may be a delay consumer due to the serial OR

rataoc

S, lCLIUCbl IS Clamcu | AINLY Biill:) dl Cacll »d1u, Ullly UIC 31Ut
enables the request and sends tit to the suitable ACO/ACi
(Asynchronous Controller), the ACO/ACi send request the OOO
(Out-0of-Order) via the n-flops synchronizer, and latches the data at
the input latch, the OOO commits the suitable data and send
Acknowledge back to the AC0O/Aci which send it back to the user.

3.2.5.3. Circuit description:
The circuit contains only mapping and connection to other

components.

3.2.5.4. Bit-Slice Implementation:
This circuit may be implemented as bit-slice design, because each

MAALEDLTUTHGLL 15 d YILUAL UDCTL. 1L SLHTIUIALES LS LU LIWUIdanLy vl e
user and checks the correctness of the results given the checked
system depending on the inputs it delivers to the checked system.
Our test-bench produced the clock and reset signals, depending on
the user parameters. It also produced the request signals together
with the input data; it waits to acknowledge form the user in order
to make another request. When an “ovd — output valid” signal is

‘T'he process runs in an intite loop, every iteration 1t waits tor
PHS (one phase time) then it inverts the clock and increases the
clock counter (cct).

Reset generation process:

The reset initialized with 1, that’s mean that the systems starts at
reset mode.

After RSD (reset duration) clock phases, the reset goes 0, that’s
mean the system exits the reset mode.

Input generation process:

The process runs in an infinite loop, the data initialized to zero, it
starts the first request after SRQ (start request time) clock phases,
then it waits for acknowledge rise.

When the acknowledge rises it wait’s for A1RO then brings down
the request (req <= "1" after AOR1). When the acknowledge gets
down it increases the data by 1 and waits for AOR1 before rising
the request again for the next iteration (req <= "0 after A1RO).
“Generate previous output’ process:

This process produced the previous output “pot” and the previous
of the previous of the previous output, in order to compare it with
the current output.

It’s actually passes the output through two flip-flops, if the output
is valid (ovd).

“Check output™ process:

Here we check that the previous output “pot” equals to the previous
of the previous output +1 “ppo+1” when “pot” changes (ASSERT
(pot=(ppo+1)) report "Error in results").

Because the test-bench applies the system with sequence of serial
numbers, it should get also the same sequence synchronized to the
clock at the same order.

3.2.6.3. Circuit description:
This block is not synthesizable; it’s intended only for testing, not for

e B it it ettt |

TBN Test-bench — designed toimulate the user

Table 17: “CHK” Components

The architecture:
Only components mapping for connecting between the SYN and
TBN.

1 he system was designed, syntnesized (Syncnronous ana asyncnronous),
and simulated at Sun Solaris OS, at the VLSI systems research and
laboratories EE, Technion.

Technology Process and cells library:
The circuits were implemented in 0.35 CSX CMOS technology at 3.3V.

3.3.2. Tools
3.3.2.1.Asynchronous Syntheses tools

Petrify

Petrify is a tool for synthesis of Petri nets and asynchronous
controllers. Petrify reads a Petri net and generates another bisimilar
Petri net which is simpler than the original description. Initially,
petrify performs a token flow analysis of the initial Petri net and
produces a transition system (TS). In the initial TS, all transitions
with the same label are considered as one event. The TS is then
transformed and transitions relabeled to fulfill the conditions
required to obtain a Petri net. Petrify is able to obtain Petri nets with
some specific properties: pure, free choice, unique choice, place
irredundant, etc. The Petri nets accepted by petrify can also be
interpreted as Signal Transition Graphs describing the behavior of
asynchronous controllers. Petrify is able to solve the Complete State
Coding problem and generate a speed-independent circuit. Petrify
also includes another application called draw_astg to draw Signal
Transition Graphs in several graphic formats.

