MOSFET Modeling for Low Noise, RF Circuit Design

M. Jamal Deen, Chih-Hung Chen and Yuhua Cheng*

Electrical and Computer Engineering Department
McMaster University, Hamilton, ON, Canada L8S 4K1
*Conexant Systems Inc., Newport Beach, California, USA
E-mail: jamal@mcmaster.ca
RF Performance of MOSFETs

- DUTs are fabricated in 0.18 \(\mu m \) CMOS technology and measured at \(V_{DS} = 1.0 \) V.
- Maximum \(f_T \) is around 50 GHz and the best \(NF_{min} \) is about 0.5 dB at 2 GHz.
What's inside your Cellular Phone?

Diagram showing the components of a cellular phone:
- Diplexer
- Low frequency signal processing
- Band-pass filter
- LNA
- PA
- LO

The diagram illustrates the flow of signals through these components.
Outline

• RF Modeling of MOSFETs
 - Parasitic resistances and capacitances
 - Non-Quasi-Static (NQS) effects

• Noise Modeling of MOSFETs
 - What does the device noise look like?
 - Equivalent noise circuit model
 - Channel noise, Induced gate noise and their correlations
 - Noise modeling for RF IC applications

• Design Strategy of low noise amplifiers (LNA)
 - Selection of the device size, geometry and bias condition
 - Impact of the Accuracy of Noise Sources

• Conclusions
RF Model Including Parasitics

Gate Resistance

- At high frequencies, the effective gate resistance consists of the polysilicon resistance ($R_{g,poly}$) and distributed channel resistance (R_{ch}).

![Gate Resistance Diagram]

```plaintext
R_{g,poly}

R_{ch}
```
Source and Drain Resistances

\[R_{s,d} = R_{\text{via}} + R_{\text{salicide}} + R_c + R_{\text{ldd}} \approx R_c + R_{\text{ldd}} \]

- The source and drain series resistances include the via resistance \(R_{\text{via}} \), the salicide resistance \(R_{\text{salicide}} \), the salicide-to-salicide contact resistance \(R_c \) and the sheet resistance in the LDD region \(R_{\text{ldd}} \).
• At high frequencies, the signal at the drain will be coupled to the source and the body terminals through the substrate resistances (R_{db}, R_{sb} and R_{dsb}) and junction capacitances at drain and source.
Parasitic Capacitances

Diagram showing various capacitances such as C_{FO}, C_{GSOL}, C_{F1}, C_{GSI}, C_{GDI}, C_{F1}, C_{GDOL}, C_{GDO}, C_{JS}, C_{JD}, and labels for terminals G, O, S, D, n^+, and xJ. P-sub refers to the P-type substrate.
Results of Y- Parameter Fitting

f_T vs. Bias Currents

$+$: $V_d=0.5V$
o: $V_d=1V$
$*$: $V_d=1.5V$

Solid lines: Model
Symbols: Measured data

IDS (A)

$I_{DS} (A)$

f_T (GHz)
NQS Effects

Symbols: Measured data
Solid lines: Model with NQS
Dotted lines: Model without NQS

W=10x15µm
L=1.35µm

Vgs=1V
Vds=1V
I am going to present...

- RF Modeling of MOSFETs
 - Parasitic resistances and capacitances
 - Non-Quasi-Static (NQS) effects

- Noise Modeling of MOSFETs
 - What does the device noise look like?
 - Equivalent noise circuit model
 - Channel noise, Induced gate noise and their correlations
 - Noise modeling for RF IC applications

- Design Strategy of low noise amplifiers (LNA)
 - Selection of the device size, geometry and bias condition
 - Impact of the Accuracy of Noise Sources

- Conclusions
What does the Noise Look Like?

- Time
- Frequency
- Channel
- IDS
- 1/f noise
- White noise
- Induced gate noise
- Channel noise
- E lateral field

Diagram:

- Source
- Drain
- Gate
- Substrate (Body)
- V_G
- V_D
- V_o

Equation:

\[I_{DS} = I_o \]

\[g_{DS}(x) \Delta v(x) \]

\[1/f \text{ noise} \]

\[\text{white noise} \]
Why the Device Noise Matters?

- The battery life time and the distance between the wireless components will be limited by the noise floor of the front-end amplifier.
AC Noise Model of MOSFETs

\[y_m = g_m \times (1 - j\omega \tau) \]
Noise Source Extraction

RF & Noise Parameter Measurements

De-embedding of Pads and Interconnections

Intrinsic S-Parameters

Parameter Extraction & Verification

Y-Parameter Calculation at two-port (33'-44')

Intrinsic Noise Parameters

Noise Parameter Deembedding to ports 33' and 44'

Extracting i_g^2, i_d^2 and $i_g i_d^*$

Noise Parameter Verification

The noise sources are directly extracted from intrinsic noise parameters.

