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Abstract—This paper introduces HEPPO, an FPGA-based
accelerator designed to optimize the Generalized Advantage
Estimation (GAE) stage in Proximal Policy Optimization (PPO).
Unlike previous approaches that focused on trajectory collection
and actor-critic updates, HEPPO addresses GAE’s computational
demands with a parallel, pipelined architecture implemented
on a single System-on-Chip (SoC). This design allows for the
adaptation of various hardware accelerators tailored for different
PPO phases. A key innovation is our strategic standardization
technique, which combines dynamic reward standardization and
block standardization for values, followed by 8-bit uniform
quantization. This method stabilizes learning, enhances per-
formance, and manages memory bottlenecks, achieving a 4x
reduction in memory usage and a 1.5x increase in cumula-
tive rewards. We propose a solution on a single SoC device
with programmable logic and embedded processors, delivering
throughput orders of magnitude higher than traditional CPU-
GPU systems. Our single-chip solution minimizes communication
latency and throughput bottlenecks, significantly boosting PPO
training efficiency. Experimental results show a 30% increase
in PPO speed and a substantial reduction in memory access
time, underscoring HEPPO’s potential for broad applicability in
hardware-efficient reinforcement learning algorithms.

I. INTRODUCTION

Reinforcement Learning (RL) is a subset of machine learn-
ing where agents learn best behaviors by interacting with the
environment. RL agents do not receive correct input/output
pairs like in supervised learning; they find strategies through
trial and error, guided by rewards. This approach has been
crucial in addressing intricate decision-making challenges in
various fields such as robotics [1] and strategic games like
chess and Go [2].

Proximal Policy Optimization (PPO) is a widely used
reinforcement learning (RL) algorithm that optimizes policy
directly through gradient ascent to maximize expected cumu-
lative reward [3]. PPO enhances the stability of policy gradient
methods by using a clipped objective function to ensure that
policy updates are not excessively large, effectively addressing
high gradient variance and instability. This approach elimi-
nates the need for the computationally expensive second-order
optimization step required by algorithms such as Trust Region
Policy Optimization (TRPO), making PPO easier to implement
and more computationally efficient [4]. By preventing large
updates, PPO maintains robustness and improves training sta-
bility of TRPO [3]. At the core of PPO, it effectively balances
the need for exploration and exploitation by preventing large
policy updates, ensuring stable and efficient learning. This
makes PPO a robust and practical choice for a wide range
of RL tasks [3].

Algorithm 1: PPO Algorithm

1

Input : (1) initial policy parameters θ0,
(2) initial value function parameters ϕ0

Output : learned policy πθ

2 for k = 0, 1, 2, . . . do
3 Collect a set of trajectories Dk = {τi} by running policy
4 πk = π(θk) in the environment.
5 Compute rewards-to-go R̂t.
6 Compute advantage estimates, Ât, based on the current
7 value function Vϕk .
8 Update the policy by maximizing the PPO-Clip objective

θk+1 = argmax
θ

1

|Dk|T
∑

τ∈Dk

T∑
t=0

min(

πθ(at|st)
πθk (at|st)

Aπθk (st, at), g(ϵ, A
πθk (st, at))),

// typically via stochastic gradient ascent with
Adam [5]

9 Fit the value function by regression on mean-squared error

ϕk+1 = argmin
ϕ

1

|Dk|T
∑

τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2
,

// typically via some gradient descent algorithm

In Algorithm 1, θ represents policy parameters, and ϕ
represents value function parameters. The policy πθ maps
states to actions, while πθk denotes the policy at the k-th
iteration. Rewards-to-go R̂t are the sum of future rewards
from time step t, and advantage estimates Ât measure how
much better an action is compared to the average action at a
given state. The function g(ϵ, Ât) clips the probability ratio to
prevent large updates.

An essential component of PPO is the computation of ad-
vantage estimates. The advantage function, Aπ(s, a), measures
how much better taking action a in state s compared to the
average action taken in state s under policy π, namely,

Aπ(s, a) = Qπ(s, a)− V π(s), (1)

where Qπ(s, a) is the state-action value function, and V π(s)
is the state value function.

To compute these advantage estimates effectively, General-
ized Advantage Estimation (GAE) is used. GAE helps reduce
the variance of the advantage estimates, leading to more stable
and efficient policy updates [6].

