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Abstract—The lately attack on the Qualcomm’s Snapdragon
chip reminds us security risks related to digital arithmetic cir-
cuits. Most system designers neglect the employed computer
arithmetic algorithms or their implementation details. Arithmetic
circuits are therefore usually used as “black box” units that
are instantiated by third-party intellectual-property core or elec-
tronic design-automation tool vendors. In this brief, we propose
the first most-significant digit-first arithmetic-based hardware
Trojan attack by addressing the questions of where to insert
and with what. First, we demonstrate how functional camouflage
is achieved. Certain arithmetic modules can be quietly replaced
with functionally equivalent ones, which we term functionally
camouflaged Trojans. Next, we introduce a topologically cam-
ouflaged Trojan by employing graph-centrality analysis on rare
behaviours in the circuit. The proposed approach is applicable
to any digital computing scenarios. Experimental results on a
financial computing system demonstrate that completely inac-
curate numeric results are yielded, along with an up-to 91.6%
numerical error tested.

Index Terms—Hardware security, MSDF arithmetic, graph
analysis.

I. INTRODUCTION

GROWING interest in the hardware acceleration of appli-
cations including finance [1], machine learning [2] and

security [3] is causing frequent reconsideration of the imple-
mentation of basic arithmetic operators. While some opera-
tions, notably division, produce their output digits in order of
decreasing significance, this is not true of the operations most

Manuscript received February 5, 2021; accepted March 8, 2021. Date of
publication March 10, 2021; date of current version April 30, 2021. This work
was supported in part by the National Natural Science Foundation of China
under Grant U20A20202, Grant 61974102, and Grant 61874042; in part by
the Tianjin Municipal Transportation Science and Technology Development
Plan Project under Grant 2017B-40; in part by the Hunan Natural Science
Foundation for Distinguished Young Scholars under Grant 2020JJ2010; and
in part by the Hu-Xiang Youth Talent Program under Grant 2018RS3041.
This brief was recommended by Associate Editor F. Pareschi. (Corresponding
authors: Jiliang Zhang; Qiang Liu.)

He Li is with the Department of Engineering, University of Cambridge,
Cambridge CB2 1PZ, U.K. (e-mail: hl556@cam.ac.uk).

Ameer Abdelhadi is with the Department of Electrical and Computer
Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada.

Runbin Shi is with the Department of Electrical and Electronic Engineering,
University of Hong Kong, Hong Kong.

Jiliang Zhang is with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410082, China
(e-mail: zhangjiliang@hnu.edu.cn).

Qiang Liu is with the School of Microelectronics, Tianjin University,
Tianjin 300072, China (e-mail: qiangliu@tju.edu.cn).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCSII.2021.3065292.

Digital Object Identifier 10.1109/TCSII.2021.3065292

often found in such applications: addition and multiplication.
The unified most-significant digi-first (MSDF) computation
promises deep pipeline parallelism, graceful degradation, and
trivial support for customized variable-precision operation.
Therefore, MSDF or “left-to-right,” arithmetic has recently
returned to prominence due to its attractive properties for field-
programmable gate array (FPGA) and application-specific
integrated circuit (ASIC) implementation [4].

With the scaling of digital computing systems, the grow-
ing demand of arithmetic circuits relies on third parties to
provide the arithmetic modules, thereby resulting in poten-
tial security threats [5]. In August 2020, a research team
named “Achilles” reported over 400 vulnerabilities within the
digital signal processor (DSP) in Qualcomm’s Snapdragon
chip, affecting over 40% of the global mobile phone mar-
ket [6]. Due to the “black box” nature of the outsourced DSP
chips, it is challenging for the mobile vendors to fix these
issues [6]. This attack alerts security threats arising from exter-
nal intellectual property (IP) cores or related electronic design
automation (EDA) tools, as they are completely beyond the
control of system designers [7], [8]. The security vulnerabil-
ities in Qualcomm’s Snapdragon DSPs indicate that system
designers usually have no knowledge about the design details
of arithmetic circuits. Use of the inherent logic of differ-
ent computer arithmetic algorithms can allow us to design
a functionally camouflaged adversarial hardware Trojan (HT).
Herein, distinguished MSDF arithmetic and conventional least-
significant digit-first (LSDF) arithmetic are employed. With
the same functionality, MSDF arithmetic operation provides a
natural camouflage against its LSDF equivalence for attackers,
and vice versa.