\(\dot{i_d}^2 \) is frequency independent and \(\dot{i_g}^2 \) is proportional to \(f^2 \).
Noise Sources vs. Frequency

- Cross-correlation C is defined as $C = \frac{\langle i_g i_d^* \rangle}{\sqrt{\langle i_g^2 \rangle \langle i_d^2 \rangle}}$.
- $\bar{i_g i_d^*}$ is proportional to f, and C is frequency independent.
Noise Parameters vs. Frequency

- The extracted noise sources are fed into the a.c. noise model for noise source verification.
- The induced gate noise has a great influence on the NF_{min} of long channel devices but does not affect the equivalent noise resistance.
• **Channel-length modulation (CLM) effect** ⇒ higher local output conductance

\[g_{DS}(x_0) \Rightarrow \overline{i_d^2} \] increased at higher \(V_{DS} \) for \(L = 0.18 \ \mu m \) devices.
noise parameters vs. models

- The channel noise equations $\overline{i^2_d} = 8kTg_m/3$ and $\overline{i^2_d} = 8kTg_{do}/3$ suggested for the long channel devices predict lower equivalent noise resistance R_n.

Sec. 11.1, IEEE CICC2002, Orlando, Florida
\[
\gamma, \delta \text{ and } \varepsilon \text{ are } \\
\gamma = \frac{\overline{I_d^2}}{4kTg_{do}}, \quad \delta = \frac{\overline{I_g \cdot g_{do}}}{4kT \omega^2 C_{GS}^2} \quad \text{and} \quad \varepsilon = \frac{\overline{I_g I_d^*}}{j4kT \omega C_{GS}}.
\]

- Coefficients vs. Channel Lengths
- \(W=10\times6\mu m\)
- \(V_{DS}=1.0V\)
- \(V_{GS}=1.2V\)
Cross Section of MOSFET Channel

- V_{DS}
- $V_{DS_{sat}}$
- L_{elec}
- ΔL
- L_{eff}
- E_{crit}
- v_{sat}
- x
Channel Noise in Linear Region

- Noise current from the gradual channel region:

\[
\overline{i_d^2} = \frac{4kT_o}{L_{eff}^2} \mu_{eff}(-Q_{inv}) + \delta_{hot} \frac{4kT_o I_{ds}}{L_{eff}^2 E_{crit}^2} V_{DS}
\]

\[
Q_{inv} = -W_{eff} L_{eff} C_{ox} \cdot \left(V_{GT} - \frac{A_b V_{DS}}{2} + \frac{A_b^2 V_{DS}^2}{12 \cdot \left(V_{GT} - \frac{A_b V_{DS}}{2} \right)} \right)
\]

- \(\delta_{hot} \) is used to model the hot electron effect.
- \(V_{DS} \) becomes \(V_{DSsat} \) in the saturation mode.
- Using \(L_{elec} \) instead of \(L_{eff} \) in the saturation mode.
Channel Noise in Saturation Region

- Noise current from velocity saturation is zero [1]:
 - Thermal noise theory ($4kTR$) cannot be applied in the velocity saturation region.
 - Physical noise mechanism in the velocity saturation region is unknown - though a *drifting dipole layer model* [2] and a *diffusion noise model* [3] were proposed for the thermal noise modeling of FETs.
 - For a given voltage fluctuation, it generates zero noise fluctuation because of the local $g_{DS}(x_o) = 0$.

Channel Noise vs. V_{GS} and V_{DS}

- Hot electron is not important ($\delta_{\text{hot}} = 0$) in the channel noise modeling.
- No noise current from velocity saturation (region II) is found.
- Using L_{elec} to catch the increasing trend in the channel noise vs. V_{DS} characteristics.
Simulated γ for long channel devices $L = 10 \, \mu m$ is 0.68 at $V_{GS} = 1.8 \, V$ which is close to the theoretical value $2/3$.