A. Background on Generalized Advantage Estimation (GAE)

GAE addresses the variance-bias tradeoff in policy gradient
methods for RL by using value functions to estimate the
advantage function more accurately, at the cost of introducing
some bias. The key idea is to use an exponentially-weighted



estimator of the advantage function, analogous to the TD(λ)
method [6]. An estimation can be derived by utilizing the
temporal-difference (TD) residual, δVt,

δVt = rt + γV (st+1)− V (st), (2)

whereas the GAE is an exponentially-weighted average of k-
step advantage estimators:

Â
GAE(γ,λ)
t =

∞∑
l=0

(γλ)lδVt+l. (3)

Alternatively, this can be computed sequentially, namely,
AGAE

t = δt + (λγ)AGAE
t+1 . (4)

GAE allows for direct computation of advantages, handling
reward delays and noisy rewards more effectively, where
Rewards-to-Go are defined as

Rewards-to-Go = Vt + ÂGAE
t . (5)

GAE is used in PPO for policy updates as it provides low-
variance and high-bias advantage estimates. This involves

1) Collecting trajectories using the current policy.
2) Computing the advantages and rewards-to-go for each

state-action pair.
3) Using the computed advantages to update the policy using

the PPO objective.
This combination allows PPO to leverage GAE’s strengths,

resulting in improved performance on complex RL tasks.

B. Challenges and Limitations in PPO Acceleration

Table I and Figure 1 highlight the time taken by different
components of the PPO algorithm in both CPU-only and
CPU-GPU systems. The profiling was conducted on a high-
performance system with 32 Intel(R) Xeon(R) Silver 4216
CPU cores @ 2.10GHz and a Tesla V100-SXM2-32GB GPU,
using the Humanoid environment by Gymnasium.

The data reveals that the environment run and the GAE com-
putation phase consume a significant portion of the processing
time (47% and 30% respectively in CPU-GPU systems).
Knowing that environments are typically high-level code com-
piled to run on commodity CPUs and are independent of the
RL algorithm, it’s not feasible to build custom hardware that
can accelerate different environments.

In our work, we focused on exploiting the PPO character-
istics to accelerate the algorithm itself. Developing custom
hardware for the GAE phase and potentially other heavy
components of PPO and executing these computations on
an SoC would reduce the communication overhead between
different systems like CPU, GPU, and DRAM. Replacing
DRAM with on-chip memory for these operations would
further decrease latency and improve data throughput, leading
to significant performance gains in PPO training.

C. Related Work

This section discusses key contributions in hardware ac-
celeration for RL, aligning with our work on HEPPO by
addressing the computational demands of RL algorithms

TABLE I: Time Profiling of PPO Iteration over Different Systems
(as percentages of total time)

Phase Sub-Phase CPU-GPU CPU Only

Trajectory
Collection

DNN Inference 9.92% 10.46%
Environment Run 46.58% 60.71%
CPU-GPU Communication 0.85% NA
Storing Trajectories 5.73% 4.75%

GAE
GAE Memory Fetch 5.00% 3.49%
GAE Computation 24.79% 11.23%
GAE Memory Write 0.17% 0.32%

Network
Update

Loss Calculation 5.21% 6.10%
Backpropagation 1.77% 2.95%

through innovative hardware designs, quantization techniques,
and memory management strategies.

Krishnan et al. introduced an RL training paradigm using
8-bit quantized actors to accelerate data collection without
compromising learning convergence, achieving a 1.5× to 5.41×
speedup and reducing carbon emissions by 1.9× to 3.76×
compared to full-precision training [7]. Yang et al. employed
fixed-point data types and arithmetic units for both training
and inference, demonstrating a training throughput of 25293.3
inferences per second (IPS), 2.7 times higher than a CPU-GPU
platform, and an energy efficiency of 2638.0 IPS/W, 15.4 times
more energy-efficient than a GPU [8]. These studies highlight
the effectiveness of quantization techniques in enhancing RL
training speed and energy efficiency.

Meng et al. (2020) targeted the inference and training
phases of the PPO algorithm on a CPU-FPGA heterogeneous
platform, achieving throughput improvements of 2.1×–30.5×
over CPU-only implementations and 2×–27.5× over CPU-GPU
implementations [9]. Specific benchmarks showed a 23.5%
increase in throughput for Hopper and a 21.2% increase
for Humanoid with data layout optimization. Load balancing
optimization led to improvements ranging from 9.3% to 28.3%
in overall running average throughput.