As a widely discussed hardware attack scheme, HTs are
usually designed at rare conditions or signals in a circuit [9].
We first investigate how to model the rare behaviour within
a circuit, which is the key to HT insertion. Rare circuit sig-
nals have low 0-1 transition activities, therefore, they have
negligible effect on the rest of the circuit [7]. In graph the-
ory, betweenness centrality has been used to measure the
influence of a signal in digital circuits [10]. The lower the
betweenness centrality is, the less influential the signal will
be [10]. We utilized this analysis to predict rare signals in
the circuits, thereby producing a topological-camouflage HT
insertion. Combining functional with topological camouflage,
we propose a novel attack method to insert arithmetic-based
HTs at low-betweenness locations. The contributions of this
brief are listed as follows:
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• Functional camouflage for HT insertion is realised by
exploiting theoretical differences between MSDF and
LSDF arithmetic algorithms.

• Topological camouflage for HT insertion is achieved by
employing graph-centrality analysis, where HTs can be
inserted at locations with low-centrality values.

• Attack evaluation on a security-critical financial comput-
ing for cash-flow analysis is presented, where datapaths
built upon our principle pruduce completely inaccurate
results. Detailed robustness analyses against state-of-the-
art HT detection methods are also discussed.

The implementations evaluated in this brief target security-
critical applications. Our principles are, however, generic, and
can be employed to any digital computing systems.

II. BACKGROUND

A. Hardware Trojan Design

HTs are modifications to the original circuit by adversaries
to gain access to confidential information or to destroy its func-
tionality. A typical model of an HT contains a trigger and a
payload [7]. The trigger is usually associated with rare signals
or conditions. When an HT is triggered, the payload circuit
results in malicious functions. By careful design, the rare sig-
nals or conditions are unlikely to arise during simulation or
testing but can occur over long periods of field operation [9].
Generally, HTs can be categorised into two types: combi-
national Trojan and sequential Trojan [11]. A combinational
Trojan is triggered by the simultaneous occurrence of a set
of rare signals. A sequential Trojan undergoes a sequence
of rare events, each triggered by a different set of rare sig-
nals, before activating the payload. Considering a signal that
attackers expect to modify its value with an HT, at least one
dedicated trigger input must be employed to activate this HT
circuit. Therefore, the key to insert HTs is to identify the rare
signals or rare events in circuits.

After reviewing recent HT designs and implementa-
tions [7], [9], and the widely used Trust_hub with 93 HT-
inserted benchmarks [12], arithmetic-based HTs have not
been well investigated. As a lessen learnt from Qualcomm’s
Snapdragon chip [6], it is important to figure out how arith-
metic algorithms can be used for hardware attack in practical
scenarios. Even though few HT modifications to basic arith-
metic elements have been studied [13], [14], we are the
first employing the algorithm natures of MSDF and LSDF
arithmetic for HT designs.

B. Verification-Based HT Detection and Limitations

Since HTs designed by adversaries are resistant to tra-
ditional functional verification approaches, in recent years,
several IP trust verification techniques have been proposed to
prevent hardware designs from HT attacks. FANCI has been
proposed to discover HTs in hardware designs using functional
Boolean analysis [15]. The approach identifies nearly-unused
logic using a metric that measures the control ability of each
input in a digital circuit. Similar to FANCI, Hicks et al.
formulated the HT detection problem as an unused circuit

identification (UCI) problem [16]. A piece of circuit is consid-
ered suspicious if it does not affect any primary outputs during
testing. However, the approach could only cover a small set
of HTs due to the relatively simple definition of unused cir-
cuit [17]. An optimized approach, VeriTrust, was presented
to identify potential trigger inputs of parasite-based HTs [17].
Zhang and Tehranipoor defined all functions and correspond-
ing assertions in the specification. Once these are completed,
coverage metrics (code coverage and functional coverage) are
used in authentication to help identify suspicious parts in
third-party IP cores [18]. Unfortunately, the aforementioned
methods are time-consuming, usually taking several hours or
even days, thereby only practical for small-scale circuits and
systems. The aggregation of component verification does not
equate formal verification of the entire integrated system [19].
Zou et al. demonstrated that verification-based methods have a
time complexity of O(NenNnet2Nrec), where Nen is the number
of entries of a state machine, Nnet is the number of nets, and
Nrec denotes the number of reconvergent inputs of a circuit
under test [20]. With an increasing size of modern designs,
the difficulty to identify HTs increases exponentially.

