US 20230070243A1

a9y United States

a2y Patent Application Publication o) Pub. No.: US 2023/0070243 A1

ABD ELHADI et al.

43) Pub. Date: Mar. 9, 2023

(54)

(71)

(72)

@

(22)

(60)

SYSTEM AND METHOD FOR TEMPLATE
MATCHING FOR NEURAL POPULATION
PATTERN DETECTION

Applicants: Ameer ABD ELHADI, Toronto (CA);
Ciaran Brochan BANNON, Toronto
(CA); Andreas MOSHOVOS, Toronto
(CA); Hendrik STEENLAND, York
(CA)

Inventors: Ameer ABD ELHADI, Toronto (CA);
Ciaran Brochan BANNON, Toronto
(CA); Andreas MOSHOVOS, Toronto
(CA); Hendrik STEENLAND, York
(CA)

Appl. No.: 17/869,280

Filed: Jul. 20, 2022
Related U.S. Application Data

Provisional application No. 63/230,333, filed on Aug.
6, 2021.

200

\

Publication Classification

(51) Int. CL
GOG6N 3/08 (2006.01)
GOG6K 9/62 (2006.01)
(52) US.CL
CPC GOGN 3/086 (2013.01); GO6K 9/6201
(2013.01)
(57) ABSTRACT

There is provided a system and method for template match-
ing for neural population pattern detection. The method
including: receiving neuron signal streams and serially asso-
ciating a bit indicator with spikes from each neuron signal
stream; serially determining a first summation (S1), a second
summation (S2), and a third summation (S3) on the received
neuron signals, the first summation including an element-
wise multiply-sum using a time-dependent sliding indicator
window on the received neuron signal streams and a tem-
plate, the second summation including an accumulation
using the time-dependent sliding indicator window, and the
third summation including a sum of squares using the
time-dependent sliding indicator window; and determining a
correlation value associated with a match of the template
with the received neural signal streams, the correlation value
determined by combining the first summation, the second
summation, and the third summation with predetermined
constants associated with the template.

Receive one or more

templates
202

Y
Receive neural signals as
a series of bit indicators
204

Y
Determine a first
summation
206

)

Determine a second
summation
208

I

Determine a third
summation
210

l

Determine PCC as a combination of the first
summation, the second summation, the third
summation, and predetermined constants
210

|

Output PCC
212

Patent Application Publication

Mar. 9, 2023 Sheet 1 of 15

US 2023/0070243 Al

Neural Signal
Acquisition
Circuit
158

| o

System
100
164 Signal
Fs% L Interface
= 156
RAM Non-Volatile
154 Storage
— 162
Network Template
Interface Module
160 172
Summation Post-Processing
Module Module
174 176
Binning Output
Module Module
178 180
Machine
Learning
Module
182

FIG. 1

o]
(o]

Database
166

Patent Application Publication = Mar. 9, 2023 Sheet 2 of 15 US 2023/0070243 A1

25
Offline template coiiectioﬂv/

23

1000's of
newral spike
indicatars 24
@ 30K Hz

'
1
b, . %

20 21

Template |

“---1
-‘-’

Tamplate 4
jie.g. memory

Neugal — Newroprobes oo
Interface (electrodes)

¥
+

-y

> Spike £
{fé Detectionjsssss &
M 2
b and =
" Sorting == 8

P -

/1 Feedback o silence traumatic episodes

29 Application 2 . 28
Application ¢

FIG. 2

Patent Application Publication = Mar. 9, 2023 Sheet 3 of 15 US 2023/0070243 A1

— > | >
A M= 20 (Bt e e e e (B

«p=5p-
.. . L
il .
1 A
£ 20 2
® EIE ol
i o R
-4 = Zi
- K 3 m t 5
+ J + e N B
e N () { B I S e ot e e e N -41i=4 (hing»

Slides B=5 bits) ~=Xlides one b;‘n-'-'-)

FIG. 3

Patent Application Publication = Mar. 9, 2023 Sheet 4 of 15 US 2023/0070243 A1

2.
=

wERAE

o

e

Y

Bing

Sixhing Window

FIG. 4

US 2023/0070243 Al

Mar. 9, 2023 Sheet 5 of 15

Patent Application Publication

—516

WS UREI0A I WV WIS BUMDY MIGRGI0C-GRs-ppe BRI

»

ol
B !
- %
-y
F 3
: E
o ~ wms wEnoa I8 | vy am.w BT | MEBUHION-GRR-PPT BUas-Lig F
o g 54
- «© - 0 o
D o) 3 re)
w 5]

Patent Application Publication = Mar. 9, 2023 Sheet 6 of 15 US 2023/0070243 A1

602

bk

s

s

Sct
1sb
sfart

3

sertal
3

ng

bit-serial multiplicand

604 bit-serial multiplicand 624

630~y

634

FIG. 6

US 2023/0070243 Al

Mar. 9, 2023 Sheet 7 of 15

Patent Application Publication

Appad j
~od

d. 'old

i
FROSH ¢0.

YA

104
piesi

§-4£215 004

% Do

0]

83
S

SUIs

V. Old

58
iy
JOTUO Ty

Patent Application Publication = Mar. 9, 2023 Sheet 8 of 15 US 2023/0070243 A1

Compressed
Template

= -
w &«
4 b
S Sh
813 Decompressed
Data
812

Patent Application Publication

906
W

901

907

Control LLob ML Fen)

S; |

R, A

i

904

3

905

il S, P
7S, |

e

rr

Mar. 9, 2023 Sheet 9 of 15

Post Processing
H
+

Post Proces

US 2023/0070243 Al

‘s.i.ﬁg

*
903 »

T

Ly(PCCy
el 0510y
(PCC,Y

Pready

FIG. 9

H(PCC,Y

§ g {"{{’{ s

Patent Application Publication = Mar. 9, 2023 Sheet 10 of 15 US 2023/0070243 A1l

Conirod

104 Template RAM
Sticed Horizontally

Wy Newons LN
* * 176

Wy Newrons YaN+LLL AN

Wy Newrons N+ 26N ;;;&E Y

Wy Neurons %N+1.,, N

S, PE
S; PE
S; PE
S; PE

53 PE
S: PE
S Ph
S: PE
102

Post Processing

FIG. 10

Patent Application Publication = Mar. 9, 2023 Sheet 11 of 15 US 2023/0070243 A1l

112 W bank selection 3 é

—F :

) W SV 1|2

113 ;% ,_f g‘:‘ ﬁ m§

] L S—— s S— S W—

% . . - e v z 3

VS wh < wh > < wh > < wh > ¥ |5

I p = |2 116

Binning Scalar PE (SPE)

1

111

17

Template Vector Engine

FIG. 11

Patent Application Publication

120

Mar. 9,2023 Sheet 12 of 15 US 2023/0070243 A1

W

20 X 1060 (Bins X Neurons) PE
2 N

e

122

Bitse

configuration
nfert

riad

ace

{e.z JTAG)

2
S

S
St

{e.g. SPI

-~

\

100 >

e YA

1y

s

k.,m.}

- PE;;{ -—m—}gpgi }{}(}—'

=

Wiz

Bit-serial d

) . S

) PEjP E, z{}a-l P
T il ‘

Y

Ly PE . | b PE33 3 b

i

Post. . Post
Processin Processing

1 < .

PCCy PCCs

&1 Configuration bit

FIG. 12

Patent Application Publication = Mar. 9, 2023 Sheet 13 of 15 US 2023/0070243 A1l

FIG. 13

Patent Application Publication = Mar. 9, 2023 Sheet 14 of 15 US 2023/0070243 A1l

200

\

Receive one or more
femplates
202

Y
Receive neural signals as
a series of bit indicators
204

A4
Determine a first
summation
206

Y
Determine a second

summation
208

Y

Determine a third
summation
210

A

Determine PCC as a combination of the first
summation, the second summation, the third
summation, and predetermined constants
210

Y

Output PCC
212

FIG. 14

Patent Application Publication = Mar. 9, 2023 Sheet 15 of 15 US 2023/0070243 A1l

Selectors RAM
Ly

150

Temphitc] 4
Temphite? ¢

1509

Applications

Temphte 7 4~

US 2023/0070243 Al

SYSTEM AND METHOD FOR TEMPLATE
MATCHING FOR NEURAL POPULATION
PATTERN DETECTION

TECHNICAL FIELD

[0001] The following relates, generally, to brain activity
processing; and more particularly, to a system and method
for template matching for neural population pattern detec-
tion.

BACKGROUND

[0002] There are approximately 86 billion neurons in the
human brain with trillions of connections. These neurons
generate and transmit electrophysiological signals (action
potentials) to communicate within and between brain
regions. Various technologies, such as tungsten electrodes
etched to a fine submicron tip, have enabled scientists to
capture the activity of massive populations of neurons.
[0003] Patterns of activity in populations of neurons are
considered to be key to understanding how the brain repre-
sents, reacts, and learns from the external environment.
Populations of neurons replay patterns of activity in asso-
ciation with previous experiences during wakefulness, sleep,
and intrinsically during field oscillations. During sleep, these
patterns can recur at accelerated rates, and even in reverse
order. The “memory” replay of these patterns can occur
across various brain regions and in coordination. Analytic
output from populations of neurons can effectively drive
robotic limbs. Taken together, detecting patterns of neuronal
populations is an effective means to explore and predict the
brain.

SUMMARY

[0004] In an aspect, there is provided a system for tem-
plate matching for neural population pattern detection, the
system in communication with a plurality of neural signal
acquisition circuits, the system comprising one or more
processors and one or more memory units in communication
with the one or more processors, the one or more processors
configured to execute: a signal interface to receive neuron
signal streams from the neural signal acquisition circuits and
serially associate a bit indicator with spikes from each
neuron signal stream; a summation module to serially deter-
mine a first summation (S1), a second summation (S2), and
a third summation (S3) on the received neuron signals, the
first summation comprising an element-wise multiply-sum
using a time-dependent sliding indicator window on the
received neuron signal streams and a template, the second
summation comprising an accumulation using the time-
dependent sliding indicator window, and the third summa-
tion comprising a sum of squares using the time-dependent
sliding indicator window; post-processing module to deter-
mine a Pearson’s Correlation Coefficient (PCC) value asso-
ciated with a match of the template with the received neural
signal streams, the PCC value determined by combining the
first summation, the second summation, and the third sum-
mation with predetermined constants associated with the
template; and an output module to output the determined
PCC value.