The γ value increases from 0.68 to 1.2 or 1.8 (depending on the V_{GS} bias) when the channel length is decreased because of CLM effect.
Gate Noise and Correlation Noise

- Induced gate noise from position x_o in region I:

$$\Delta i_g(x_o) = j\omega WL_{elec} C_{ox} \frac{C_{GS}}{I_{ds}} \left[\frac{\Delta i_d(x_o)}{L_{elec}} \left\{ g(V_o) \Delta v(x_o) \right\} \right] \left[V_{as} - V(x_o) \right]$$

where $V_{as} = V_{DS} - \frac{1}{2} (V_{GS} - V_{TH}) V_{DS} - \frac{1}{6} V_{DS}^2$

$$V_{GS} - V_{TH} - \frac{1}{2} V_{DS}$$

- Induced gate noise $\Delta i_g(x_o)$ is fully correlated with the channel thermal noise $\Delta i_d(x_o)$.

- V_{DS} becomes V_{DSSat} in the saturation mode.
Gate and Correlation Noise vs. f

- Induced gate noise $\overline{i_g^2}$ and its correlation with the channel noise $\overline{i_g i_d^*}$ are obtained by integrating $\Delta i_g(x)\Delta i_g(x)^*$ and $\Delta i_g(x)\Delta i_d(x)^*$ over region I only.

- No induced gate noise generated from the velocity saturation region because $\Delta i_d(x_o) = 0$ in region II.
I am going to present...

• RF Modeling of MOSFETs
 - Parasitic resistances and capacitances
 - Non-Quasi-Static (NQS) effects

• Noise Modeling of MOSFETs
 - What does the device noise look like?
 - Equivalent noise circuit model
 - Channel noise, Induced gate noise and their correlations
 - Noise modeling for RF IC applications

• Design Strategy of low noise amplifiers (LNA)
 - Selection of the device size, geometry and bias condition
 - Impact of the Accuracy of Noise Sources

• Conclusions
Choosing Device Sizes - Channel L

- **Channel length of devices reduced** => (1) g_m increased (2) the peak value of g_m happens at lower V_{GS} value.

- The faster increase in g_m makes (1) the NF_{min} reduced and (2) the lowest NF_{min} shifted to the lower V_{GS} region.
Choosing DC Bias Conditions

- Higher V_{DS} bias will increase g_m at the higher V_{GS} region.
- Higher g_m will decrease NF_{min} at higher V_{GS} region.
- Decreased NF_{min} at higher V_{GS} region makes the lowest NF_{min} less sensitive to V_{GS} bias.
Device Geometry and Layout

\[R_G = \left(\frac{1}{3} \right) R_{gsh} \times \frac{W}{L} \]

\[R_G = \frac{1}{3} \times R_{gsh} \times \frac{W}{L} \times \frac{1}{2} = \frac{1}{3} \times 4 \times R_{gsh} \times \frac{W}{L} \]

\[R_G = \frac{1}{3} \times R_{gsh} \times \frac{W/2}{L} \times \frac{1}{2} = \frac{1}{3} \times \frac{1}{4} \times R_{gsh} \times \frac{W}{L} \]

Two resistors connected in parallel
Each signal travels half of the distance \(W \)

\[R_G = \frac{1}{3} \times R_{gsh} \times \frac{W/2}{L} \times \frac{1}{2} = \frac{1}{3} \times \frac{1}{4} \times R_{gsh} \times \frac{W}{L} \]

\[n \] transistors
(width = \(W/n \))
Connected in parallel

\[R_G = \frac{1}{3} \times R_{gsh} \times \frac{W}{n} \times \frac{1}{n} = \frac{R_{gsh} \cdot W}{3n^2 L} \]
Two-Port Network of LNAs

- Design considerations: Stability, Power Gain, Noise Figure (NF) and Linearity (IP3)
Schematic Diagram of an LNA

- **M1**: minimize noise; **M2**: maximize gain.

DC Bias & AC Open

- $L_d=7$ nH
- $L_g=8.3$ nH
- $L_s=2$ nH
- $R_b=10$ KΩ
- $C_c=40$ pF
- $L=0.3$ µm, $W=120$ µm, $I_{ds}=3$ mA
Impact of the Noise Sources

- Impact of the noise sources: (1) optimal frequency (2) ΔNF predicted

![Impact of the Noise Sources](image-url)
The peak $|S_{21}|$ and the lowest NF don't happen at the same frequency.
Conclusions

- Substrate network => output matching network
- Parasitic capacitances => power & noise matching
- NQS effects => longer channel devices
- Channel noise modeling: CLM effect
- Induced gate noise modeling: C_{GS} modeling
- LNA Design:
 - Channel length selection => noise budget
 - V_{GS} bias => before peak g_m
 - V_{DS} bias => sensitivity of V_{GS} bias
 - Geometry => multi-finger with dual inputs