Interests in recent HT detection based on feature
analysis [21], and those employing machine learning
algorithms [22], have arisen recently. However, these meth-
ods rely heavily on the available dataset of HTs, such
as Trust_hub [12]. Therefore, these methods are not well-
equipped to detect the proposed functionally camouflaged
HTs, considering that defenders have no access to our MSDF
arithmetic operators.

C. Most-Significant Digit-First Arithmetic

Arithmetic algorithms have two typical operation modes,
i.e., LSDF and MSDF [23]. In LSDF computing, operand
and result digits are applied from the least-significant end,
such as traditional addition and multiplication. MSDF com-
puting instead applies operand and result digits from the
most-significant end. A de facto standard for MSDF arithmetic
is online arithmetic [23]. By prioritizing the production of
more important data, applications can benefit from throughput,
latency, and energy efficiency improvements. Online operators
are classically serial, however efficient digit-parallel (unrolled)
implementations targeting FPGAs have been developed [23].
Users can choose both digit-serial and -parallel online oper-
ators in their design. For example, digit-serial online adder
is presented in Figure 1 (left), while duplication of the
serial adder M times and the removal of its registers lead
to the creation of a M-digit parallel online adder, as shown
in Figure 1 [23]. Even though carrys are delivered at the
LSD end and generated at the MSD end in online adders,
there is no carry chain; the critical path lies across two full
adders (FAs) [23]. This implies online adder’s suitability for
the construction of more complex online operators, such as
multiplication and division.

Of particular significance to the proposed functional cam-
ouflage is the concept of online delay. When performing an
MSD-first operation, the digits of its result are generated at
the same rate as its input digits are consumed, but the result
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Fig. 1. Radix-2 online adders. Left: serial. Right: parallel [4].

is delayed by a fixed number of digits, denoted δ. That is,
the first most-significant m digits of an operator’s result are
wholly determined by the first m + δ digits within each of its
operands. The value of δ is operation-specific, which is a small
integer (1 to 4) determined by the redundancy factor and the
radix [23].

III. THE PROPOSED CAMOUFLAGED HARDWARE TROJAN

A. Threat Model

Our threat model is based on the model discussed in [5].
We assume three parties are involved: (i) a client that wants a
designer to build digital computing systems in security-critical
domains, without revealing the confidential data; (ii) a benign
designer that develops designs using third-party EDA tools or
IP cores; (iii) an untrustworthy vendor that provides third-
party EDA tools or IP cores to the designer [5]. We also
assume attackers have knowledge of arithmetic algorithms to
make functional-equivalent arithmetic cores harder to discrim-
inate. The goal of attackers is to control exactly where and
what to insert, which have minimal impact on overall over-
head. Consider a scenario that a simple arithmetic operation is
deployed in very-large scale systems. Functional camouflage
can be achieved by substituting MSDF and LSDF arithmetic IP
cores, resulting in completely inaccurate computed results and
system malfunction. Given a high-level functional description
from clients, topological camouflage can be realised via graph
centrality with a shortlist of rare signals in a circuit. Therefore,
the benign designer is difficult to prevent the functional cam-
ouflaged replacement, even though hardware implementations
of MSDF and LSDF arithmetic operations are different.

B. Functional Camouflage

Since third-party IP cores and EDA tools are widely used
in the standard flow of digital circuit design, it is possible for
attackers to deliberately replace a conventional LSDF arith-
metic core in the datapath with an MSDF one, and vice versa.
We employ the inherent logic between functionally-equivalent
arithmetic cores to design a functionally camouflaged HT,
which can calculate completely wrong results as its payload.

As a standard practice in digital system design nowadays,
various arithmetic IPs, either LSDF or MSDF, are usually used
from third-party vendors. For LSDF arithmetic, fixed-point
or floating-point, one’s or two’s complement representations
are popular number systems implemented. When using such
number systems, overflow detection plays a significant role in
each arithmetic circuit [23]. To eliminate overflow, traditional

two’s-complement LSDF fixed-point arithmetic restricts its p-bit
outputs within [−2p−1, 2p−1 − 1]. Instead, MSDF arithmetic
employs a redundant number system and its digit-computation
dependency (i.e., overflow detection logic) is completely dif-
ferent from LSDF equivalents. Use of the same radix, a p-digit
MSDF operation allows the results to be represented in the
interval of [−2−p, 2−p]. Therefore, an MSDF arithmetic opera-
tor performs the same functionality of its LSDF equivalence, but
can calculate several additional values. Attackers can employ
this fundamental difference in arithmetic algorithms to launch
an functional-camouflaged HT attack. Since this attack is intro-
duced within the operator itself, therefore it is more camouflaged
than a classic hardware Trojan [13], [14].