[0005] In a particular case of the system, the predeter-
mined constants comprise: a first constant (C1) using a
number of bins and the number of neuron signal streams; a
second constant (C2) using binned indicators of the template

Mar. 9, 2023

summed over the number of bins and the number of neuron
signal streams; and a third constant (C3) using a combina-
tion of binned indicators of the template summed over the
number of bins and the number of neuron signal streams.
[0006] In another case of the system, the combination of
the first summation, the second summation, and the third
summation with the predetermined constants comprises a
constant multiplier, a subtractor, a squarer, and a fractional
divider.

[0007] In yet another case of the system, for each of the
neuron signal streams, a binned value of the template is
accumulated if an input spike indicator is active.

[0008] Inyetanother case of the system, the post-process-
ing module comprises bit-serial arithmetic units that are
cascaded to determine a squared PCC.

[0009] In yet another case of the system, the second
summation comprises a count of all bit indicators in each
time-dependent sliding indicator window.

[0010] In yet another case of the system, the third sum-
mation comprises partial sums of linear operations that are
generated and accumulated as new values are received.
[0011] In another aspect, there is provided a computer-
implemented method for template matching for neural popu-
lation pattern detection, the method comprising: receiving
neuron signal streams and serially associating a bit indicator
with spikes from each neuron signal stream; serially deter-
mining a first summation (S1), a second summation (S2),
and a third summation (S3) on the received neuron signals,
the first summation comprising an element-wise multiply-
sum using a time-dependent sliding indicator window on the
received neuron signal streams and a template, the second
summation comprising an accumulation using the time-
dependent sliding indicator window, and the third summa-
tion comprising a sum of squares using the time-dependent
sliding indicator window; determining a Pearson’s Correla-
tion Coeflicient (PCC) value associated with a match of the
template with the received neural signal streams, the PCC
value determined by combining the first summation, the
second summation, and the third summation with predeter-
mined constants associated with the template; and outputting
the determined PCC value.

[0012] In a particular case of the method, the predeter-
mined constants comprise: a first constant (C1) using a
number of bins and the number of neuron signal streams; a
second constant (C2) using binned indicators of the template
summed over the number of bins and the number of neuron
signal streams; and a third constant (C3) using a combina-
tion of binned indicators of the template summed over the
number of bins and the number of neuron signal streams.
[0013] In another case of the method, the combination of
the first summation, the second summation, and the third
summation with the predetermined constants comprises a
constant multiplier, a subtractor, a squarer, and a fractional
divider.

[0014] In yet another case of the method, for each of the
neuron signal streams, a binned value of the template is
accumulated if an input spike indicator is active.

[0015] In yet another case of the method, the post-pro-
cessing module comprises bit-serial arithmetic units that are
cascaded to determine a squared PCC.

[0016] In yet another case of the method, the second
summation comprises a count of all bit indicators in each
time-dependent sliding indicator window.

US 2023/0070243 Al

[0017] In yet another case of the method, the third sum-
mation comprises partial sums of linear operations that are
generated and accumulated as new values are received.
[0018] In another aspect, there is provided a computer-
implemented method for template matching for neural popu-
lation pattern detection, the method comprising: receiving
neuron signal streams and serially associating a bit indicator
with spikes from each neuron signal stream; determining a
correlation (e.g. Pearson’s Correlation Coefficient (PCC))
value associated with a match of a template with the
received neural signal streams using an artificial neural
network trained using binary classification, the input to the
artificial neural network comprising a window of the bit
indicators, a loss function associated with the artificial
neural network comprises a difference between a calculated
correlation and an output of the artificial neural network; and
outputting the determined correlation value.

[0019] In a particular case of the method, the artificial
neural network matches to multiple templates, wherein the
output of the artificial neural network comprises a T-dimen-
sional vector, where each value in the vector corresponds to
the correlation of the input window and T templates.
[0020] In another case of the method, the neuron spikes
are binned before being inputted to the artificial neural
network.

[0021] In another aspect, there is provided a processor-
implemented method for template matching for neural popu-
lation pattern detection, the method comprising: receiving
neuron signal streams and serially associating a bit indicator
with spikes from each neuron signal stream; determining a
first summation (S1) on each of the received neuron signals
and outputting the summations as a vector, the first summa-
tion comprising an element-wise multiply-sum using a time-
dependent sliding indicator window on the received neuron
signal streams and a template; determining a likelihood of a
match of a template with the received neural signal streams
using an artificial neural network, the input to the artificial
neural network comprising the vector of first summations,
where each vector acts as a perceptron of the artificial neural
network, and is passed to further artificial neural network
layers; and outputting the determined correlation value.
[0022] These and other aspects are contemplated and
described herein. It will be appreciated that the foregoing
summary sets out representative aspects of the system and
method to assist skilled readers in understanding the fol-
lowing detailed description.

DESCRIPTION OF THE DRAWINGS

[0023] A greater understanding of the embodiments will
be had with reference to the Figures, in which:

[0024] FIG. 1 shows a block diagram of an embodiment of
a system of template matching for neural population pattern
detection, according to an embodiment;

[0025] FIG. 2 illustrates a diagram of an example of
template matching, in accordance with the system of FIG. 1;
[0026] FIG. 3 illustrates an example of binning over a
sliding-window on incoming indicator streams, in accor-
dance with the system of FIG. 1;

[0027] FIG. 4 illustrates an example of input to template
matching where indicators from multiple neurons are time-
multiplexed over a single serial link, in accordance with the
system of FIG. 1;

[0028] FIG. 5 illustrates an example of a hardware imple-
mentation of bit-serial indicators in accordance with the

Mar. 9, 2023

system of FIG. 1, where the bottom portion shows element-
wise sample-template multiply-sum summation S,, the
middle-left portion shows summation S,, the top-right por-
tion shows the sum of sample squares of summation S;, and
the top-left portion shows control logic;

[0029] FIG. 6 illustrates an example of bit-level arithmetic
units in accordance with the system of FIG. 1, where the
top-right portion shows an adder, the top-left portion shows
a subtractor, the middle portion shows a constant multiplier,
and the bottom portion shows a squarer;

[0030] FIG. 7A shows a diagram of an example of a
top-level hierarchy of the system of FIG. 1;

[0031] FIG. 7B shows a diagram for the post-processing
module, in accordance with the system of FIG. 1;

[0032] FIG. 8 shows a diagram of an example of a
decompression circuit, in accordance with the system of
FIG. 1,

[0033] FIG. 9 shows a diagram for scaling a number of
templates, in accordance with the system of FIG. 1;
[0034] FIG. 10 shows a diagram for scaling a number of
neurons, in accordance with the system of FIG. 1;

[0035] FIG. 11 shows a bit-parallel pattern matching base-
line model, in accordance with the system of FIG. 1;
[0036] FIG. 12 shows a diagram of an example of a
configurable template matching architecture, in accordance
with the system of FIG. 1;

[0037] FIG. 13 shows a diagram of an example of nor-
malized template memory footprints of four configurations,
in accordance with the system of FIG. 1;

[0038] FIG. 14 shows a flowchart for a method of template
matching for neural population pattern detection, according
to an embodiment; and

[0039] FIG. 15 illustrates an example implementation that
benefits from an efficient implementation of S;.

DETAILED DESCRIPTION

[0040] For simplicity and clarity of illustration, where
considered appropriate, reference numerals may be repeated
among the Figures to indicate corresponding or analogous
elements. In addition, numerous specific details are set forth
in order to provide a thorough understanding of the embodi-
ments described herein. However, it will be understood by
those of ordinary skill in the art that the embodiments
described herein may be practised without these specific
details. In other instances, well-known methods, procedures
and components have not been described in detail so as not
to obscure the embodiments described herein. Also, the
description is not to be considered as limiting the scope of
the embodiments described herein.

[0041] Various terms used throughout the present descrip-
tion may be read and understood as follows, unless the
context indicates otherwise: “or” as used throughout is
inclusive, as though written “and/or”; singular articles and
pronouns as used throughout include their plural forms, and
vice versa; similarly, gendered pronouns include their coun-
terpart pronouns so that pronouns should not be understood
as limiting anything described herein to use, implementa-
tion, performance, etc. by a single gender. Further defini-
tions for terms may be set out herein; these may apply to
prior and subsequent instances of those terms, as will be
understood from a reading of the present description.
[0042] Any module, unit, component, server, computer,
terminal or device exemplified herein that executes instruc-
tions may include or otherwise have access to computer

US 2023/0070243 Al

readable media such as storage media, computer storage
media, or data storage devices (removable and/or non-
removable) such as, for example, magnetic disks, optical
disks, or tape. Computer storage media may include volatile
and non-volatile, removable and non-removable media
implemented in any method or technology for storage of
information, such as computer readable instructions, data
structures, program modules, or other data. Examples of
computer storage media include RAM, ROM, EEPROM,
flash memory or other memory technology, solid-state
drives, CD-ROM, digital versatile disks (DVD) or other
optical storage, magnetic cassettes, magnetic tape, magnetic
disk storage or other magnetic storage devices, or any other
medium which can be used to store the desired information
and which can be accessed by an application, module, or
both. Any such computer storage media may be part of the
device or accessible or connectable thereto. Further, unless
the context clearly indicates otherwise, any processor or
controller set out herein may be implemented as a singular
processor or as a plurality of processors. The plurality of
processors may be arrayed or distributed, and any process-
ing function referred to herein may be carried out by one or
by a plurality of processors, even though a single processor
may be exemplified. Any method, application or module
herein described may be implemented using computer read-
able/executable instructions that may be stored or otherwise
held by such computer readable media and executed by the
one or more processors.

[0043] Patterns of activity in populations of neurons are
thought to be key to understanding how the brain represents,
reacts, and learns from the external environment. Popula-
tions of neurons replay patterns of activity in association
with previous experiences. Advances in imaging and elec-
trophysiology allow for the observation of activities of
groups of neurons in real-time, with ever increasing detail.
Detecting patterns over these activity streams is an effective
means to explore the brain, and to detect memories, deci-
sions, motivations, and perceptions in real-time while driv-
ing effectors such as robotic arms, memory retrieval or even
augment brain function.

[0044] Template matching, as described herein, can be
used to detect recurring patterns of neural activity. Dedicated
hardware can reduce the time between raw data collection
and transfer to processing neural patterns and can be used for
reducing the form factor for neural-prosthetics. The present
embodiments advantageously provide general-purpose,
high-speed, flexible, template-matching hardware architec-
tures that have broad applicability for imaging and electro-
physiology in neuroscience applications.