Weng et al.’s EnvPool addresses the bottleneck of slow envi-
ronment execution in RL training systems using a C++ thread
pool-based executor engine, achieving 1 million frames per
second for Atari environments and 3 million frames per second
for MuJoCo environments on a NVIDIA DGX-A100 with 256
CPU cores [10]. Dalton et al.’s CuLE platform leverages GPU
parallelization to run thousands of Atari game environments
simultaneously, achieving up to 155 million frames per hour
[11]. Liang et al. introduced a GPU-accelerated RL simulator
using NVIDIA Flex, achieving substantial improvements in
training complex RL tasks and offering significant scaling
benefits with multi-GPUs [12]. These works underscore the
critical role of efficient environment simulation in enhancing
RL training performance.

To the best of our knowledge, we are the first to specifically
target the optimization of the critical GAE step in PPO, which

Fig. 1: Time Profiling of PPO Iteration over Different Systems
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constitutes around 30% of the total processing time in CPU-
GPU systems. This work addresses this gap by focusing on
the computational demands of GAE, offering a significant
contribution to the field of RL hardware acceleration.

D. Paper Contribution
Major contributions and innovations of this paper are
• Enabling the integration of multiple custom hardware

components, memory, and CPU cores on a single system-
on-chip (SoC) architecture, accommodating all phases of
PPO from environment simulation to GAE computation.
This reduces communication overhead and enhances data
throughput and system performance.

• Introducing dynamic standardization for rewards and
block standardization for values. This technique stabilizes
learning, enhances training performance, and manages
memory efficiently, reducing memory usage by 4x and
increasing cumulative rewards by 1.5x.

• A parallel processing system that processes trajectories
concurrently, employing a k-step lookahead approach for
optimized advantage and rewards-to-go calculations. Our
pipelined Processing Element (PE) can handle 300M
elements per second, decimating the delay of GAE cal-
culation and reducing PPO time by approximately 30%.

• A memory layout system that organizes rewards, values,
advantages, and rewards-to-go on-chip for faster access.
Using dual-ported Block RAM (BRAM) to implement
a FILO storage mechanism, this system provides the
required throughput each cycle, allowing overwriting of
the same memory locations for efficient data handling.

• In-depth time profiling for the PPO algorithm revealing
that GAE computation is a major contributor to process-
ing time, accounting for 30% in CPU-GPU systems.

II. ALGORITHM MODIFICATION

We aim to achieve an optimally-reduced version of the
PPO algorithm that can closely resemble the training behavior
of the original algorithm, while allowing rescaling the input
data to the GAE calculation phase. This guarantees that any
computation done to the input data will be independent of the
used environments and hyperparameters as all inputs are re-
distributed evenly. To achieve our goal, several modifications
have been proposed and investigated as follows.

A. Dynamic Standardization of Rewards
The motivation behind standardizing the rewards (and later

values) is to have a consistent and predictable distribution
in which we can perform quantization. Applying traditional
standardization techniques has experimentally shown to cause
training divergence. This is mainly because these methods
independently alter the distribution of rewards within each
training epoch, disrupting the relative differences in reward
distributions between epochs and equalizing short-term and
long-term rewards, misleading the training.

To solve this problem, a novel standardization technique
has been developed and coined the name Dynamic Stan-
dardization. The idea is that at each training epoch, reward

standardization shall be conducted while accounting for all
previously attained rewards. As it will be computationally and
memory intensive to store and reprocess all the rewards across
training, a more efficient way is to store a running mean and
running standard deviation that gets updated every epoch with
the new reward.

To update the running mean with every new reward, we
follow the equation

RunningMeann = RunningMeann−1 +
rn−RunningMeann−1

n , (6)

where n is the total number of rewards processed so far, rn
is the n-th reward, and RunningMeann is the running mean
calculated up to the n-th reward.

As for the running standard deviation, inspired by Welford’s
algorithm [13] [14] for dynamically calculating variance over
multiple iterations, the running variance for each new data
point has been computed as follows.

1) Initialize M0 and S0 to 0.
2) For each new reward rn

Mn = Mn−1 +
(rn −Mn−1)

n
, and (7)

Sn = Sn−1 + (rn −Mn−1)× (rn −Mn). (8)

3) The running standard deviation after n rewards is then

RunningSTDn =

√
Sn

n
, (9)

where Mn is the running mean after n rewards and Sn is
the cumulative value used for calculating variance.

B. Block Standardization of Values

Unlike rewards, the values are outputs of a trainable Neural
Network (critic) that evolves differently over time and exhibits
varying distributions. This observation is illustrated in Fig-
ure 2, which shows the distribution of values across a selected
set of trajectories during training.