C. Topological Camouflage

We now investigate the topological camouflage by using
betweenness centrality which can measure the relative impor-
tance of a node/edge in a graph [24]. Since HT triggers are
related to rare signals, such signals should be less important
and even ignorable in a circuit. In this brief, we employed
connections between the rareness of HT triggers and low
betweenness-centrality signals to explore possible locations for
HT insertion.

1) Betweenness Centrality: Let a graph G(V, E) contain
a set of vertices V and a set of edges E. Edge eij ∈ E is
directed from vertex vi ∈ V to vertex vj ∈ V . The betweenness
centrality CB(i, j) of an edge eij ∈ E is defined as

CB(i, j) =
∑

k,h

|ek,h,(i,j)|
|ekh| , k �= h, k, h ∈ V. (1)

|ek,h,(i,j)| is the number of shortest paths from node k to node
h going through edge eij, and |ekh| is the number of shortest
paths between k and h. Given the path length and the shortest
paths count,

|ek,h,(i,j)|
|ekh| is the pair-dependency of a pair k, h ∈

V on an intermediary edge eij ∈ E. The time complexity of
betweenness centrality is O(nvne), where nv and ne are the
number of vertices and edges in a graph [24].

Our calculation is based on an adjacency matrix that repre-
sents a directed graph extracted from a Verilog or netlist file.
Vertices are used to represent primitives of a hardware design
and edges indicate a connection between vertex pairs. In the
following, we determine the betweenness centrality for each
node (edge) in two steps: 1) calculating the path length and
the number of shortest paths between all pairs of vertices; 2)
accumulating all pair-dependencies, as will be demonstrated
in Section IV.

2) Rare Signal Identification: After the computation of
betweenness centrality, signals associated with the nodes/edges
that have the smallest betweenness centrality values are short-
listed. Algorithm 1 describes how rare signals are flagged
within an untrusted design in our approach. Use of the gen-
erated connectivity graph enables to compute and rank the
betweenness-centrality values of each node and each edge. If
a centrality value is smaller than the threshold ε, the related
part in the design is flagged as a rare node. Herein, the thresh-
old value can be chosen either a priori or after looking at the
distribution of computed betweenness centrality values. We
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Algorithm 1 Flag Rare Signals in a Design
Input: Connectivity graph G(V, E) of a circuit and a thresh-

old ε.
Output: A predicted rare-signal set S.

1: S ⇐ An empty set of rare signals
2: for all edges e(i, j) ∈ E do
3: Compute betweenness centrality CB(i, j)
4: if CB(i, j)≤ ε then
5: S ⇐ eij

6: end if
7: end for

remark that the latter option is preferable if attackers are able
to know such distribution. In any case, the chosen thresh-
old helps recommend rare signals for HT insertion to gain
topological camouflage.

IV. EXPERIMENTAL RESULTS

A. Attack on Financial Computing

In order to evaluate the proposed camouflaged attack, we
implemented a widely used financial computing algorithm—
cash-flow analysis for the calculation of interest rate—
following the aforementioned principles. We chose cash-flow
analysis to exemplify a large class of security-critical digital
computing systems with the use of arithmetic operations. In
reality, cash-flow analysis usually contains confidential data,
such as history payments of n successive periods, defined as
c0, c1, . . . , cn−1. The interest rate x can be obtained by finding
the root of a polynomial characterized as

f (x) = c0 + c1x + c2x2 + · · · + cn−2xn−2 + cn−1xn−1. (2)

As widely discussed in [4], Newton’s method is used to solve
the polynomial f (x) with coefficients ci, i ∈ [1, n − 1] and
initial investment c0.

According to the threat model in Section III-A, a bank
client, a designer and an attacker are involved in this financial
case. To implement this cash-flow analysis characterized in (2),
a designer will develop a datapath such as that shown in Fig. 2.
Since we assume the designer replies on untrustworthy tools
and IP cores provided by the attacker, Fig. 2 can be converted
to a graph and betweenness-centrality values for each node
are calculated. Thereafter, LSDF arithmetic circuits with low
betweenness centrality are replaced with their MSDF equiva-
lents. For example, four rare arithmetic cores are highlighted
in Fig. 2, and one with CB = 0.0189 is used for functional
camouflage attack. In real-life scenarios, the bank client has
to protect these confidential payment coefficients [25], there-
fore, a warning function must be requested in the cash-flow
analysis design in order to alert an extreme payment event.
Unfortunately, with our camouflaged HT (i.e., an MSDF adder
in Fig. 2), the hacked design can bypass the warning and send
a wrong computed results directly.