[0045] Advantageously, embodiments of the present dis-
closure process incoming indicator streams in its native
bit-serial form. It can use purpose-built bit-level processing
units and a hardware efficient template encoding method to
greatly reduce on-chip memory needs and to improve over-
all energy efficiency. An architecture for the present embodi-
ments can keep pace with the incoming data rate and
generate numerically identical results in real-time; thus
advancing the type of applications that can be practically
deployed. This is especially important for neuroprosthetic
applications where the system needs to be portable. Example
experiments conducted by the present inventors illustrate
that the hardware-efficient approaches described herein are
capable of processing real-time data while requiring mini-
mal silicon area and power consumption.

Mar. 9, 2023

[0046] Several technical problems are generally inherent
for neuron-based brain machine interfaces. These include
large-scale sampling of neuronal data, electrode bio-com-
patibility, real-time pre-processing and storage of the data,
sorting neural spike activity, detecting neural patterns, and
selecting the relevant patterns to drive a prosthetic device.
Many recent attempts have been made to mitigate problems
in electrode bio compatibility, including coatings, steering
electrodes around vasculature, and the development of elec-
trodes made from neural tissue itself, that grow into and
interact with the brain. Attempts have been made in the
calcium imaging domain to develop neural prosthesis, and
these attempts require a degree of genetic manipulation.
However, invasive imaging methods tend to have better long
term signal stability and represent a practical potential for
neuron detection in these applications.

[0047] The number of neurons that can be recorded simul-
taneously in live animals is rapidly increasing. Recent
estimates range from 3,000 neurons when recording with
electrophysiological signals and up to a million when
recording from optical signals. Accordingly, there is a grow-
ing need for dedicated and accelerated algorithms and
devices to process patterns of neural data fast enough for use
in real-time applications. These approaches could detect
memories, decisions, motivations, and perceptions in real-
time while driving effectors such as robotic arms, memory
retrieval or even augment brain function. For example,
detection of repeated patterns of activity help predict the
onset of a traumatic episode, before it is even experienced by
the subject. After detection, a brain probe could be used to
silence or rewire the relevant structures to alleviate the
episode. However, most of these applications need to be
untethered, where the device can be carried by the subject
with a portable power source. Therefore, a small form factor
and low power consumption are highly desirable.

[0048] Pattern matching is inherently challenging since a
pattern is not an exact sequence of neuronal activity that
repeats perfectly every time. Instead, pattern detection has to
cope with inherently “noisy” neuron activity signals to
assess patterns with some level of certainty. A range of
approaches have been used to assess patterns of activity in
populations of neurons and include; Bayesian decoding,
recurrent artificial neural networks, explained variance, cor-
relations of cell pairs and template matching with the
Pearson’s Correlation (PC) Coefficient (also referred to as
‘“Template Matching’).

[0049] Template Matching determines a degree of match
as PC coeflicient generally ranges from 1 to -1 on a
spectrum. Template Matching generally involves sliding a
memory template along a stream of neural activities to find
out when there is a sufficiently high correlation value to
indicate a positive match between the template and the
incoming neural activity. The minimum correlation value of
a positive match can be determined experimentally for a
specific template and application. The present inventors
have found that correlation values of, for example, 0.4 or
above can indicate a positive match. Template matching is
applicable to both imaging and electrophysiology domains,
has simplicity of algorithm, and has high matching success.
However, prior art template matching approaches are com-
putationally intense and require a desktop-class GPU or
CPU for real-time applications. This problem will intensify

US 2023/0070243 Al

as advances in probe technology enable sampling more
neurons, especially for applications that require a portable
solution.

[0050] Turning to FIG. 1, a system of template matching
for neural population pattern detection 100, according to an
embodiment, is shown. FIG. 1 shows various physical and
logical components of one or more embodiments of the
system 100. As shown, the system 100 has a number of
physical and logical components. It is understood that the
system 100 and any of the modules described herein can be
implemented in software, such as executed on a processing
unit (“PU”) 152 (comprising one or more processors), or
directly in hardware, as illustrated in the example circuit
diagrams herein.

[0051] In the software embodiments, the system 100
includes random access memory (“RAM”) 154, a signal
interface 156, a network interface 160, non-volatile storage
162, and a local bus 164 enabling PU 152 to communicate
with the other components. PU 152 executes an operating
system, and various modules, as described below in greater
detail. RAM 154 provides relatively responsive volatile
storage to PU 152. The signal interface 156 is in commu-
nication with one or more neural signal acquisition circuits
158 (for example, neuroprobes) to receive neuron signals, as
described herein. The network interface 160 permits com-
munication with a network, other computing devices and
servers, or user devices. Non-volatile storage 162 stores
code/instructions for executing the modules and functions.
Additional stored data can be stored in a database 166.
During operation of the system 100, the modules and the
related data may be retrieved from the non-volatile storage
162 and placed in RAM 154 to facilitate execution.

[0052] In an embodiment, the system 100 further includes
a number of conceptual modules to be executed on the PU
152 or directly in circuitry, including a template module 172,
a summation module 174, a post-processing module 176, a
binning module 178, and an output module 180. In further
cases, the various modules can be combined, their functions
can be run on other modules, or their functions can be run
on other systems or devices.

[0053] Turning to FIG. 14, shown is a computer-imple-
mented method of template matching for neural population
pattern detection 200, according to an embodiment and as
described in greater detail herein. At block 202, one or more
templates are received by the template module 172 from, for
example, RAM 154, the database 166, or the network
interface 160.

[0054] At block 204, the signal interface 156 receives
neuron signals from the neural signal acquisition circuits
158 and serially associates a digital bit with spikes from each
particular neuron signal circuit 158.

[0055] At block 206, the summation module 174 deter-
mines a first summation comprising an element-wise mul-
tiply-sum using a time-dependent sliding indicator window
on the received neuron signals and a template. At block 208,
the summation module 174 determines a second summation
comprising an accumulation using the time-dependent slid-
ing indicator window. At block 210, the summation module
174 determines a third summation comprising a sum of
squares using the time-dependent sliding indicator window.
[0056] At block 212, the post-processing module 176
determines a Pearson’s Correlation Coefficient (PCC) value
associated with a match of the template with the received
neural signals. The PCC value determined by combining the

Mar. 9, 2023

first summation, the second summation, and the third sum-
mation with predetermined constants associated with the
template. The predetermined constants can be determined by
the template module 172, or otherwise retrieved or received
by the system 100 (for example, prior to run-time).

[0057] At block 214, the output module 180 outputs the
determined PCC value to the network interface 160, to the
RAM 154, to the database 166, or elsewhere.

[0058] FIG. 2 illustrates a diagram of a high-level neural
processing approach for pattern detection. Using neuro-
probes 21, electrophysiological spikes of a living brain
tissue 20 are continuously sampled and processed initially as
analog signals. This spike detection and sorting stage 22
produces a time-ordered digital stream of binary indicators
(0 or 1) 23. There is one indicator qn[t] per neuron n and per
time step t. An example sampling rate of neural spikes is 30
KHz, resulting in a 30,000 bits/sec stream per neuron 23.
Various applications (27, 28, and 29) can use neuroprobes
capable of capturing the activity of many neurons. Pattern
detection uses the observation that certain events of interest
such as memories, decisions, or perceptions, manifest as
patterns in the neuron stream. Informally, as FI1G. 2 depicts,
in these applications, patterns of interest have been pre-
recorded 25 and are continuously compared 26 against the
incoming indicator stream 23. This pattern matching process
26 generally uses some stochastic proximity metric. Advan-
tageously, the present embodiments can be applied to appli-
cations (27, 28, and 29) where pattern matching occurs in
real time.

[0059] Pattern detection uses the observation that certain
events of interest such as memories, decisions, or percep-
tions, manifest as specific patterns in the neuron stream.
Generally, as depicted in FIG. 2, patterns of interest are
predetermined or pre-recorded 25 and can be continuously
compared 26 against the incoming indicator stream 23.
Naturally, this pattern matching process 26 is not precise and
has to rely on some stochastic proximity metric. Applica-
tions for use of the system 100 can be applications (27, 28,
and 29) where, for example, pattern matching occurs in real
time. The output can be used to, for example, drive actuators
such as robotic arms 28, or even to augment brain function.
For example, detection of repeated patterns of activity may
help predict the onset of an emotionally traumatic episode
29. If detection is quick enough, through closed-loop neural
probe feedback 29, it may be possible to modulate the
offending brain pattern to alleviate the episode. Accordingly,
in some applications, a pattern detection latency of approxi-
mately 50 ms is desirable. This is defined as the time needed
to detect the pattern once the last corresponding indicator in
the input stream has been received. In the present disclosure,
unless otherwise noted, the term latency refers to the pattern
detection latency.

[0060] Generally, template matching involves sliding the
incoming neuronal activity stream over a spatiotemporal
template of activity indicators (a matrix corresponding to
pre-recorded neural activity where rows correspond to neu-
rons and columns to indicators over a period of time) to
determine when there is a sufficient correlation. For clarity,
it is assumed that there is only one template without loss of
generality. When multiple patterns are desired, the approach
can be performed independently for each one.

US 2023/0070243 Al

[0061] The system 100 accepts as input:

[0062] At the signal interface 156, N digital streams of
spike indicators q,[t]: n € {1. .. N} each being a single
bit denoting if a spike from neuron n occurred at time
t, and

[0063] At the template module 172, a template matrix D
¢ B of N rows and M columns containing pre-
recorded binary indicators with the time period of a
template represented by M.

[0064] The typical sampling rate for input indicators is 30
KHz. However, the spiking rate of neurons is typically
between 1 Hz and 20 Hz with a 1 KHz maximum. Using a

Mar. 9, 2023

[0066] In template matching, the system 100 can perform
the above correlation element-wise between two binned
indicator matrices: the pattern matrix D and of an equally
sized window W of the incoming indicator stream matrix Q.
Both D and W are derived from NxXMxB indicators, and
after binning contain NxM elements each of Ig (B = Dits.
[0067] The computational and memory needs vary greatly
depending on the following four parameters: N the number
of neurons, the event duration M, the resolution at which
activity is to be aggregated or bin size B, and the number of
templates T. TABLE 1 identifies four example configura-
tions of various example applications.