Dynamic standardization of values was unsuccessful as
it affected the loss calculations. Instead, a more adaptable
standardization method is required to handle these variations
effectively while keeping a history of their original distribution
to project them back in place. To address this, we propose
a block standardization technique that quantizes values in
batches. The steps involved in this process are as follows:

Fig. 2: Distribution of Value Across Collected Trajectories
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1) Batch Collection: Collect a batch of values from multiple
trajectories.

2) Compute Statistics: Calculate the mean (µv) and stan-
dard deviation (σv) for each batch.

3) Standardization: Scale values to have a mean of zero
and a standard deviation of one by subtracting each the
mean µv from each element in the block and then dividing
by standard deviation σv .

4) Uniform Quantization: Quantize standardized values
uniformly, storing them with µv and σv .

5) Reconstruction: De-quantize and convert values back to
the original scale using the stored statistics.

This method leverages the similar distribution of trajectories
collected at the same point in training, allowing for adaptive
quantization based on the actual mean and standard deviation
at that moment. The effectiveness of this method was validated
through a series of experiments, demonstrating its robustness
to shifts in training dynamics and its efficiency in utilizing
memory bandwidth.

C. Quantization of Rewards and Values

Due to the memory bottlenecks discussed in Section IV, it
is impractical to use 32-bit floating-point representation for
each element in the Rewards and Values vectors. Instead, we
adopt a quantization strategy tailored separately for rewards
and values.

1) Quantization of Rewards: After applying dynamic stan-
dardization, rewards are centered around zero with a unit
standard deviation. They are then uniformly quantized using
n-bit codeword, mapping continuous values to discrete levels.
During reconstruction, rewards are retrieved from memory, de-
quantized, and used in their standardized form. Experimental
testing showed that leaving the rewards in their standardized
form enhances the cumulative rewards by around 50% as
shown in section Section V.

2) Quantization of Values: Similar to the Quantization of
Rewards, After applying block standardization, the values are
uniformly quantized using n-bit codeword. During reconstruc-
tion, we also fetch and de-quantize the values. However, the
main difference is that we have to do a final de-standardization
step shifting the distribution back to its original form. This is
done by multiplying the elements in v back by the stored
standard deviation σv and then adding the mean µv .

III. HEPPO ARCHITECTURE DETAILS

The proposed architecture integrates the whole PPO pipeline
in a single SoC, reducing latency and communication overhead
compared to traditional CPU-GPU systems. Figure 3 illus-
trates the connections between the Processing System (PS),
Programmable Logic (PL), and BRAM within the SoC.

A. Data Flow, Processing, and Efficiency

The PS access the BRAM for reading and writing via the
AXI Interconnect, ensuring seamless data exchange with the
custom logic in the PL. This integration keeps critical data
on-chip, reducing the need to access external DRAM and

TABLE II: Decomposition of advantage estimates for different t values

t Ât

T ÂT = δT
T − 1 ÂT−1 = CδT + δT−1

= CÂT + δT−1

T − 2 ÂT−2 = C2δT + CδT−1 + δT−2

= C2ÂT + CδT−1 + δT−2

T − 3 ÂT−3 = C3δT + C2δT−1 + CδT−2 + δT−3

= C2ÂT−1 + CδT−2 + δT−3

= C3ÂT + C2δT−1 + CδT−2 + δT−3

enhancing throughput. Unlike traditional CPU-GPU systems
which require frequent data transfers between the CPU, GPU,
and DRAM, leading to higher latency and communication
overhead. Detailed Processing Stages are as follows.

• Data Preparation and Initiation: Processed data is stored
in BRAMs, and the PS communicates to the FPGA with
an initiate signal.

• Advantages and RTGs Calculation: The FPGA fetches
the data, performs de-quantization, calculates advantages
and rewards-to-go (RTGs), writes back, and sends a
completion signal back to the PS.

• Actor-Critic Losses Calculation: The PS retrieves the
computed advantages and RTGs from the BRAMs and
calculates actor-critic losses.

• Back Propagation and Networks Update: The PS sends
the losses to the FPGA to perform backpropagation to
update the neural networks. Updated network parameters
are then used for subsequent iterations.

B. Advantage Estimate Decomposition and k-step Lookahead

In RL, the advantage estimate A(t) is a critical component
for policy improvement. Using Equation 4, we can decompose
the advantage estimate calculation as shown in Table II.
where C is a constant defined as γ · λ.

This decomposition shows how each advantage estimate
depends on future values. An efficient way that developers
use is to compute the estimates in revere order from t = N
to t = 1 to avoid recalculating the same terms multiple times,
thus saving computational resources.