Please refer to the appendix for the tool usage, or visit the following
web site: http://www.lsi.upc.es/petrify/

draw_astg

draw_astg is a tool that draws a Petri net from a description is astg
format (SIS compatible). It can generate descriptions in different
formats: PostScript, MIF (FrameMaker graphics), HPGL (HP pen
plotters),

PCL (Laserjet printers, GIF (bitmap graphics) and DOT (graph
format for dot). In case the input file describes a state graph or a
Petri net with only 1-token state machine, draw_astg can depict a
state graph (nodes and labeled arcs). draw_astg calls dot, a
preprocessor designed at AT&T for drawing directed graphs.
Please refer to the appendix for the tool usage, or visit the following
web site: http://www.lIsi.upc.es/petrify/

write_sg
write_sg is a tool that writes a state graph from a description is the
astg format used by petrify.

i% L vl n.,\ulll_l' AVIE WUIEL Y vl LJIIE VY AJANAAAIND AN L Ay WU LML Y LMLy VY
need such that script because petrify output is VERILOG but the
whole system RTL is designed with VHDL.

vhdlan

vhdlan is the command to compile the VHDL source program and
generate the simulation-ready files .sim and others in the "work"
directory. Analyze/compile means to translate VHDL source
program into another representation that can be simulated and
analyzed.

da, Design Analyzer

Synopsys Design Analyzer is a widely used Logic Synthesis and
Optimization tool. Logic synthesis translates textual circuit
descriptions like VERILOG or VHDL into gate-level
representations.

Optimization minimizes the area of the synthesized design and
improves the design’s performance.

The HDL description can be synthesized into a gate-level net-list
composed of instances of the standard cells.

Actually we use the Design Analyzer for generating SDF (Standard
delay Format) for the asynchronous controllers in order to simulate
them afterward.

http://www_.synopsys.com/products/logic/design comp_ds.html

Synopsys VirSim® VHDL Simulator

VirSim® is the highest performance, highest capacity full-language
VHDL simulator. It is the only VHDL simulator designed
specifically to address the challenges of SoC verification. VirSim's
unique architecture combines cycle-based, performance-driven
optimization techniques with the flexibility of event-driven
simulation to deliver superior performance and capacity for
complete system verification. Scirocco and VCS work together to
provide the same high performance and high capacity for mixed-
HDL simulation.
http://www.synopsys.com/products/simulation/scirocco/scirocco_ds
html

I he system 1s not formally veriried, but the Current veriricaton is
satisfying to cover all the corners on the system.

The system is fed with serial input data with request on each data change
and waits for acknowledge from the system and before changing the data,
the system assumed to produce the same serial data on the output.

For that purpose a test-bench is used. A test-bench is a virtual user. It
simulates the functionality of the user and checks the correctness of the
results given the checked system depending on the inputs it delivers to
the checked system.

Our test-bench produced the clock and reset signals, depending on the
user parameters. It also produced the request signals together with the
input data; it waits to acknowledge form the user in order to make
another request.

When an “ovd — output valid” signal is detected it checks the output bus
(of the synchronized data) and determined whether that results are
correct.

The special line:

ASSERT t +1)) report "I in ts";

will report "Error in results" when the output is wrong.

3.4.2. Simulation

The system was simulated Synopsys VirSim® VHDL Simulator,
VerSim® is the graphical cockpit front-end to both the Scirocco® VHDL
and VCS® Verilog HDL simulators. input signals produced was a test-
bench, that test-bench checks also the correctness of the output.