TABLE 1
N T M M B GOPS/ Memory
neurons templates samples sec bins samples msec Template Mb
CFG, 1K 1 150k 5 20 7500 250 0.6 0.3
CFG, 10K 2 150k 5 1000 150 5 314.0 1144
CFG; 20K 3 270k 9 36 7500 250 21.6 33.0
CFG, 30K 4 270k 9 1800 150 5 1696.6 1236.0

much higher sampling rate of 30 KHz allows the system 100
to identify spike timing with precise temporal resolution for
when spikes occur. As the indicator stream is noisy, every B
indicators per neuron in the incoming stream and the tem-
plate are “binned”, that is aggregated into a fixed point value
of 1g(B) bits. B.; B. binning is performed at runtime for
the incoming stream, and off-line for the template D. FIG. 3
shows a short example of binning with a sliding window
over an incoming stream. Lowering B directly increases the
resolution at which the system 100 can identify the exact
moment a spike occurs and thus to identify temporal rela-
tionships in the pattern. The system 100 performs correlation
once it receives M indicators. The correlation is repeated in
a sliding window fashion over the input stream, and every
time another complete bin of B indicators per neuron is
received. The example of FIG. 3 shows the binning opera-
tion over a sliding-window on incoming indicator streams
with N=6, M=20, B=5, M'=M/B=4. The NxM window
slides by B=5 bits every timestep. Two windows are out-
lined.

[0065] Template matching uses Pearson’s Correlation
Coefficient (PCC) to perform the correlation. PCC is a
general measure of similarity between two samples X and Y
of size L defined as:

L (6]
D=0y =T

=1

L L ’
\/Zm -x \/Z(yf -7
=1 =1

where x is the arithmetic mean of the sample

HX, ¥)=

2o

X

t~ =

=

[0068] The system 100 applies PCC after binning neural
data with test bin sizes ranging from 5 to 250 milliseconds,
with window values ranging from 1 to 9 seconds. For the
purpose of stress-testing, experiments on the present
embodiments used extreme values while anticipating an
increase in the number of neurons simultaneously recorded
as technology evolves.

[0069] For applications that involve detecting memories
(e.g., traumatic events), templates representing activity of 5
to 9 seconds (M) binned over 5 to 250 msec (B) were tested
in various configurations (CFG, to CFG,) in example
experiments (with the acquisition rate of 30 KHz). The least
demanding configuration CFG, is representative of several
state-of-the-art applications. CFG, is representative of
future applications with 30K neurons and events of 9
seconds. The table also reports: 1) the number of arithmetic
operations needed to perform Pearson’s Correlation Coef-
ficient over a single template and one window of the input
as it was originally proposed, and 2) the on-chip memory
needed by PCCy,g.. PCCpugy is a particular hardware
optimized implementation that uses Pearson’s Correlation
Coefficient. The present embodiments significantly reduce
costs compared to PCCp, 5.

[0070] While it can be assumed, for clarity, that there are
N separate incoming streams, one per neuron, a costly
analog front-end signal interface that generates the indica-
tors is typically shared over multiple, if not all neurons. As
a result the analog front-end’s output naturally time-multi-
plexes the indicators of several neurons over the same digital
output serial link; as illustrated in FIG. 3. Given a relatively
low acquisition rate, for example 30 KHz per neuron, a
single digital serial link can easily communicate the indica-
tors of tens of thousands of neurons. Without loss of
generality, from this point it can be assumed that all N
neurons can be serialized into a single batch of N binary
indicators all corresponding to the same time step. B of those
batches are read to form a complete bin; thus, NB serial
indicators are read as a complete bin. Similarly, M bins are
read to form a complete sliding window; thus, NMB serial
indicators are read as a complete sliding window.

US 2023/0070243 Al

[0071] It is understood that binning involves a reduction
operation that takes a vector A of size n, and reduces A into
a binned vector A of size fi. Vector A is segmented into A
equal sub-vectors, Ag, A,, . . ., Afi, each of size b. The
binned vector A includes the sums of these sub-vectors,
namely, A={ZA,, A,,A,}. Note that i=n/b. To perform
binning on a matrix, each of its rows is binned separately.
[0072] Advantageously, the system 100 can operate
directly on an incoming serial indicator stream avoiding the
overheads of binning and of the floating-point arithmetic
used by a direct implementation of the PCC. Advanta-
geously, the system 100 can use a decomposition of PCC
into simple bit-level operations, as described herein.
[0073] In some cases, the system 100 decomposes the
PCC into a series of simpler bit-level operations. The PCC
between two samples X and Y (which can be represented as
vectors) of length L is defined in Equation (1). Substituting
the arithmetic means, squaring and rearranging the PCC
equation yields:

L L L 2 2)
(LZM%' - ZMZ}’:‘]

[0074] Let D (template) and W([t] (input neural indicator
stream window starting at time t) be respectively two
matrices of indicators. The PCC of the binned D and W[t] is
determined by the template matching module. Before bin-
ning, D and W contain NxXMXB indicators, whereas D and
WI[t] contain NxM binned values where M:M/BIB the
number of indicators per bin, N the total number of neurons,
and M the per newron sample count in indicators of the
template. Let d,, ., be an element from the template matrix
Dand d;; bean element from the binned template matrix D.
Respectively, they represent the indicators and the corre-
sponding binned indicators of the template D. Where n is a
neuron (matrix row), ¢ and ¢ are respectively columns of the
pre-binned D and the binned D, and b is the 3™ dimension
index of the indicator matrix D that are binned together to
produce the binned values of D. Similarly, W, . [(We [t])
refer to the corresponding elements for the current window
W [t] (W[t]) matrix captured from the incoming stream.
[0075] It can be observed that the squared Pearson’s
Correlation Coefficient from Equation (2) can be split into
constants and summations:

(G181 - O, [1])? &)

[= LB T
M Ges i - s

Mar. 9, 2023

where the constants are the following (all 4, are statically-
known binned template values):

@

o N
C1 =MN, Cy = ZZ(]:(,

gl (85

and the summations are:

N 5)
Si[t] = ZZ.@;[[]{,; (element—wise multiply—sum)

t] (accumulation)

2 (sum of squares).

[0076] The constants, hereafter referred to as Pearson’s
constants, are terms involving templates only (independent
of the sliding indicator matrix WI[t]) and, in some cases, can
be predetermined (determined ‘offline’) and stored in
memory, determined prior to receiving signals, or otherwise
received by the network interface 160. The summations,
hereafter referred to as Pearson’s summations, are terms
dependent on W[t] and can be generally determined by the
summation module 174 at runtime, once a complete bin is
received. In the present embodiments, Pearson’s summa-
tions are determined by the summation module 174 based on
the received bit-serial binary indicators associated with the
received neuron signals.

[0077] Summation S, is a sum of all binned values in the
incoming window. An example pseudocode algorithm for
summation S, is described below. Since each binned value
is itself a count of indicators, S, is a count of all N M
indicators in the window. This count changes as the window
slides. To avoid storing the whole window, the system 100
stores a population count per column (bin) of the sliding
matrix W[t] into memory R, (line 6). Once the accumulation
of a new column P, that enters to the sliding window (line
5)is completed, this column sum is added to the final S, sum
and the column that exists the sliding window and was
computed M columns in the past (line 7) is subtracted.

ALGORITHM 1

S, Summation Process.

// all variables are intially zero
1 while TRUE do
21 forf=1toMdo

311
41 1
[

forb=1toB do
forn=1to N do

// timestep: (M — DBN+ (b — DN +n

US 2023/0070243 Al

ALGORITHM 1-continued

Mar. 9, 2023

S, Summation Process.

I 1 1 I // if windicates a spike
I I 1 1 // Increment column sum
511 1 | PyePy+w;
I | // store current column sum to R, RAM
61 | Ry#« Py
I 1 // add newestColumn-oldestCcolumn to S,
71 1 S, 8,+P,—R,[m]:
8 | | Send acopy of current S, to next stage;
91 | Pyew;
101 | #a¢em;

// clear column sum
/1 store previous m

[0078] An example hardware implementation of S, is
shown in FIG. 5 (bottom, left). The system 100 first accu-
mulates input indicators (received serially at w 500) into S,
column sum register (P,) 501. The control signal sEnb 502
indicates when a column sum is ready. This happens every
N M cycles. Once a column (bin) of indicators is accumu-
lated, the sum P, is moved to the column sum memory R,
503 and P, is reset to prepare it for the next column
accumulation. The final stage of processing S, in this
example is the bit-serial add-sub-accumulate 504. This
block receives the new column sum 505 (to be added) from
the column sum register P,, and the oldest column sum (to
be subtracted) from the column sum memory R,[th] 506.
Both of these sums are serialized using a Parallel-Input-
Serial-Output (PISO) unit 507, and the difference 508 of
those sums is accumulated 509 (serially) to the final S,
value.

[0079] Summation S;, as shown in Equation (5), uses
additional information as it accumulates the squares of the
binned input. One approach is to accumulate the binned
indicators and then square the accumulated value for each
bin. This can generally be expensive as it has to accumulate
values ahead of processing, and a cost-prohibitive squarer
circuit for each bin of a total of N bins. An alternative
highly-efficient approach is to break the squares into partial
sums that will be generated and accumulated as new values
are received. In an embodiment, the system 100 can use a
sum of first odd natural numbers to break the square opera-
tion into a summation of linear operations:

=

©

aZ

Qi-1)
=1

[0080] Substituting in Equation (5) yields:

f a M

M N
»\7;;,[:]2=ZZV Qi1

m=1n=11i=1

=

M
Sl=>"
m=1

n

Where the upper bound for a is Wy [t]; the corresponding
binned value. Advantageously, this summation can happen
‘on-the-fly’, incrementing a every time a 1 is received.
Accordingly, the system 100 does not need to know the
upper bound in advance. Instead, the system 100 ‘discovers’
the upper bound as the stream is received.

[0081] For efficiency, the summations can be organized to
match the order in which the indicators are received as
exemplified in FIG. 4: i in the outer summation, bin the
middle summation, and n in the inner summation, namely
Yoo VE,_Bx, _ V. For this purpose, the system 100 keeps
the running indexes i for each element of the current column.
This can be solved by storing intermediate copies of the
variable i one per neuron n. An example pseudocode algo-
rithm for summation S; is described below.

Algorithm 2: S; Summation Process.

// all variables are initially zero

BN =

5 1

while TRUE do

for i = 1 to M do

forb=1toB do

| forn=1to N do

| | // timestep: (h —) BN+ (b—-1)N+n

| | /1 if first bit in bin clear sum index, otherwise increment

b 0 if b=1

—w+
@ {ln otherwise;
| | /1 if w indicates a spike

| | // increment sum index

| I_ Py« Ps+w(2i,—1):

I_

// store current column sum to R; RAM
R®s#;] « PO

/1 add newestColumn-oldestColumn to S,
$3 « S3 + PO - R® [1];

US 2023/0070243 Al

-continued

Mar. 9, 2023

Algorithm 2: S5 Summation Process.