B. Attack Evaluation

To demonstrate the effect of the proposed attack scheme, we
recall the exemplary sets of real-life payment coefficients [25],

Fig. 2. A datapath of the cash-flow analysis. Red LSDF adders are selected by
our graph-centrality analysis with ε = 0.0200, where one with CB = 0.0189
are maliciously hacked as MSDF adder.

TABLE I
EXEMPLARY SETS OF CASH-FLOW COEFFICIENTS

TABLE II
INTEREST RATE OF CASH FLOW ANALYSIS USING CASE 2 IN TABLE I

ci, i ∈ [0, 11], as shown in Table I. The computation of interest
rates starts with an initial guess x(0) = 0. Table II shows
the computed interest rate using our HT-inserted design in
terms of displayed, true, and requested results. When cis cor-
respond to usual payment situations (e.g., Case 1), the hacked
design functions well, showing the correct interest rate. When
an extreme payment event (e.g., Case 2) occurs, c1, c2 and
c3 with consecutively large values should result in an over-
flow warning. However, our camouflaged attack has quietly
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replaced the LSDF adder with a functional-equivalent MSDF
adder. Given that an MSDF adder has a larger overflow tol-
erance, the hacked design has to continue calculating wrong
interest rates as 0.6335, while the true result is 1.214. Since the
bank client usually has no knowledge of the implementation
details, this wrong result is likely to be used in trading, lead-
ing to potential economic losses. MSDF adder requires a small
amount of extra area, but as was elaborated in Section II-C,
this overhead is small and amortised out the more operators are
instantiated for larger-scale systems. For hardware accelera-
tion of applications, e.g., MSDF signal processing, or machine
learning (ML) inferences [4], we can thus replace MSDF with
LSDF arithmetic cores, leading to no area overhead.

C. Robustness Analysis

The most relevant HT detection method is Li et al.’s pro-
posal for activating HTs in DSP circuits using signal statistical
properties [11]. Since MSD- and LSD-first arithmetic opera-
tions are functionally-equivalent, they have the same statistical
properties. Li et al.’s HT activation method is unfortunately
unable to detect our attacks. Verification-based HT detection
suffers from long testing time with a time complexity of
O(NenNnet2Nrec) [20], as was mentioned in Section II-B, there-
fore the detection time scales exponentially with the design
complexity. Some other HT detection methods exploited HT
structure features [21] and ML algorithms [22]. With HT sam-
ples such as ones in Trust_hub benchmarks, these methods
showed satisfactory detection capability. However, defenders
usually have no HT details or the golden standard reference, in
particular of the MSDF arithmetic circuits, therefore defending
against the proposed attack is non-trivial.

V. CONCLUSION

An adversarial HT design is proposed with functional and
topological camouflages, by employing theoretical differences
between arithmetic paradigms and graph-centrality analysis.
Given the principle produced herein, our proposal is generic
for any digital computing applications, such as machine learn-
ing and digital signal processing. Experimental results on
cash-flow analysis in the security-critical financial comput-
ing domain demonstrate the effectiveness of our attack. In the
future, we are interested to investigate functional camouflaged
HT attack in designs using high-level synthesis (HLS) and
approximate computing techniques. We will also investigate
other centrality schemes in graph theory, since the more topo-
logical camouflage we provide, the more difficult an HT can
be detected.

REFERENCES

[1] K. Glau, D. Kressner, and F. Statti, “Low-rank tensor approximation for
Chebyshev interpolation in parametric option pricing,” SIAM J. Financ.
Math., vol. 11, no. 3, pp. 897–927, 2020.

[2] J. Zhang and G. Qu, “Physical unclonable function-based key sharing via
machine learning for IoT security,” IEEE Trans. Ind. Electron., vol. 67,
no. 8, pp. 7025–7033, Aug. 2020.

[3] J. W. Bos and S. J. Friedberger, “Arithmetic considerations for isogeny-
based cryptography,” IEEE Trans. Comput., vol. 68, no. 7, pp. 979–990,
Jul. 2019.