LAY Pl g WAL WAL W LLELD VY el lllil.)l\.tlll\.-lll.\.ru LLE W00 N WAV lbbllllUlUéJ arma
simulated at 3.3V using Synopsys VirSim® VHDL Simulator.
We have simulated the behavior of an OOO synchronizer of capacity 8 (8 slots),
with a data item of width 8 (data bus with 8).
e Measured parameters, depends at implementation technology:
These parameters were measured with incremental simulation, thus
simulations were run with various incremental values of the measured
parameter until a fault appears, then the maximum parameter is determined.
o Handshaking delay from the synchronous domain side:
Handshaking delay is defined as the delay needed to repeat the
handshaking protocol, thus the delay form request rising till
acknowledge falling. This period of time depends on the asynchronous
controllers design and directly on the critical path on these controllers
as shown in the relevant section above. As simulated at VirSim, that
maximum handshaking delay is: 4.8ns.
o Maximum clock frequency from the synchronous domain side:
The system functions reliably up to the local clock frequency of
1.23GHz (according to VirSim simulation) - the maximum clock rate
is limited by the ring oscillator, not the plausible clocking control,
because if the clock controls (enable in our case) has late rising or late
enable, the ring counter will stay disabled until the enable is raised, it
case it has late falling or late disable, the counter value will increased,
but the output valid will be false, waiting to the correct data.
e Architectural parameters:
These parameters have nothing to do with the technology process or the
implementation; they depend on the basic design of the system.
A comparison with general asynchronous FIFO synchronizer is shown
beneath.
o Data latency from input to output:
In order to analyze the data throughput, depending on the amount of
data in OOO/FIFO slots, two cases should be analyzed:
* Amount of data is less or even than "almost full":
Each input data accompanied with writing request from the
asynchronous domain, the writing request must be
synchronized, 2-flops synchronizer is used with latency of 2..3
cycles, for n-flops synchronizer we have n..n+1 cycles latency.
When the writing request is synchronized, the latched data is
declared as valid at the synchronous domain, the latched data
has O cycles to be passed out (the output mux, combinatorial
logic).
Conclusion: OOO synchronizer has n..n+1 input to output
latency for the n-flops synchronizer implementation.
FIFO comparison: the FIFO synchronizer has the same latency
with the n-flops synchronizer implementation.
= Amount of data is more than "almost full":

o Qutput data throughput:
In order to analyze the data throughput, depending on the amount of
data in OOO/FIFO slots, two cases should be analyzed:

At the OOO synchronizer, at “almost empty” region we
shouldn’t wait for the first synchronizer to complete
synchronization, we may proceed with the next data, so the
throughput is equal to the input rate.

Conclusion: OOO synchronizer has throughput which is equals

to the input data rate.

FIFO comparison: At “almost empty” region, the FIFO
throughput is n..n+1 cycles (for n-flops synchronizer) because
the reading pointer won’t proceed until the pointer is
synchronized and compared to the current pointer.

When we have an input data rate of 1 input data/1 cycle or
slower rate, the output rate will 1 output data/n..n+1 cycles for
the FIFO synchronizer, but it will be equal to the input data rate
at the OOO synchronizer.

Amount of data is more or even than "almost empty":

the throughput in this case is 1, because the data is ready and
latched for the synchronous domain use, each read takes one
cycle.

Conclusion: OOO synchronizer has throughput of 1 each cycle,

when the amount of the latched data is more or even than
“almost empty”.
FIFO comparison: FIFO synchronizer acts the same.

o Input data limitation:
In order to analyze the data throughput, depending on the amount of
data in OOO/FIFO slots, two cases should be analyzed:

Amount of data is less or even than "almost full":

At both OO0 & FIFO, no limitation at input data rate because
we have empty slots to fill.

Amount of data is more than "almost full™:

Both OO0 and FIFO wait to have empty slot, OOO send
writing acknowledge to indicate that the data in the latch may
be rewritten, FIFO compares the current writing pointer to the
reading pointer to detect if there’s any empty slot, thus the
input data rate will be limited to 1 data/l cycle.

11 SIULS "1 DILS LIPUL vus rirwys 11 S10LS ™I DILS INpuL Dus wuuw

n*m wide latching elements n*m wide FIFO memory elements

n brute-force synchronizers n brute-force synchronizers

n-bits wide cyclic one-hot counter n-bits wide writing pointer

n-buses (of m-bits) wide output mux | n-buses (of m-bits) wide output mux

2%n two inputs AND gates 2 n-bit comparators

2 n-input OR gate

n asynchronous controllers n-buses (of m-bits) wide input mux
n-bits wide reading pointer

Table 18: OOO/FIFO Area comparison

At the table 17 above, blocks at the left column are almost equal to the blocks at
the right column, except of the asynchronous controllers which may be different.
We may conclude that FIFO & OOO have areas from the same order.