9 | | Send a copy of current S to next stage:
10 | I_ P3« w; // clear column sum
I_ ﬁ’lﬁ <« g /1 store previous m

@ indicates text missing or illegible when filed

[0082] The S; summation process is similar to the S,
summation process; however, a copy of the current index i
of neuron n is stored into the memory location i,. i, is
incremented if the spike indicator w is active, and will be
cleared for every n on the first bit of each the bin (line 5).
The column sum P; will be incremented by 2i,—1 if the
incoming indicator w is active. This will generate the sum of
squares as dictated by Equation (6).

[0083] As illustrated in FIG. 5 (top, right), the incoming
indicators 510 are accumulated 511 into an indices memory
512 for each neuron of the N neurons separately; for
example, i, for neuronn € {1, . .., N}. Subsequently, 2i,—1
is determined, and accumulated to the column sum register
P; 513. The computation of 2n,—1 is performed for each
neuron separately. The control signal iRst 514 is activated
every B cycles for a period of N cycle to clear the previous
content of the memory 515. Note that the fragments of the
squares start being accumulated before having the complete
square value. The rest of the S; summation process 516 is
similar to the S, summation process.

[0084] Summation S,. as shown in Equation (5), is dif-
ferent than the previous two sums as it involves the template.
S, is an element-wise multiply-sum of elements from the
binned template and elements from the sliding spikes
matrix. The major challenge of element-wise multiply-sum
is that it requires recomputing all matrix elements for each
incoming bin (a column in the matrices). Unlike S, and S5,
the system 100 cannot perform this summation by adding
the difference between the first and the last column. How-
ever, the approach of the present embodiments simplifies
this compute-intensive operation and does not require any
multiplier. Instead, the system 100 uses an accumulator for
each of the matrix columns by substituting the binned form
of the input spikes sliding matrix 2 from Equation (5) with
the serialized input w. S; will thereby be determined as:

e

A i = ®
sin=2 50y "

minml b1 otherwise
=1 n=1b=

[0085] For each of the N neurons, the binned value of the
template 520 is accumulated 521 if the input spike indicator
w 522 is active. For example, if the incoming spike indica-
tors stream is ““ ... 0100101 and the current bin value is x,
the value of x will be accumulated three times; thus it will
be multiplied by three, the number of active indicators
(binary I’s) in the stream. The accumulators are connected in
series 523 to implement the sliding window. Once a com-
plete bin (column) is computed (i.e., control signal sEnb 524
is asserted), its accumulated value is moved and accumu-
lated in the neighboring accumulator. After M successive bin
accumulations, all M bins (columns) will be accumulated in
the leftmost register 525. Finally, the accumulated S, is
serialized 526.

[0086] To find the Pearson’s Correlation Coefficient value,
the Pearson’s sums, together with the pre-computed Pear-
son’s constants, are substituted into Equation (3). This
determination includes (1) a constant multiplier, (2) a sub-
tractor, (3) a squarer, and (4) a fractional divider. In some
cases, to reduce the overhead of the post-processing hard-
ware, this determination can be implemented using bit-serial
arithmetic. FIG. 6 illustrates an example of a family of
bit-serial arithmetic circuits modified for the present
embodiments. There is a unit latency whereby the first
output bit is generated at the same cycle that the first valid
bit has been received. The first valid bit propagates through
a combinatorial logic to generate the first valid bit. A single
register is added between each cascaded unit to break long
combinatorial paths that may be created. In some cases, the
constant multiplier and squarer can be modified versions of
carry-save add-shift semi-systolic multipliers. While other
bit-serial arithmetic circuits require a control signal to
indicate the last bit of bit-serial value, the present embodi-
ments only require indication of the first bit of the bit-serial
value at the beginning of the determination. This further
simplifies the design. In this case, an ultra low-area frac-
tional divider has also been implemented.

[0087] FIG. 6 illustrates an example of a family of bit-
serial arithmetic circuits. The illustrated implementation
exhibits a unit latency, namely, the first output bits (611, 612,
613, and 614) are generated at the same cycle that the first
valid bits (601, 602, 603, and 604) have been received. The
first valid bit propagates through combinatorial logic (621,
622, 623, and 624) to generate the first valid bit. A single
register (631, 632, 633, and 634) is added between each
cascaded unit to break long combinatorial paths that may be
created. The constant multiplier 620 and squarer 630 can be
modified versions of Gnanasekaran’s carry-save add-shift
semi-systolic multiplier. While the aforementioned bit-serial
arithmetic circuits require a control signal to indicate the last
bit of bitserial value, the illustrated implementation only
requires indication of the validity of the first bit (601, 602,
603, and 604) of the bit-serial value at the beginning of the
computation; further simplifying the design.

[0088] An example implementation of post-processing
circuitry is exemplified in FIG. 7B. The post-processing
module 176 receives bit-serial Pearson’s sums, and bit-
parallel Pearson’s constants. Bit-serial arithmetic units, as
part of the post-processing module 176, are cascaded to
determine the squared PCC as formulated in Equation (3).
To increase the maximum possible F,, ., the computation
can be pipelined together with the start signals that synchro-
nize the computation start time for each unit. The compu-
tation performance and latency are dominated by the frac-
tional divider, thus the post-processing units can process one
set of inputs every WP cycles, where W is the data width and
P is the precision of the output.

[0089] The post-processing unit has two major inputs, the
Pearson’s sums and the Pearson’s constant. The Pearson’s

US 2023/0070243 Al

sums are generated serially by the S; summation process, the
S, summation process, and the S; summation process. As
depicted in the example of FIG. 7A, the post-processing
module 176 receives those sums as bit-serial inputs, together
with a control signal to start the processing. Pearson’s
constants can be generated offline and are loaded as bit-
parallel inputs to the post-processing unit.

[0090] FIG. 7B shows an example implementation of the
post-processing circuitry. The post-processing unit receives
bit-serial Pearson’s sums (701, 702, and 703), and bit-
parallel Pearson’s constants (711, 712, and 713). The bitse-
rial arithmetic units are cascaded to compute the squared
PCC 720 as formulated in Equation (3). To increase the
maximum possible Fmax, the computation can be pipelined
together with the start signals 700 that synchronize the
computation start time for each unit. The computation
performance and latency are dominated by the fractional
divider 710, thus the post-processing units can process one
set of inputs every WP cycles, where W is the data width and
P is the precision of the output 720. The post-processing unit
has two major inputs, the Pearson’s sums (701, 702, and
703) and the Pearson’s constant (711, 712, and 713). The
Pearson’s sums are generated serially by S; PE 721, S, PE
722, and S; PE 723. As depicted in FIG. 7A, the post-
processing unit 730 receives those sums as bit-serial inputs
(721, 722, and 723), together with a control signal 740, to
start the processing. On the other hand, Pearson’s constants
can be generated offline and loaded to the post-processing
unit 730.

[0091] TABLE 2 shows the cost in bits of various storage
elements given a configuration. B_is an expected maximum
count for the bin values. This maximum is a function of the
intrinsic firing rate of the brain and of the sampling rate used
by the analog front-end. It is known that the neurons fire at
a maximum rate of 1 KHz, whereas a commonly used
sampling rate for neuroprobes is 30 kHz. The higher sam-
pling rate permits a resolution that is necessary for identi-
fying when spikes occur. Accordingly, the expected maxi-
mum value for a binned value will not exceed B/30, where
B is the total number of samples binned per value. An
example experiment confirmed, using indicator traces from
mice, that for B=150 the maximum expected value B,,=5.
Since most of the system’s 100 memory is consumed by
template memory, the system 100 advantageously can use
efficient encoding of the template matrix.

TABLE 2
Sub-module Resource Width Depth

S, PE Registers (P, PISO) Mlog,(NMB,?) 1

Template RAM I\A/Ilogngef) N

S, PE Registers (P,, PISO, SR) log>,(N*MB_4) 1

Column RAM (R,) log,(NB,) M

S; PE Registers (P3, PISO, SR) log,(N*MB_%) 1

Column RAM (R3) log,(NB, 3‘3 M

Indices RAM (i) log,(NB_ N

Post- Registers 8010g2(NMB) 1

Processing

[0092] The template memory size can, in many cases,

reach hundreds of megabits. Such memory sizes are unde-
sirable for untethered applications. Using off-chip memory
is also undesirable due to its energy and latency costs
compared to using on-chip SRAM. Therefore, better and/or
more efficient compressing of template values is desirable.

Mar. 9, 2023

[0093] Ithas been determined in example experiments that
templates collected from thousands of neurons in mice
exhibit a geometric distribution of values, with the fre-
quency of low magnitude values far exceeding that of the
rest. For such a distribution, unary coding is an efficient
entropy lossless compression. Accordingly, for the case of
B=150 (max binned value B;=5), values O to 5 are encoded,
respectively, as Ob, 10b, 110b, 1110b, 11110b and 11111b.
However, for larger values of B, unary decoding may require
large one-hot to binary decoders. Unary and binary codes
can be mixed to implement a simple-to-decode variable
length encoding scheme referred to as UB,, , coding. AUB,,,
code represents a UB code with unary variable-length codes
of maximum u-bits length, and a binary fixed-length code of
b-bits length. For example, for B=7500 (max binned value
B#250), a UB, ; encoding can be used. That is, values up
to 3 are encoded in unary, whereas larger values are encoded
with a prefix of 1111b followed by the actual value v. This
encoding uses 12 bits in total for all values above 3. It is
understood that other possible encoding schemes can be
used, where such schemes carefully balance area, complex-
ity, energy, and compression ratio.

[0094] FIG. 8 illustrates an implementation for an
example UB, ;. To allow a single code decoding per cycle,
compression of data is arranged in lines of u+b=4+5 bits
width. A single line 801 is read every cycle and the previ-
ously read line 802 is stored to allow processing the remain-
ing bits from the previous line. The previous line and the
current line are packed as a double-width line 803. The core
of the decompression engine is a barrel shifter 804 that
allows reading the data from a specific starting position.
After shifting the data, the first u+b bits are the current code.
The first u-bits 805 are the unary part and are processed
using a u-bits priority encoder 806 to receive the index of
leading zero 807. If all u-bits are I’s 808, the current code is
binary; the next b-bits 809 are read from the binary code
portion then u is added 810 to generate the decompressed
data. Otherwise, the current code is unary; the output of the
priority encoder (index of leading zero) is actually the
decompressed data. The rest of the circuitry 811 shown in
FIG. 8 determines the starting index 812 of the next code and
generates an enable signal 813 that enables reading the next
line from the memory once the remainder of the combined
current and previous lines is less than u+b bits. In this
implementation, one decompressor unit per template
memory column is used.