Single Cycle Implementation and Pipelining: The single-
cycle GAE unit can be represented with potential pipelines
highlighted in dashed green, as shown in Figure 4. In this im-
plementation, various stages of the computation are pipelined
to improve efficiency. However, when we attempt to pipeline
the feedback loop (highlighted in red), it introduces bubbles
into the system. These bubbles represent idle states where
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Fig. 3: Comparison of SoC Architecture and Traditional CPU-GPU System
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the pipeline must wait for data from previous stages, severely
reducing efficiency.

k-step Lookahead Solution: The k-step lookahead method
addresses this inefficiency by introducing registers (delays) in
the feedback loop. This approach can be explained through the
modified advantage estimate calculations for 2-step lookahead

Ât = C2Ât+2 + Cδt+1 + δt, (10)

and for 3-step lookahead,
Ât = C3Ât+3 + C2δt+2 + Cδt+1 + δt. (11)

Figure 4 illustrates the implementation of a 3-step looka-
head. As shown, three registers are added to the feedback loop
to apply 3-step lookahead transformation (highlighted in yel-
low). The added registers on the feedback loop can be moved
inside the multiplier, enabling embedding pipelined multiplier
through DSP blocks. This solution enables a fully pipelined
processing, eliminating compute bubbles in the feedback loop.
The following is a general equation for the k-step lookahead,

Ât = CkÂt+k +

k−1∑
i=0

C(k−1)−iδt+i,

facilitating the incorporation of additional registers on the
feedback loop, and a more profound pipelining of the multi-
plier. Although the 2-step lookahead transformation is satisfac-
tory for enabling our system to operate at the highest frequency
and attain the peak performance, alternative systems, notably
those with wider data formats, might necessitate more pipeline
stages to operate at the maximum achievable frequency.

C. System Architectue

Figure 5 (a) shows the micro-architecture of HEPPO, which
consists of Rewards Loaders (ReLs), Values Loaders (VaLs),
and compute Processing Elements (PEs) forming a one-
dimensional systolic array with N rows.

Parallelization: Rows in the systolic array run concurrently
and independently, each processing distinct vectors from dif-
ferent agents assigned by a round-robin fashion. When one
row finishes, it gets a new set of vectors. This parallel archi-
tecture enhances HEPPO’s efficiency and scalability. While
the BRAM stack memory enables substantial data transfers,
a crossbar network ensures robust connections between ReLs,
VaLs, and PEs to the BRAM stack memory.

Data flow: Each ReL reads element Ri from the rewards
vector and sends it with index i and the signal Done to VaL.
VaL fetches the corresponding i-th value Vi and sends Ri,

V(t)

R(t)

RTG(t)

ADV(t)

RTG(t-1)

ADV(t-1)

×γλ

×γV(t)

R(t)

V(t-1)
RTG(t)

ADV(t)

RTG(t-1)

ADV(t-1)

ADV(t-1)

(a)

(b)

×γλ

×γ2λ2

×γ

×γ3λ3

V(t-1)

Fig. 4: Pipelining of the GAE unit: (a) possible pipelines (in dashed-green)
are limited due to the logic loop (in red); (b) A 3-step Look-ahead

(highlighted in orange) is applied to enable pipelining within the logic loop.

Vi, i, and Done to the PEs. The PE calculates the Advantage
Estimate (Adv) and Rewards-to-Go (RTG) and writes them
back to the main memory at index i.

IV. DATA LAYOUT

To enhance the efficiency of the Proximal Policy Optimiza-
tion (PPO) algorithm, we propose a memory layout that orga-
nizes rewards, values, advantages, and rewards-to-go on-chip
for faster access. This layout groups data from different tra-
jectories with the same timestep into memory blocks, enabling
simultaneous retrieval and processing. Additionally, it employs
a First-In-Last-Out (FILO) storage mechanism to align with
the backward iteration required for GAE calculations. This
section details the memory organization, access patterns, and
bandwidth considerations.

A. Memory Bandwidth Bottleneck

In a typical large RL setup with 64 trajectories and 1024
timesteps, both rewards and values are stored in 32-bit
floating-point format. The required memory per timestep for
64 trajectories (128 elements) is 512 bytes.

For parallel processing, these 512 bytes need to be fetched
from memory per clock cycle. Assuming a typical DDR4
3200 bandwidth of 25 GB/s and a clock frequency of
300 MHz, the available bandwidth per cycle is calculated as
Bandwidth per cycle = 25×109 bytes/s

300×106 cycles/s = 83.3 bytes/cycle.
This results in a shortfall of 428.7 bytes per cycle. Clearly,

DRAM cannot supply enough data to sustain 64 parallel
processing elements (PEs), severely limiting parallelization. To
overcome this bottleneck, we store data in on-chip dual-port
Block RAM (BRAM), which meets the required 512 bytes per
cycle, ensuring high-throughput parallel processing.

