
Safe Overclocking
of Tightly Coupled CGRAs and Processor Arrays

using Razor

© 2012 Guy Lemieux

Alex Brant, Ameer Abdelhadi,

Douglas Sim, Shao Lin Tang, Michael Yue,

Guy Lemieux

The University of British Columbia

Overclocking… is it safe?

2

• Clock frequency determined by 2 things:

• CAD timing analysis (timing margins)

• speed binning of actual wafers + chips (variation)

• Can you go faster?

• Yes, if your chips are fast

• Yes, if your data is not “worst-case”, eg carry propagation

• Yes, if you do not want “safe” timing margin guardbands

Overclocking… is it safe?

3.8GHz 4.2 V

3

3.818GHz !!!

4.210V

Overclocking… is it safe?

• How fast is too fast?

– Blows up

– Fails to POST

– Fails to boot

– Blue screen of death

– Random crashes

– Data errors in documents and spreadsheet

• When these problems go away, is it safe?
4

Overclocking… is it safe?

• Root cause: timing errors

– Problem 1: can we detect them?

• Yes, e.g. using Razor

– Problem 2: can we correct them?

• Yes, using Razor with feed-forward pipelines

– Pipeline must be ‘replayed’, input data ‘unfetched’

• Not possible with general sequential logic

– Need ‘spare’ cycles to ‘unfetch’ input data

– Cyclic dependencies make this difficult

5

Overclocking… is it safe?

• If not for general logic, what about…

– Traditional CPU pipelines?

Yes:

• Feed-forward, correctable by Razor-replay

– Multi-core CPUs?

Yes:

• Each CPU is a traditional pipeline

• Loosely coupled

– Other CPUs tolerate race conditions
6

Overclocking… is it safe?

• If not for general logic, what about…

– Ambric-style processor arrays?

Yes:

• Like multi-core CPUs

• Loosely coupled

– Neighbour CPUs tolerate uncertainty of arrival time

– Tightly coupled processor arrays or CGRAs?

No: neighbour CPUs cannot tolerate delays!

7

Main Contribution

• Extends Razor error correction to…

– tightly coupled processor arrays, CGRAs

– time-multiplexed FPGAs/CGRAs

Tightly coupled means…

• Pre-scheduled communication

– Data must be present during cycle X

• No “data presence” indicators / handshakes

8

Razor FF in Pipeline

10

clk

clk + delay

Razor FF in Pipeline

11

How can we overclock?

Q3

Q2

Q1

Q0

10ps 9ps 8ps

D0mostly 0

result (clk)

clk

D4 Q4

12

10+9+8 = 27ps clock

How can we overclock?

13

9+8 = 17ps clock, most of the time

How can we overclock?

14

9+8 = 17ps clock, most of the time

How can we overclock?

15

9+8 = 17ps clock, most of the time

How can we overclock?

16

9+8 = 17ps clock, most of the time

How can we overclock?

17

9+8 = 17ps clock, most of the time

How can we overclock?

18

9+8 = 17ps clock, most of the time

Array Architecture

Block

RAM

clk

Communications Channel

wrAddr

wrData

rdAddr

rdData

Processor Array

20

Tightly coupled communication:

- can be FIFO-based or ‘mailbox’-based

Fully bypassed:

- write on cycle X

- read on cycle X+1, ie address provided cycle X

Add “Razor” to Block RAM

Shadow
Latch

address

data

write_
enable

Ø+Δ1

Ø

load_shadow_reg

write_
data

address

clk

R
A

M

write_
enable

read_
data

W
ri

te
P

o
rt

mem_err

!=

21

Processor Error Detection
(for East direction only)

22

Processor memory error:

Causes stall

Incoming stall

(from N,S,W):

produces

Outgoing E stall

Early warning signal:

prevents incoming data

Processor Error Detection
(all four directions)

mem_err[N]
mem_err[S]
mem_err[E]
mem_err[W]
mem_err[R]

stall_in[E]

stall_out[E]

load_shadow_reg[E]stall

stall_in[N]

stall_out[N]

load_shadow_reg[N]

stall_in[S]

stall_out[S]

load_shadow_reg[S]

stall_in[W]

stall_out[W]

load_shadow_reg[W]

stall

stall

stall

23

t+1: AB || BC ;

t+2: BC ;

Writes entering error region….

24

Razor Stall Propagation (1D)

25

Razor Stall Propagation (1D)

26

1

time

X

Razor Stall Propagation (1D)

27

1

time

X

Razor Stall Propagation (1D)

28

2 1

time

X

X

Razor Stall Propagation (1D)

29

2 1

time

X

X

Razor Stall Propagation (1D)

30

2 1

time

X

X

Razor Stall Propagation (1D)

31

2 1

time

X

X

Razor Stall Propagation (1D)

32

2 1

time

X

X

Razor Stall Propagation (1D)

33

32 1

time

X

X

X

Razor Stall Propagation (1D)

34

32 1

time

X

X

X

Razor Stall Propagation (1D)

35

32 1

time

X

X

X

Razor Stall Propagation (1D)

36

32 1

time

X

X

X

Razor Stall Propagation (1D)

37

32 1

time

X

X

X

Razor Stall Propagation (1D)

38

32 1

time

X

X

X

3 Errors Detected

2 Stalls to Correct

STALLS < # ERRORS
Might be

scalable!!