[0095] While the present disclosure has described using a
single template, it is understood that multiple templates
(901, 902, and 903) can be used. FIG. 9 shows an example
of scaling to support multiple templates. Advantageously,
summation processes S, 905 and S; 904 are functions of the
input stream 906 solely. Accordingly, only the S, summation
process 907 needs to be determined by the summation
module 174.

[0096] A first parameter available to scale up the number
of neurons to process is operating frequency. Since the
system 100 can perform the determinations at the same rate
as the data is received, the frequency needs to be NxKHz to
process N. To surpass the limitations of the frequency, even
more neurons can be used by partitioning the input stream
coupled with replication of computation components; as
illustrated in the example of FIG. 10. The example shows
scaling up to 4x more neurons by partitioning the input
stream into four sub-streams 101, where each sub-stream is

US 2023/0070243 Al

assigned its own set of summation units 102, as part of the
summation module 174. The post-processing module 176 is
scaled up accordingly. The costs would be linear for the
replicated summation units 102, whereas they are logarith-
mic for the post-processing module 176. Fortunately, the
template memory can be partitioned, as with the input
neurons. In general, overall area of the template memory
104 will be mostly unaffected by the required partitioning.
The relative cost of the processing logic in the present
embodiments is generally negligible compared to the tem-
plate memory.

[0097] The present approach for scaling up to more neu-
rons opens up another configurable dimension that can be
tuned to reduce operating frequency and power at a negli-
gible increase in area. The input stream can be partitioned
and thus use more processing units in order to reduce
frequency and improve power efficiency. The low area
needed by the computational portion allows this to be an
effective approach. Advantageously, for the most demanding
configurations studied in example experiments, the latency
for producing the correlation output per window was only
700 cycles with a reduced clock frequency of 140 KHz; thus,
the system 100 would still meet a 5 ms requirement. In some
cases, by delaying the incoming stream w by one cycle, the
system 100 avoids accessing the template memory when the
indicator is 0. This improves energy consumption by nearly
7 times for the most demanding of configurations as the
indicator stream is sparse.

[0098] An optimized baseline vector-unit-based template
post-processing module 176 can be used to determine the
Pearson’s Correlation Coefficient on binned values (referred
to as PCCy,gz). As shown in FIG. 11, the binning module
178 111 can be used to convert the serialized input w 112
into corresponding bin values per neuron. After NB cycles,
the binning memory 113 will include the value of the current
bin for all N neurons. As the last N indicators are received,
the bin values are finalized one per neuron per cycle. At that
time, they are transferred (one by one) to the corresponding
column in the sliding matrix unit 114 of the post-processing
module. The sliding matrix unit contains N M elements each
of 1g(B_,) bits. Each NB cycles, the next column of the
sliding matrix is selected and written to the corresponding
segment. This will implement a sliding window of the
binned spike indicators.

[0099] In an embodiment, a set of vector processing
elements (VPEs) 115 as part of the post-processing module
perform computations needed by the correlation. For this
purpose, the correlation computation can be split into com-
ponents that can be performed over binned columns of the
input (intra-column operations), and then the per column
operations can be combined to produce the final output
(cross-column). The intra-column operations are computed
by the VPEs 115. A scalar processing element (SPE) 116
performs the cross-column computations. Rather than allo-
cating a VPE 115 per template 117 column, the sliding
matrix can be split column-wise into p columns where p is
tuned to achieve the required acceleration.

[0100] The post-processing module 176 contains T tem-
plates 117 which it matches against the incoming stream.
There are NMT elements in the template unit each having
lg(B,) bits. Each column of the template matrix is thereby

Mar. 9, 2023

[0101] In an embodiment, the VPEs and the SPE each
contain 4x32 bit register-files for storing their intermediate
results. The register-files in the VPEs are chained together to
form a shift-register. This allows moving data from all
VPEs’ register-files for processing in SPE. The main pur-
pose of the shifting operation is to allow accumulating
column data. As a result, there are NB cycles to process the
sliding matrix and generate the PCC before the next binned
column arrives and contaminates the sliding matrix content.
The VPEs and the SPE implement floating-point arithmetic,
as operations with the incoming binned data, as per Equation
(1), entail an average. In some cases, for the most demand-
ing configuration CFG,, single-precision may be needed as
the individual sums in Equation (1) involve the accumula-
tion and multiplication of 30,000x8,000 8-bit inputs. In
other applications, and provided that the spiking rate in the
input stream is known to be low, fixed-point units can be
sufficient for the VPEs and the SPE.

[0102] The number of lanes p can be configured to meet
the minimum required latency requirement, for example, the
5-millisecond latency requirement. By considering the
latency in cycles needed per stage, the following constraint
was derived:

2NN
5
r

[0103] In example experiments, a maximum frequency of
F,...=270 MHz was achieved. Accordingly, for the evalua-
tion configurations CFG, =, from TABLE 1, the number of
lanes used p was 1, 201, 22, and 2,263, respectively. Each
lane has a 4x32b register file to store results locally reducing
overall energy in comparison to using a common, shared
register file across multiple lanes.

[0104] For the example experiments, the present inventors
used actual neuron indicator streams collected over 2400
seconds from 6446 neurons of three mice. For experiments
requiring inputs from more neurons, these traces were
augmented by sampling per neuron activity from the exist-
ing trace while maintaining the overall activity factor. The
target frequency was constrained to be only as high as
necessary to meet the timing requirements of each specific
configuration.

[0105] The power consumption was estimated using a
post-layout netlist with an activity factor of F,,, /F=1/
1500. This is the ratio between the average neuron firing rate
and the sampling rate, which represents the typical neural
activity factor as validated by the input datasets.

[0106] Template memory dominates area for the most
demanding configurations. Without template compression,
the capacity needed is a function of M, N, and B £ How-
ever, as determined by the present inventors, compression
can greatly reduce template footprints, and thus, the on-chip
memory needed.

[0107] Scaling the number of templates (e.g., FIG. 9) and
the number of neurons (e.g., FIG. 10) can be combined to
form a configurable architecture. This configurable archi-
tecture enables a fabrication of a single device which can be

) 8 ®)
+ pVFmax < mm(m, 0.005)

US 2023/0070243 Al

configured to process several templates with different attri-
butes, such as number of neurons (template depth), N,
number of bins in a template (template width), M, and the
number of spike indicators in a bin, B.

[0108] As depicted in the example shown in FIG. 12, the
system 100 can receive several bit-serial inputs: w, . . .,
W35, 120 for example. Each one of those inputs is a serial-
ization of spike indicators of several neurons. Assuming a
F =30 KHz the sampling frequency, a device operating at
Fomax—=30 MHz is capable of serializing F_,,,./F,=1000
neurons for each bit-serial link. This is a total of 32,000
neurons for the example shown in FIG. 12.

[0109] In the example of FIG. 12, the configurable archi-
tecture is tiled, where the same processing unit 121 is
replicated to enable spatial scaling. The tiles PE 121 is
shown in FIG. 12 (top), and is composed of an S1 summa-
tion chain 122 as described with respect to FIG. 5 (bottom),
S2 123, S3 124, and a bit-serial (125, 126, and 127) for each
sum. Horizontal cascading 122 of the PEs is used to segment
into several templates, where each template is a group of
subsequent columns. The configuration bit CFG, JH is used to
control horizontal cascading 122 of PE, ;. The width of S1
summation chain is used to set the template width (in bins),
M. This chain can be cut using the configuration by CFG¥.
If the chain is cut, namely CFG”=0, the current column
starts a new template. Otherwise, if the chain is continued,
namely CFG*=1, the template is continued and the width of
another PE (20 bins in the example of FIG. 12) will be added
to the current template width. S2 and S3 are also calculated
locally in each PE.

[0110] Vertical cascading can be used to select which
neurons are used for each template. In the example of FIG.
12, a configuration bit CFGr, JV can be used to control
horizontal cascading of PE,,. The three bit-serial adders (see
FIG. 12 upper right corner) are used to sum up each of the
sums S1, S2, and S3 in a column, among all vertical PEs. If
CFG, ;"=0, the result PE, ; is not summed up and w;, is not
considered in the current template.

[0111] The content of the template can be used for further
fine tuning if the template width. While the width of the S1
chain in a single PE is fixed (20 elements in the example of
FIG. 12). It can still be reduced by zeroing the template
RAM of a single element in the chain. This will select a
single element from the summation chain (resulting in 19
elements in the example of FIG. 12). The operating fre-
quency can also be used to fine tune the number of neurons.
Since, in this example, the sampling frequency is F.=30
KHz, and the computation is performed at the same rate as
the data is received, changing the operating frequency will
allow tuning the number of neurons received by each
channel w,, more precisely; the number of neurons received
by a single link is F_, , /F.. The system 100 can be config-
ured using a bit-serial configuration chain (shift register),
such as a JTAG (Joint Test Action Group) interface. The
configuration bits are loaded serially. The template memory
can also be loaded using the same configuration chain.
TABLE 3 provides a list of sample configurations, assuming
the design dimensions in FIG. 12.

TABLE 3
Configuration N M B T
1 Up to 32 k Upto2k Upto 7.5k 1
2 Uptol6k Uptodk Upto75%k 1
3 Upto 8k Upto8k Upto75%k 1
4 Upto4dk Uptol6k Upto75%k 1

Mar. 9, 2023
TABLE 3-continued

Configuration N M B T
5 Upto2k Upto32k Upto75k 1
6 Uptolk Upto 64 k Upto75k 1
7 Upto 32k Up to 20 Upto75k 100
8 Upto 32k Up to 40 Upto75k 50
9 Upto 32k Upto 100 Upto75k 20
10 Upto 32k Up to 20 Upto75k 30
Upto 32k Up to 40 Upto75k 10

Upto 32k Up to 10 Upto75k 10

[0112] Selecting a subset of neurons can use a suitable
brain probe. For example, the brain probe can be used to
detect spikes from neurons that are not related to the
detected activity. Also, the probe may pass through inactive
area of the brain where neural spikes are not detected. Only
neurons that are related to the detected activity and contrib-
ute to the matching operation can be considered; where all
other neurons should be excluded.