1) Memory Block Layout: The memory layout is structured
as 2D arrays, with dimensions representing timesteps and
trajectories. Each memory block stores specific data (rewards,
values, advantages, or rewards-to-go) indexed by timestep and
trajectory. This layout enables parallel processing of different
trajectories using the same fetched block which improves
efficiency and lower memory accesses.

Figure 6 illustrates the dual-port Block RAM (BRAM)
stack memory system, consisting of: BRAM0, which stores
rewards Ri,j , and BRAM1, which stores values Vi,j , both from
different trajectories i at the same timestep j.

Stack BRAM Memory System

ReLN PEN

.

.

VaLN

.

.
.
.

(Done, i)
(Advi, RTGi)(Ri, Vi, i Done)

(Ri, Done, i)

(Ri, Done, i)

PE2

PE1

(Ri, Vi, i Done)

(Ri, Vi, i Done)

ReL2

ReL1

VaL2

VaL1

(Done, i)

(Done, i)

(Ri, Done, i)
. . .

Fig. 5: The HEPPO architecture consisting of Rewards Loaders (ReLs),
Values Loaders (VaLs), PEs, system crossbar, and BRAM stack memory
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Algorithm 2: PPO/GAE Memory Layout and Processing

1 Initialization
2 Initialize memory blocks RMB, VMB, AMB, RTGMB

3 Data Insertion
4 foreach timestep t do
5 foreach trajectory i do
6 Push reward[i][t] into RMB[t][i]
7 Push value[i][t] into VMB[t][i]

8 GAE Calculation and In-Place Update
9 foreach timestep t, backward do

10 foreach trajectory i do
11 Retrieve reward from RMB[t][i]
12 Retrieve value from VMB[t][i]
13 Compute advantage and reward-to-go
14 Store advantage in AMB[t+ 1][i]
15 Store reward-to-go in RTGMB[t+ 1][i]

2) FILO Storage Mechanism: The FILO storage mecha-
nism uses a stack-based structure to store rewards and values:

• Push Operation: Rewards and values are pushed onto the
stack at each timestep.

• Pop Operation: Rewards and values are popped from
the stack during GAE calculation, starting from the last
timestep and iterating backward.

3) In-Place Updates and Dual-Port Memory: The sys-
tem uses dual-port memory for simultaneous read and write
operations, enabling in-place updates where advantages and
rewards-to-go can overwrite the original rewards and values
reducing memory usage by half.

Algorithm 2 is implemented to manage the FILO stack
structure in BRAM, ensuring efficient data access patterns
compatible with the hardware architecture.

This proposed design ensures fast data retrieval and process-
ing that allows continuous feeding of data to the PEs, keeping
them always busy.

V. EXPERIMENTAL RESULTS

The results of our work are divided across multiple axes.
In this section, we will discuss each axis and how they can
affect the overall acceleration of the PPO algorithm.

A. Dynamic Rewards Standardization

It’s important to note that, in most PPO implementations, the
final calculated advantage vector is standardized to stabilize
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Fig. 6: Dual-Port Block RAM Stack Memory System

gradient updates and ensure smoother and more consistent
training. This practice has become widely adopted due to its
positive impact on training dynamics, as highlighted in various
implementations and community discussions [15], [16].

Figure 7 shows training outcomes in the Humanoid environ-
ment (Gymnasium toolkit). Our PPO version (with and with-
out standardized advantages) achieved over 1.5x increase in
cumulative rewards compared to the original PPO, continuing
to improve after the original PPO plateaued. This improvement
was consistent across MuJoCo and Atari environments, con-
firming our modification benefits both hardware and training.

B. Quantization of Rewards and Values

Optimal Quantization Size: Detailed investigation, shown
in Figure 8 and Figure 9 shows that quantizing using 5 and
7 bits performed the poorest followed by 3, 4 which are near
to the baseline (PPO + DS). Finally, quantizing with 6, 8 to
10 performed equally higher than the baseline. The reason
why using 5 and 7 bits performed worse than 3 and 4 in
some of the trials and better in others is most likely due to
the inherent variance of the policy gradient algorithm and the
probabilistic nature of RL. To avoid this unstable region, it was
concluded through all trials that 8 bits and above can be seen
as a threshold for a stable uniform quantization that archives
high performance.