Razor Stall Propagation (2D)

39

Razor Stall Propagation (2D)

40

X

Razor Stall Propagation (2D)

41

X

Razor Stall Propagation (2D)

42

X

X

Razor Stall Propagation (2D)

43

X

X

Razor Stall Propagation (2D)

44

X

X

X

Razor Stall Propagation (2D)

45

X

X

X

Razor Stall Propagation (2D)

46

X

X

X

Razor Stall Propagation (2D)

47

X

X

X

Razor Stall Propagation (2D)

48

X

X

X

Razor Stall Propagation (2D)

49

X

X

X

Razor Stall Propagation (2D)

50

X

X

X

Razor Stall Propagation (2D)

51

X

X

X

3 Errors Detected

2 Stalls to Correct

STALLS < # ERRORS

Might be

scalable!!

Manual experiment:

stalls vs # errors

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9 10

A
ve

ra
ge

 E
xt

ra
 C

yc
le

s
N

e
e

d
e

d

Errors Injected

52

errors

stalls

Monte Carlo Simulations…

53

Stalls vs Errors (N x N array)

54

Recovered Utilization (N x N)

55

Experimental Results…

56

Experimental Results

• Build Processor Array on FPGA…
– 2 x 2 array in silicon (running)

– 3 x 3 array in simulation (verification)

• Static critical path always through ALU +

communication channels
– Typically multipilier, but only if used (!)

– Depends upon values being multiplied

• Overclock system

– Fmax depends upon multiplier use, data values

57

Place & Route Results

• Area analysis for processor

– 2,958 ALMs + 304 Regs (baseline)

– 3,082 ALMs + 517 Regs (with Razor)

• Static timing analysis for array

– 90 MHz (baseline)

– 88 MHz (with Razor)

• Overhead is very low (4% ALMs)
58

System under Test

f
~

Dynamic PLL
Ø+Δ

System
Clock

Razor
Clock

fr
e

q
.

p
h

as
e

e
n

ab
le

R
an

d
o

m

V
e

ct
o

rs

O
u

tp
u

t

V
e

ct
o

rs

Er
ro

r
C

o
u

n
t

Nios II/f

M
A

LI
B

U
–R

az
o

r

59

Methodology (baseline)

• Run once: circuit at low speed

– Record correct output vectors

• For increasingly higher clock speeds

– Run circuit with input test vectors

– Fail on first error

• Remember highest clock speed

60

Results (baseline)

Benchmark Static Timing

(CAD)

Overclocked (1st error)

Random 90 MHz 135 MHz

Mean 90 MHz 121 MHz

Wang 90 MHz 131 MHz

PR 90 MHz 136 MHz

average 90 MHz 130.4 MHz

61

• Processor arrays can be overclocked

– Amount depends on application + data + chip

• But is it safe?

– Our “test jig” tested results offline to find

errors

– Unsafe! baseline cannot detect errors

Methodology (Razor)

• Run once: circuit at low speed

– Record correct output vectors

• For increasingly higher clock speeds

– For increasingly higher shadow FF delay

• Run circuit

• Record # errors, # corrected errors, # stalls

• Remember highest throughput
62

Results (baseline)

Benchmark Static Timing (CAD) Overclocked

(runs past 1st error)

Stall Rate

Random 88 MHz 163 MHz 5.0%

Mean 88 MHz 144 MHz 1.3%

Wang 88 MHz 147 MHz 0.7%

PR 88 MHz 145 MHz 1.7%

average 88 MHz 149.4 MHz 2.0%

63

• Processor arrays can be overclocked

– Even higher rates past 1st error

– Errors require stalls to correct, lowers thru-put

– Stop increasing Fmax after thru-put peaks

Results (new Razor)

Benchmark Static Timing (CAD) Overclocked

(runs past 1st error)

Stall Rate

Random 88 MHz 163 MHz 5.0%

Mean 88 MHz 144 MHz 1.3%

Wang 88 MHz 147 MHz 0.7%

PR 88 MHz 145 MHz 1.7%

average 88 MHz 149.4 MHz 2.0%

64

• But is it safe?

– Safe! Razor detects and corrects errors

– Our “test jig” tested results offline to verify the

errors were corrected

Results (Comparison)

Benchmark Baseline STA

(safe)

Razor-Corrected

Effective Throughput

Speedup

Random 90 MHz 155 MHz 1.72 x

Mean 90 MHz 142 MHz 1.58 x

Wang 90 MHz 146 MHz 1.62 x

PR 90 MHz 143 MHz 1.59 x

average 90 MHz 146.5 MHz 1.63 x

65

• Processor arrays can be safely overclocked

– 63% higher throughput

• Low area cost (+4% ALMs)

Observations / Notes

• Time-multiplexed CGRAs/FPGAs can also

benefit

– Just reserve 1-2 clock cycles in the time-mux

schedule for error recovery

• Loosely coupled processor arrays can be

overclocked locally

– Just add Razor to each processor

– No need to propagate stall signals; automatically

done through data presence indicators

67

Summary / Conclusions

• Processor arrays can be safely overclocked

– Even with very tightly scheduled communication

• Processor arrays are scalable

– Errors produce stall wavefronts

– Several wavefronts merge into a single stall cycle

• Throughput increased 63% on average

– Speedup depends upon benchmark, data values

68