When the OOO synchronizer is better that FIFO?

The main difference between the two architectures is that the FIFO synchronizer
synchronizes the reading pointer, but the OOO synchronizes the requests.

At “almost empty” region, the FIFO throughput is n..n+1 cycles (for n-flops
synchronizer) because the reading pointer won’t proceed until the pointer is
synchronized and compared to the current pointer.

At the OOO synchronize, at “almost empty” region we shouldn’t wait for the first
synchronizer to complete synchronization, we may proceed with the next data, so
the throughput is equal to the input rate. (We still have n..n+1 latency)

When we have an input data rate of 1 input data/1 cycle or slower rate, the output
rate will be 1 output data/n..n+1 cycles for the FIFO synchronizer, but it will be
equal to the input data rate at the OOO synchronizer.

At “almost full” region both OOO and FIFO has a data at slots to commit each
cycle.

Regarding input data rate limitation, both OOO and FIFO wait to have empty slot,
0OO0O send writing acknowledge to indicate that the data in the latch may be
rewritten, FIFO compares the current writing pointer to the reading pointer to

synchronizer design which interfaces between asynchronous and syncnronous
subsystems.

The design is based on the idea of token passing, only the request asynchronous
signal is synchronized. The control token shouldn’t wait to complete the request
synchronization before passing to the next controller, the input data is latched and
then control token is passed to the next controller (cyclic mode).

In order to prove its feasibility, we constructed a simulation bed consisting of test-
bench with asynchronous and synchronous modules, connected to the out-of-order
synchronizer, all implemented on 0.35u CSX 3.3v CMOS technology and
simulated with Synopsys VirSim® VHDL Simulator.

The resulting system functions reliably up handshaking data rate of xxx at the
asynchronous domain it’s limited by the controllers inner implementation (Petrify)
and clock frequency of 220MHz at synchronous domain, the maximum clock rate
is limited by the ring counter.

The system has the same architectural parameters as the FIFO synchronization
system besides the high synchronization parallelism which keeps low writing
latency by preventing deadlock on full slots system.

In the future, the asynchronous controllers may be optimized in order to gain low
input interface handshaking delay, for large slots number, a wide input or gates
shown on the design, they may b implemented with static CMOS logic by
nor/nand tree, or with dynamic logic domino gates.

The output mux width also depends on the slots number, so we should thinks of
another implementation in place the one-hot passgate mux, like a fully CMOS
static mux.

Compile the CSX_HRDLIB library:

This library is not compiled at the latest release of Synopsys at the VLSI
lab, so we compile it separately.

>mkdir src 1lib 1ib/FTSM

>cp /hj/ams340/AMS_3.40_CDS/vital/csx/csx_HRDLIB_*
src

>echo “csx_HRDLIB_FTSM: ./lib/FTSM” >>
.8ynopsys_vss.setup

>echo “csx_ HRDLIB > csx HRDLIB_FTSM” >>

. 8ynopsys_vss.setup

>vhdlan -noevent -nc -work csx HRDLIB FTSM
src/csx HRDLIB_Vtables.vhd

>vhdlan -noevent -nc -work csx_HRDLIB_FTSM
src/csx_HRDLIB_ Vcomponents.vhd

>vhdlan -noevent -nc -work csx_ HRDLIB_FTSM
src/csx HRDLIB VITAL.vhd

Compile the system’s components:

>vhdlan -nc -noevent def.vhd
>vhdlan -nc -noevent buf.vhd
>vhdlan -nc -noevent lch.vhd
>vhdlan -nc -noevent nff.vhd
>vhdlan -nc -noevent acO.vhd
s>vhdlan -nc -noevent aci.vhd
svhdlan -nc -noevent ooo.vhd
>vhdlan -nc -noevent syn.vhd
>vhdlan -nc -noevent tbn.vhd
>vhdlan -nc -noevent chk.vhd

Use Design Analyzer (da) for creating SDF (Standard Delay Format) files:

Kun dCIrocco:

>scs -ccpath /usr/local/bin/gcc -exe /tmp/scsim$$ chk_cfg
>scirocco +sim+/tmp/scsim$$ +simargs+"-debug_all -sdf
/CHK/SYNO/SYNSLC(0) /SLO/AC00:ac0.sdf -sdf
/CHK/SYNO/SYNSLC(1) /SLI/ACIO:aci.sdf -sdf
/CHK/SYNO/SYNSLC(2) /SLI/ACIO:aci.sdf -sdf
/CHK/SYNO/SYNSLC (3) /SLI/ACIO:aci.sdf -sdf
/CHK/SYNO/SYNSLC(4) /SLI/ACIO:aci.sdf -sdf
/CHK/SYNO/SYNSLC(5) /SLI/ACIO:aci.sdf -sdf

¥ LJ.J. DIHINHHEHL, AL DYSUOV, dlid A, TAdKOVICY, DSYHNCITONIZAUON CIircui

Performance,"IEEE Journal of Solid-State Circuits, vol.37, pp.202--209, 2002.
hitp://www staff. ncl.ac.uk/david. kinniment/Research/papers/Issc2002. PDE

e David G. Messerschmitt,”Synchronization in Digital System Design,” IEEE
Journal of Selected Areas in Comunication, vol. 8, NO. 8, Octobor 1990
huip:/iwww. eecs berkeley. eduw/~messer/PAPERS/EEEO¢190- 1 pdl

e D.J. Kinniment and J. V. Woods,"Synchronization and Arbitration Circuits in
Digital Systems," Proceedings of the IEE, vol.123, pp. 961--966, 1976.
hiip:/iwww staff ncl.ac. uk/david. kinnimeny/Research/papers/IEE1976.pdll

e Y. Semiat and R.Ginosar, "Timing Measurements of Synchronization
Circuits," ASYNC 2003.

hitp/fwww.eetechnion.ac.il/~ran/papers/SemiatGinosar-Timing Measure ments-Feb03.pdfl

e R. Ginosar, "Fourteen Ways to Fool Your Synchronizer," ASYNC 2003
http:fiwww.ee.lechnion.ac.il/~ran/papers/Syne_Errors Feb03.pdl

® R. Dobkin, R. Ginosar and C. Sotiriou, "Data Synchronization Issues in GALS
SoCs," ASYNC 2004}

http:/fwww.ee technion.ac.il/~ran/papers/gals-clocking. pdf
e U. Frank and R. Ginosar, “A Predictive Synchronizer for Periodic Clock
Domains,” PATMOS 2004

hitp:/fwww.eetechnion.ac.il/~ran/papers/FrankGinosarPatmos2004 . pdf

e R. Ginosar, “MTBF of a MultiSynchronizer System on Chip,” 2005

htip:/fwww.ee.technion.ac.il/~ran/papers/M TBFmultiSvncSoc.odf

AllU ddYHLIUIUUS CHTCUILS.

Universitat Politecnica de Catalunya, Barcelona, Spain.
http://www.lsi.upc.edwpetrify/

e Visual STG Lab.
Technical University of Denmark, DTU.

http://vsiel sourceforge. net/
e The Asynchronous Logic Home Page
The Umversnty of Manchester, School of Computer Science

7.3. Books
e W.J. Dally and J.W. Poulton, “Digital Systems
Engineering,” Cambridge University Press, 1998.

hutp:/fwww.amazon.com/gp/product/0521 592925 /gid=1146910024/sr=2-

Liref=pd _bbs b 2 1/103-9550353-9680653 Ts=books& v=glance& n=283155
e T. H.-Y. Meng, Synchronization Design for Digital

Systems (Eds.): Kluwer Academic Publishers, 1991.

hutp:iwww amazon.com/gp/product/0792391284/qid=1 146910643 /sr=1 -
Iref=sr 1 1/103-9550353-9680653 7s=books& v=glance&n=283155

e D. M. Chapiro, "Globally-Asynchronous Locally-

Synchronous Systems," Stanford University, 1984.
hitp:fwww.amazon.com/gp/product/BO00T 1483C/qid=1 14691098 1 /sr=1-U/ref=sr | 1/103-9550353-