[0113] In a particular case, selection can use N, whereby
the number of neurons that are processed is user-program-
mable. The user may choose to send only those neurons that
contribute to the matching operation to be processed and
thus configured to process those N neurons. This may
require an external device to select and serialize a subset of
probe neurons.

[0114] In another case, a neuron-select binary table, S, can
be used. For each possible neuron, S stores whether this
neuron is considered for the matching operation. Given a
neuron id, i<N,,,., S[i]=1 if neuron i is considered for the
matching operation, otherwise S[i]=0. The binary values of
S are used to enable or disable the processing circuitry. As
the neuron spike activities are received serially and cycli-
cally every N, timesteps, S is read sequentially and
cyclically every timestep to generate the enable/disable
binary indicator for the matching circuitry. Where N, ..
denotes the maximum number of neurons that can be
processed, while 01=sN<N, denotes the actual number of
proceed neurons.

[0115] In another case, to process a single template, S
stores a selection bit for every neuron, thus the size of S is
TxN,,,, bits, where T denotes the number of matched
templates. For a large number of processed templates and a
large number of neurons the size of S can be substantial. For
instance, S consumes 120 Kbits if T=4 and N,,, =30,000.
Instead, S can be compressed based on the distribution of the
selected neurons. For example, if N<<N, .. a sorted list of
the selected neuron ids can be stored instead of a selection
binary indicator for each neuron. As the size of a neuron id
is log 2(N,,,,,.) bits, the size of the compressed table would
be TxNxlog 2(N,,). For instance, the size of the com-
pressed S would be 6 Kbits, if T=4, N=100, and N, , =30,
000. Similar to above, every timestep a subsequent value of
the compressed S is read and compared to the id of the
currently processed neurons, if they match then the current
neuron is included in the matching operation and the match-
ing circuitry is enabled, otherwise the current neuron is
excluded and the matching circuitry is disabled.

[0116] In another case, a pre-filtering stage can be used to
reduce the number of streamed neurons from N, .. down to
N. Similar to above, a neuron-selection table can be used
(either compressed or non-compressed). This table is read
subsequently and cyclically every timestep to control the

US 2023/0070243 Al

filtering operation. The neuron-selection value determines
whether to stream a specific neuron spike, or to exclude it
otherwise.

[0117] FIG. 13 illustrates determined memory footprints
in the example experiments for the four configurations of
TABLE 1 and different templates with and without template
compression. All footprints are normalized to the footprint
of the uncompressed template per configuration. Results are
shown for three different templates per input sample trace;
a worst case which is the frame from the neuron recording
with the least sparsity, and two templates which were
randomly selected windows. The worst case template dic-
tates the compression ratio used to size the on-chip template
memory. As expected, uncompressed footprint templates
vary considerably, from 150 Kb for CFG, to more than 600
Mb for CFG,. The lightweight lossless compression method
is effective in reducing footprints, and more so where it
matters the most. That is for CFG, (B=150, M=1000) and
CGF, (B=150, M=1800) configurations where footprints are
reduced by at least 2.79x for all templates. The resulting
template memory sizes are shown in TABLE 4. TABLE 4
also reports the number of bits used by the various registers
per unit in an embodiment of the system 100 and the total
on-chip memory needed by PCCg,¢,. While PCCy, ., can
benefit from template compression for its own template
memory, it still needs a window memory for the incoming
indicator streams. As shown, the ASIC implementation of
the system 100 meets real-time requirements for all con-
figurations and, as expected, requires considerably less
power than the FPGA implementation.

Mar. 9, 2023

12

[0119] TABLE 6 shows the power usage of the system 100
and PCCg o for the example experiments for the four
configurations, including a breakdown in memory and com-
pute. The system’s 100 power is considerably lower than
that of PCCg . for all configurations for at least three
reasons: 1) the system 100 does not need a sliding window
memory, 2) the compute units are much more energy effi-
cient, and 3) the system 100 can avoid accessing the
template memory when a bit indicator is 0 (most will be 0
due to the nature of brain activity). In PCCy .. compute
units are responsible for a significant fraction of overall
power for all configurations, and this is not the case for the
system 100.

TABLE 6
PCCBASE System 100
Memory Compute Total Memory Compute Total
CFG, 7.87 17.34 25.22 0.30 043 0.73
CFG, 1236.74 607.29 1844.03 89.78 84.28 174.06
CFG; 198.94 81.12 280.06 18.55 9.68 28.23
CFG, 1071807 6550.65 17268.72 682.70 522,76 1205.46
[0120] TABLE 7 shows the area in mm? for the system

100 and PCCg ¢ as configured to meet real-time require-
ments of the four configurations. TABLE 7 also shows a
breakdown in the area used for memory and compute
component. The system 100 is considerably smaller than

TABLE 4
PCCBASE
System 100 Template
S1 PE S2 PE S3 PE RAM
Tmpl Col. Col. Idx. PP Sliding Uncom- Com-

Reg RAM Reg RAM Reg RAM RAM Reg RAM pressed pressed

(Kb) (Mb) ®) (Kb) (®) (Kb) (Kb) (Kb) (Mb) (Mb) (Mb)
CFG, 0.6 0.08 77 0.35 108 0.51 7.81 1.7 0.15 0.15 0.08
CFG, 27.3 31.10 73 15.63 82 17.58 29.30 2.0 57.22 57.22 31.10
CFG; 1.3 5.89 95 0.81 127 1.09 156.25 2.2 16.48 16.48 5.89
CFG, 53.3 220.70 80 31.64 89 35.16 87.89 2.2 617.98 617.98 220.70
[0118] TABLE 5 illustrates the performance of the system PCCg sz Since it uses template compression, the savings

100 and PCCy . in the example experiments in terms of
throughput (number of correlations computed per second)
and latency (time from arrival of last data bit to complete
computation) for the four configurations. For CFG, through
CFG,, three partitions are used, each processing %5 of the
neurons. The present embodiments are shown to far exceed
the real-time latency requirements, as it requires just 700

with the system 100 are due to, at least: 1) eliminating the
sliding window memory, and 2) using much smaller bit-
serial compute units. For the CFG, configuration, the system
100 is nearly 2.6x smaller than PCC, .. SRAM cells in a
14 nm process can be 6x to 8x smaller compared to 65 nm.

. i TABLE 7
cycles to produce its output once the last indicator for a
window is received. PCCBASE System 100
TABLE 5 Memory Compute Total Memory Compute Total
Throughput CFG, 038 0.15 0.53 0.10 0.02 0.11
(PCC/sec) Detection Latency (msec) CFG, 81.50 5.87 87.37 28.46 1.35 29.81
CFG; 15.60 0.77 16.37 6.26 0.09 6.25
CFG 1 2 3 4 1 2 3 4 CFG, 46942 63.48 532.90 202.00 3.42 205.42
PCCBASE 4 400 12 800 0.74 4.98 4.71 5.00
System 100 4 400 12 800 0.0239 0.0028 0.0015 0.001 .
[0121] In the example experiments, the system 100 was

implemented on a Stratix 10 FPGA. TABLE 8 reports the

US 2023/0070243 Al

resulting power, the Fmax achieved, and the minimum Fmax
(Target) required to meet the real-time requirements of each
configuration.

TABLE 8
F (MHz) Power (mW)
Achieved Target Static Dynamic Total
CFG, 467.51 30 5850.08 54.04 5904.12
CFG, 318.47 300 5860.47 1016.38 6876.85
CFG; 324.78 600 5851.42 495.03 6346.45
CFG, 258.53 900 5889.82 12014.81 17904.63

[0122] In the example experiments, software implemen-
tations of the system 100 were implemented on a CPU and
a GPU. The CPU implementation uses a software pipeline to
perform the binning and PCC calculations. Three GPU
implementations were evaluated. The first was a hand-tuned
implementation utilizing the same PCC decomposition and
optimizations in the CPU pipeline. This performed the best
for small configurations (e.g., CFG,). The second imple-
mentation utilizes a Thrust (v1.8.3) library, which outper-
forms the hand-tuned version for larger configurations
(CFG,_,). The last solution used a Fast-GPU-PCC algorithm
which converts PCC computation into a matrix multiplica-
tion problem. The parameters are emulated by substituting
the number of voxels for neurons, and the length of time for
the number of bins. The results are summarized in TABLE
9.

TABLE 9
Device CFG, CFG, CFG, CFG,
cPU 613 1455 12240 112952
GPU-Manual 0.28 26.67 5.36 274.1
GPU-Thrust 1.20 4.27 3.96 20.6
GPU-Fast-GPU-PCC 167.2 619.9 5222 11395

[0123] As discussed, Pearson’s Correlation generally
requires storing the templates and a correspondingly large
window of the input incoming stream. These matrices are
costly. For example, they can grow to 1.24 gigabytes each.
The computation needs also grow and reach 1.6 Tensor
operations per second (TOPs), most in FP32, for larger
configurations. Thus,

[0124] Computation latency is a significant challenge in
the art as the computation per window has to be completed
within strict constraints; for example, within 5 milliseconds.
Embodiments of the present disclosure advantageously for-
mulate the computation so that the input streams are con-
sumed as they are received, bit-by-bit; thus, obviating the
need for buffering the input. The present embodiments,
accordingly, greatly reduce memory requirements, and
allow the system 100 to meet real-time response times
because very little computation is left after a window’s
worth of input is received. The formulation of the present
embodiments enables the use of relatively small bit-serial
units for performing the majority of the computation. The
present embodiments replicate and place these units near
template memory banks (i.e., near memory compute). This
enables high data parallel processing and scaling at low cost.
Additionally, the present embodiments use a hierarchical,
tree-like arrangement of the compute units; where floating
point and expensive operations are needed sparingly. Further

Mar. 9, 2023

advantageously, embodiments of the present disclosure
exploit sparsity of the template content via light-weight,
hardware friendly decompression units; which are replicated
per bank. In some cases, templates can be compressed in
advance. Since the inputs are processed a bit a time and
given that the input stream is sparse, the system 100 can
reduce accesses to the template memory, and thus, greatly
reduce power requirements.