[4] H. Li, J. J. Davis, J. Wickerson, and G. A. Constantinides,
“ARCHITECT: Arbitrary-precision hardware with digit elision for effi-
cient iterative compute,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 28, no. 2, pp. 516–529, Feb. 2020.

[5] J. Zhang and G. Qu, “Recent attacks and defenses on FPGA-based
systems,” ACM Trans. Reconfig. Technol., vol. 12, no. 3, pp. 1–24, 2019.

[6] Achilles. Accessed: Aug. 6, 2020. [Online]. Available: https://
blog.checkpoint.com/2020/08/06/achilles-small-chip-big-peril/

[7] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor,
“Hardware Trojans: Lessons learned after one decade of research,” ACM
Trans. Design Autom. Electron. Syst., vol. 22, no. 1, pp. 1–23, 2016.

[8] A. M. S. Abdelhadi and M. R. Greenstreet, “Interleaved architectures for
high-throughput synthesizable synchronization FIFOs,” in Proc. IEEE
Int. Symp. Asynchronous Circuits Syst., 2017, pp. 41–48.

[9] M. Xue, C. Gu, W. Liu, S. Yu, and M. O’Neill, “Ten years of hardware
Trojans: A survey from the attacker’s perspective,” IET Comput. Digit.
Techn., vol. 14, no. 6, pp. 231–246, 2020.

[10] E. Hung and S. J. E. Wilton, “Scalable signal selection for post-silicon
debug,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 21, no. 6,
pp. 1103–1115, Jun. 2013.

[11] H. Li, Q. Liu, and F. Chen, “Signal word-level statistical properties-
based activation approach for hardware Trojan detection in DSP
circuits,” IET Comput. Digit. Techn., vol. 12, no. 6, pp. 258–267, 2018.

[12] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in Proc. IEEE Int. Conf.
Comput. Design, 2013, pp. 471–474.

[13] S. Ghandali, G. T. Becker, D. Holcomb, and C. Paar, “A design method-
ology for stealthy parametric Trojans and its application to bug attacks,”
in Proc. Int. Conf. Cryptogr. Hardw. Embedded Syst., 2016, pp. 625–647.

[14] J. Clements and Y. Lao, “Hardware Trojan design on neural networks,”
in Proc. IEEE Int. Symp. Circuits Syst., 2019, pp. 1–5.

[15] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: Identification
of stealthy malicious logic using boolean functional analysis,” in Proc.
ACM Conf. Comput. Commun. Security, 2013, pp. 697–708.

[16] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and remov-
ing malicious hardware automatically,” in Proc. IEEE Symp. Security
Privacy, 2010, pp. 159–172.

[17] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification
for hardware trust,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 34, no. 7, pp. 1148–1161, Jul. 2015.

[18] X. Zhang and M. Tehranipoor, “Case study: Detecting hardware Trojans
in third-party digital IP cores,” in Proc. IEEE Int. Symp. Hardw.-Oriented
Security Trust, 2011, pp. 67–70.

[19] J. Zhang, F. Yuan, and Q. Xu, “Detrust: Defeating hardware trust ver-
ification with stealthy implicitly-triggered hardware Trojans,” in Proc.
ACM Conf. Comput. Commun. Security, 2014, pp. 153–166.

[20] M. Zou, X. Cui, L. Shi, and K. Wu, “Potential trigger detection for
hardware Trojans,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 37, no. 7, pp. 1384–1395, Jul. 2018.

[21] A. Vijayan, M. B. Tahoori, and K. Chakrabarty, “Runtime identification
of hardware Trojans by feature analysis on gate-level unstructured data
and anomaly detection,” ACM Trans. Design Autom. Electron. Syst.,
vol. 25, no. 4, pp. 1–23, 2020.

[22] J. R. Hamlet, J. R. Mayo, and V. G. Kammler, “Targeted modification of
hardware Trojans,” J. Hardw. Syst. Security, vol. 3, no. 2, pp. 189–197,
2019.

[23] M. D. Ercegovac and T. Lang, Digital Arithmetic. Amsterdam, The
Netherlands: Elsevier, 2004.

[24] U. Brandes, “A faster algorithm for betweenness centrality,” J. Math.
Soc., vol. 25, no. 2, pp. 163–177, 2001.

[25] L. Thorlund-Petersen, “Global convergence of Newton’s method on
an interval,” Math. Methods Oper. Res., vol. 59, no. 1, pp. 91–110,
2004.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on July 15,2021 at 06:23:03 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