C. Summary of Rewards and Values Quantization Approaches

To summarize the effects of various quantization approaches
on PPO performance, we conducted several experiments with
their configurations shown in Table III.

• Experiment 1: Baseline PPO without quantization.
• Experiment 2: Dynamic standardization of rewards.
• Experiment 3: Both rewards and values are standardized

and uniformly and quantized by block to 8-bit codewords.
• Experiment 4: Both rewards and values are standardized

and uniformly and quantized by block, with rewards kept
in standardized form throughout computations.

• Experiment 5: Dynamic standardization applied to re-
wards and block approach to values.

These experiments highlight the importance of dynamic
standardization and appropriate quantization techniques in

Fig. 7: Comparative Analysis of Cumulative Rewards Between Original
PPO and Modified PPO with Dynamic Standardization
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TABLE III: Overview of Experiment Attributes
Ex

pe
rim

en
t

In
de

x
Standardization Uniform

Quant.Rewards Values
Dynamic

Std.
Block

Std./De-Std.
Block

Std./No De-Std.
Block

Std./De-Std. Rewards
Values

1
2 ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓

improving PPO training efficiency. Experiment 4 performance
was poor, indicating that simply keeping rewards standardized
does not enhance performance but keeping them in the dy-
namically standardized form does. Experiment 5, combining
dynamic standardization for rewards and Block Quantization
for values, showed the best performance, emphasizing the
significance of the way rewards are standardized.

Figure 10 provides a comprehensive comparison for differ-
ent PPO implementations, illustrating the performance impact
of different quantization strategies and demonstrating how
dynamic standardization and adaptive quantization methods
can optimize PPO performance.

D. Hardware Implementation of HEPPO

A parameterized Verilog model of HEPPO’s proposed
pipelined architecture, as described in Subsection III-C, has
been developed with a data width of 32 bits (after fetching
and de-quantizing the elements). The AMD-Xilinx Zynq®
UltraScale+™ MPSoC ZCU106 Evaluation Kit was chosen
to host our implementation. This device integrates a quad-
core Arm® Cortex™-A53 processing system (PS) and a
dual-core Arm Cortex-R5 real-time processor, providing the
necessary computing for running the environment. The FPGA
fabric within the Programmable Logic (PL) provides extensive
resources for custom logic implementation, including neural
network inference and GAE computation.

For the DNN inference within the PL, we adapt the systolic
array implementation introduced by Meng et al. (2020) [9].
Their design achieves a clock frequency of 285 MHz, whereas
our overall system is designed to run at 300 MHz. As all
design subsystems operate sequentially (processing does not
overlap in time), it’s advantageous to enable each subsystem
to run at its highest frequency. While this creates multiple

Fig. 8: Uniform Quantization (3-6 bits) of Rewards

TABLE IV: Resource Utilization for a 2-step lookahead system

Resource Total Usage (64 PEs) Available Utilization (%)
LUTs 12864 274080 4.69
FFs 54336 548160 9.91
DSPs 768 2520 30.48

clock domains, data synchronization is not required because
all subsystems operate sequentially and communicate through
BRAMs. However, control signals across domains, such as
those indicating that processing has ended and data is ready,
still need to be synchronized.

1) Area Utilization: Figure 11 illustrates the resource uti-
lization percentages for 1-step, 2-step, and 3-step lookahead
implementations per Processing Element (PE). As seen, there
is a quadratic increase in resource usage with each increase in
n. This figure highlights how the increase in lookahead steps
(n) impacts the utilization of various resources (LUTs, FFs,
and DSPs), demonstrating a clear quadratic trend. Based on
our implementation, we found that n > 1 allows the system to
operate at a maximum frequency of 300 MHz. This is due to
the intensive pipelining and absence of pipeline stalls. Hence,
a single PE is estimated to handle 300 million elements per
second with the continuous data flow supported by the efficient
design of the FILO BRAM memory system which ensures
the required throughput every cycle. This is in contrast to a
normal CPU-GPU system that suffers from DRAM memory
access latency, buffering, and scheduling, all of which are a
great bottleneck.

We choose to work with 2-step lookahead. The resource
utilization in Table IV is estimated for 64 PEs based on

Fig. 9: Uniform Quantization (7-10 bits) of Rewards

Fig. 10: Average Reward Comparison (Rolling Average of 1000 Readings).
Refer to Table III for experiment details.
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our single PE implementation. It shows that the ZCU106
Evaluation Kit can comfortably accommodate our design.
The utilization percentages for LUTs, FFs, and DSPs are
well within the available resources, with the most significant
utilization being DSPs at 17.7%. This efficient usage ensures
that the system can run at the desired frequency and handle the
required throughput without encountering resource constraints.