[0125] In some embodiments of the present disclosure, a
machine learning module 182 can train an artificial neural
network to approximate the behaviour of template matching
using PCC. This approach enables the use of neural network
hardware accelerators to implement PCC template matching
for real time applications. Using a supervised neural net-
work, training involves utilizing labelled data, where the
training algorithm uses the labels to determine the correct-
ness of the model on each iteration. In this case, the input to
the neural network is a window of neuron activations, while
the labels could be, for example, 1 where a window and
template pair give a strong correlation (e.g., PCC>0.8) and
0’ elsewhere. Knowledge distillation improves upon this by
using the actual PCC formula to provide more detail to the
training algorithm. More specifically, the loss function can
be determined using the difference between the calculated
PCC and the output of the neural network. The network can
simultaneously ‘learn’ multiple templates by making the
output a T-dimensional vector, where each value in the
vector corresponds to the PCC of the input window and the
T templates. The neuron activations are binned before being
passed to the network, although the binning operation may
also be subsumed into the network. In an example experi-
ment, the parameters used to generate the training data are;
B=300, M=50, N=100, T=3. Model accuracy can be shown
by posing the problem as a binary classification task, where
the model indicates if a strong correlation exists. The
accuracy of this model is reported in TABLE 10.

TABLE 10
Epoch Loss TP Fp N FN
0 5.095 120 13 12155 0
1 0.724 133 0 12155 0

[0126] P (Positive) indicates that the PCC formula calcu-
lated a strong correlation while T (True) indicates that the
neural network outputted the correct result. In this case, the
model needed just two epochs in order to correctly classify
all of the windows in the dataset. This model consists of two
fully connected layers with the RelLU activation function.
The input dimension is given by the size of the input window
(MxN) and the output is T=3. The inner dimension is
selected to be 128 for this experiment. The memory and
computational demands of this model are given in TABLE
11 in terms of number of parameters and number of OPs.

TABLE 11
Layer # Parameters # OPs
FC1 640,128 1,280,000
FC2 387 768

US 2023/0070243 Al

[0127] Advantageously, this approach enables the PCC
template matching technique to be efficiently mapped to
existing hardware architectures which accelerate neural net-
works.

[0128] The present embodiments can also be generalized
to enable the artificial neural network to learn other out-
comes of interest. In such scenarios, the model learns to
relate the spike data to a scalar or vector output, similar to
the PCC coefficient(s) described previously. In some cases,
a front-end can be used for selectively filtering neurons
which contribute to the outcome of interest. This front-end
may also bin the incoming spike data to allow the neural
network to operate on binned values, but the network can
alternatively be trained to operate on binary values. Pro-
cessing of this implementation can include systolic arrays or
vector processors to perform many operations in parallel.
Inputs and outputs can be passed to and from the PU 152
while intermediate values and neural network weight values
can be stored on-chip. The architecture described here
requires less than 1 MB of on-chip memory to store both
weights and intermediate values, though support to enable
sets of weights and intermediate outputs to be loaded and
unloaded sequentially may be added to facilitate larger
networks. The PU 152 can be used to control the compute
processors and perform other simple operations such as
applying an activation function. In order to enable real-time
processing, the machine learning module 182 should be
capable of performing all required memory accesses and
numerical operations in under, for example, 5 ms. The input
on each inference is a new bin for every neuron, equating to
20 kB/s bandwidth. With a 1 MHz processor clock, 128
multiply-accumulate units can perform the necessary com-
putations to produce a single output.

[0129] The artificial neural network described above gen-
erally operates on a window of MxN neural activations,
which uses binning and buffering, followed by a fully
connected layer. In some cases, this may elevate the memory
and compute requirements. The first summation (S)), as
shown in Equation (5) and implemented in FIG. 5, imple-
ments an element-wise multiply-sum operation (dot prod-
uct), which can efficiently compute the first fully connected
layer without the binning and buffering overheads. FIG. 15
illustrates an example implementation of the present
embodiments that benefits from the efficient implementation
of' S, in FIG. 5 to implement a neural network that operates
directly on a stream of serialized spike indicators, w. As each
perceptron in the network is a dot product, it can be
implemented using the first summation (S,). Similar to the
other neural network approaches described herein. The MxN
input window is reduced into an h-dimensional vector using
h perceptrons, as illustrated in block 1501. This uses h
copies of S|. A sparsity hyperparameter, k, denotes that each
neuron in the input window (MxN) may be forwarded to k
perceptrons at most (out of h). In order to do so, k memory
blocks are stored for weights (instead of storing templates).
A multiplexing layer shown in block 1503 is used to select
the weights. As shown in block 1504, a selectors memory is
used to store weight selectors. The outputs of the S, sum-
mation units create an h-dimensional vector, as shown at
1505, that can be forwarded to additional neural network
layers (such as the fully connected layer at block 1507
followed by a softmax unit at block 1508) that generate T
probabilities to indicate the matching likelihood of each
template, as shown at 1509.

Mar. 9, 2023

[0130] Although the foregoing has been described with
reference to certain specific embodiments, various modifi-
cations thereto will be apparent to those skilled in the art
without departing from the spirit and scope of the invention
as outlined in the appended claims. The entire disclosures of
all references recited above are incorporated herein by
reference.

1. A system for template matching for neural population
pattern detection, the system in communication with a
plurality of neural signal acquisition circuits, the system
comprising one or more processors and one or more memory
units in communication with the one or more processors, the
one or more processors configured to execute:

a signal interface to receive neuron signal streams from
the neural signal acquisition circuits and serially asso-
ciate a bit indicator with spikes from each neuron signal
stream;

a summation module to serially determine a first summa-
tion (S,), a second summation (S,), and a third sum-
mation (S;) on the received neuron signals, the first
summation comprising an element-wise multiply-sum
using a time-dependent sliding indicator window on the
received neuron signal streams and a template, the
second summation comprising an accumulation using
the time-dependent sliding indicator window, and the
third summation comprising a sum of squares using the
time-dependent sliding indicator window;

post-processing module to determine a Pearson’s Corre-
lation Coefficient (PCC) value associated with a match
of the template with the received neural signal streams,
the PCC value determined by combining the first
summation, the second summation, and the third sum-
mation with predetermined constants associated with
the template; and

an output module to output the determined PCC value.

2. The system of claim 1, wherein the template is encoded
using unary coding.
3. The system of claim 1, wherein the PCC value is

determined only over a subset of the received neuron signal
streams.

4. The system of claim 1, wherein the predetermined
constants comprise:

a first constant (C,) using a number of bins and the
number of neuron signal streams;

a second constant (C,) using binned indicators of the
template summed over the number of bins and the
number of neuron signal streams; and

a third constant (C;) using a combination of binned
indicators of the template summed over the number of
bins and the number of neuron signal streams.

5. The system of claim 4, wherein the combination of the
first summation, the second summation, and the third sum-
mation with the predetermined constants comprises a con-
stant multiplier, a subtractor, a squarer, and a fractional
divider.

6. The system of claim 4, wherein the combination of the
first summation, the second summation, and the third sum-
mation with the predetermined constants comprises deter-
mining the combination (r) as a function of time (t) as:

US 2023/0070243 Al

_(CiSi] -GS)

{1 =
T S - s 1P)

7. The system of claim 1, wherein for each of the neuron
signal streams, a binned value of the template is accumu-
lated if an input spike indicator is active.

8. The system of claim 1, wherein the post-processing
module comprises bit-serial arithmetic units that are cas-
caded to determine a squared PCC.

9. The system of claim 1, wherein the second summation
comprises a count of all bit indicators in each time-depen-
dent sliding indicator window.

10. The system of claim 1, wherein the third summation
comprises partial sums of linear operations that are gener-
ated and accumulated as new values are received.

11. A processor-implemented method for template match-
ing for neural population pattern detection, the method
comprising:

receiving neuron signal streams and serially associating a
bit indicator with spikes from each neuron signal
stream;

serially determining a first summation (S,), a second
summation (S,), and a third summation (S;) on the
received neuron signals, the first summation compris-
ing an element-wise multiply-sum using a time-depen-
dent sliding indicator window on the received neuron
signal streams and a template, the second summation
comprising an accumulation using the time-dependent
sliding indicator window, and the third summation
comprising a sum of squares using the time-dependent
sliding indicator window;

determining a Pearson’s Correlation Coefficient (PCC)
value associated with a match of the template with the
received neural signal streams, the PCC value deter-
mined by combining the first summation, the second
summation, and the third summation with predeter-
mined constants associated with the template; and

outputting the determined PCC value.

12. The method of claim 11, wherein the predetermined

constants comprise:

a first constant (C,) using a number of bins and the
number of neuron signal streams;

a second constant (C,) using binned indicators of the
template summed over the number of bins and the
number of neuron signal streams; and

a third constant (C;) using a combination of binned
indicators of the template summed over the number of
bins and the number of neuron signal streams.

13. The method of claim 12, wherein the combination of
the first summation, the second summation, and the third
summation with the predetermined constants comprises a
constant multiplier, a subtractor, a squarer, and a fractional
divider.

14. The method of claim 12, wherein the combination of
the first summation, the second summation, and the third

15

Mar. 9, 2023

summation with the predetermined constants comprises
determining the combination (r) as a function of time (t) as:

2 (GiSil -GS

[=
M G- s 1)

15. The method of claim 11, wherein for each of the
neuron signal streams, a binned value of the template is
accumulated if an input spike indicator is active.

16. The method of claim 11, wherein the post-processing
module comprises bit-serial arithmetic units that are cas-
caded to determine a squared PCC.

17. The method of claim 11, wherein the second summa-
tion comprises a count of all bit indicators in each time-
dependent sliding indicator window.

18. The method of claim 11, wherein the third summation
comprises partial sums of linear operations that are gener-
ated and accumulated as new values are received.

19. A processor-implemented method for template match-
ing for neural population pattern detection, the method
comprising:

receiving neuron signal streams and serially associating a

bit indicator with spikes from each neuron signal
stream;

determining a correlation value associated with a match of

a template with the received neural signal streams using
an artificial neural network trained using binary clas-
sification, the input to the artificial neural network
comprising a window of the bit indicators, a loss
function associated with the artificial neural network
comprises a difference between a calculated correlation
value and an output of the artificial neural network; and
outputting the determined correlation value.

20. A processor-implemented method for template match-
ing for neural population pattern detection, the method
comprising:

receiving neuron signal streams and serially associating a

bit indicator with spikes from each neuron signal
stream;

determining a first summation (S,) on each of the received

neuron signals and outputting the summations as a
vector, the first summation comprising an element-wise
multiply-sum using a time-dependent sliding indicator
window on the received neuron signal streams and a
template;

determining a likelihood of a match of a template with the

received neural signal streams using an artificial neural
network, the input to the artificial neural network
comprising the vector of first summations, where each
vector acts as a perceptron of the artificial neural
network, and is passed to further artificial neural net-
work layers; and

outputting the determined likelihood of match.

& & & & &