2) Memory Utilization Requirements: For 64 trajectories
and 1024 timesteps, with rewards and values overwritten by
advantages and rewards-to-go, the memory required is 128
bytes per timestep, totaling 128 KB for 1024 timesteps.

BRAM Utilization: Each BRAM provides 36 Kb of stor-
age, so storing 128 KB requires approximately 29 BRAM
blocks (around 9% utilization).

Bandwidth Requirement: We read 64 rewards and 64
values (128 bytes) and write 64 advantages and 64 rewards-
to-go (128 bytes) per clock cycle, requiring a total bandwidth
of 256 bytes/cycle.

Each dual-port BRAM handles 4 bytes per port, per cycle.
To meet the 256 bytes/cycle requirement, 57 BRAM ports
are needed. Since each dual-port BRAM has 2 ports, this
translates to 32 BRAM blocks (10% utilization) required to
support both memory storage and bandwidth needs, ensuring
efficient parallel processing.

3) System Estimated Speedup: We conducted a test on a
standard GAE implementation [17] on a CPU-GPU system
comprising 32 cores each is Intel(R) Xeon(R) Silver 4216
CPU @ 2.10GHz, and a Tesla V100-SXM2-32GB GPU, it
was concluded that this setup can handle ≈ 9000 elements
per second. This is interpreted by the nature of this phase
which processes trajectories of unequal sizes in reverse, this
is traditionally achieved by iterating over one trajectory at
a time not in batch form. However, in our implementation,
we process a batch of 64 trajectories at a time in custom
hardware made specifically for accelerating this phase. Hence,
our system can theoretically handle around 2 million times
faster than a traditional implementation, significantly reducing
the time taken at the GAE stage and increasing the PPO speed
by around 30%.

In addition, having our FILO memory on-chip with the CPU
cores as well as the FPGA greatly reduces the memory access
time of storing and fetching the trajectories which account for
around 11.73% of the PPO time.

Finally, our proposed solution opens the door for a full
PPO system implementation on-device, and it can adapt to
any cutting-edge implementation of DNN in the PL. For this

Fig. 11: Resource Utilization Percentage for n-Step Lookahead PE

research paper, we adapt the systolic array implementation
by Meng et al. (2020), leveraging the FPGA’s capabilities to
handle high-throughput neural network inference, backprop-
agation, and GAE computations. Their work is claimed to
have achieved substantial performance improvements, ranging
from 2.1× to 30.5× when compared to state-of-the-art CPU
implementations and 2× to 27.5× when compared to CPU-
GPU implementations.

VI. CONCLUSION AND FUTURE WORK

We introduced HEPPO (Hardware-Efficient Proximal Policy
Optimization), an FPGA-based implementation designed to
accelerate the GAE stage of the PPO algorithm. HEPPO
utilizes dynamic reward standardization and 8-bit uniform
quantization, reducing memory usage by 4x and increasing
cumulative rewards by 50%.

Our innovative memory layout system, using FILO storage
and dual-port memory, efficiently handles rewards, values,
and advantages, ensuring high throughput and compact data
management. The ultra-pipelined Process Element (PE) unit,
operating at 300 MHz, greatly enhances throughput and ef-
ficiency, outperforming conventional CPU-GPU systems and
improving PPO training efficiency by an estimated 30%.

HEPPO leverages AMD-Xilinx Zynq UltraScale+ MPSoC’s
capabilities, integrating environment simulation, neural net-
work inference, backpropagation, and GAE computation on
a single SoC. This minimizes communication latency and
optimizes data handling which originally accounted for around
11% of the training.

Further incremental optimizations of HEPPO’s SoC are pos-
sible. Overclocking techniques [18] and bit-serial computation
[19] in FPGAs can be employed to accelerate overall process-
ing. To mitigate power consumption, multiple clock domains
can be implemented for the ARM cores, the DNN, and the
GAE calculations. High-performance clock-domain crossing
(CDC) FIFOs can facilitate faster data transfers [20]–[24].
Additionally, hardware-efficient data compression methods,
optimized for deep learning workloads, can be leveraged to
minimize data transfers [25]–[27].

Future work should focus on optimizing custom hardware
for other phases of the PPO algorithm, particularly in ac-
celerating environment simulation, which consumes 47% of
the training time. Investigating techniques for dynamic High-
Level Synthesis of environments on FPGA and implementing
loss calculation on FPGA could eliminate the need for CPU
cores, significantly boosting the computational efficiency of
the algorithm.
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