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Linear Matrix Inequality Formulation of
Spectral Mask Constraints With Applications to
FIR Filter Design
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Abstract—The design of a finite impulse response (FIR) filter Second, the set of feasible filter coefficients is in general non-
ofteninvolves a spectral “mask” that the magnitude spectrum must convex due to the lower bound Cpﬁ?(ej“")|. In order to effi-
satisfy. The mask specifies upper and lower bounds at each fre- sjanyly solve filter design problems employing such constraints,

quency and, hence, yields an infinite number of constraints. In t find . hich (1 b ted i finit
current practice, spectral masks are often approximated by dis- we must find a way in which (1) can be represented in a finite

cretization, but in this paper, we will derive a result that allows and convex manner.

us to precisely enforce piecewise constant and piecewise trigono- There are two established approaches [1] to deal with the
metric polynomial masks in a finite and convex manner via linear - problem of nonconvexity of (1). The first is to enforce additional
matrix inequalities. While this result is theoretically satisfying in constraints on the parametegs so thatG(cj‘“') has “linear

that it allows us to avoid the heuristic approximations involved in h " In that iy b i functi f
discretization techniques, it is also of practical interest because it phase.” In that caseti(c’)| becomes a linear function of ap-

generates competitive design algorithms (based on interior point Proximately half they,’s (the rest are determined via the linear
methods) for a diverse class of FIR filtering and narrowband beam- phase constraint), and hence, (1) can be reduced to two semi-in-
forming problems. The examples we provide include the design finite linear (and hence convex) constraints. However, phase lin-
of standard linear and nonlinear phase FIR filters, robust “chip earity may be an excessively restrictive constraint in some ap-

waveforms for wireless communications, and narrowband beam- licati 51 Th d h to deal with it
formers for linear antenna arrays. Our main result also provides plications [5]. The second approach to deal with nonconvexity

a contribution to system theory, as it is an extension of the well- is to reformulate (1) in terms of the autocorrelation of the filter

known Positive-Real and Bounded-Real Lemmas. [5]-[10]. In particular, ifr,, = Ek grgr—m represents the au-
Index Terms—Beamforming, FIR digital filter design, optimiza- tocorrelation of the filter, thed(e’*) = |G(e’~)|?, and hence,
tion, spectral masks. (1) is equivalent to

L(e™) < R(e5) <U (%) forall0<w <2 (2)
I. INTRODUCTION
hich amounts to two semi-infinite linear constraints n.
9 serve that_,, = 7,,, and henceR(c¢’*) is real.) Hence,
y reformulating the mask constraint in terms+Qf, m >
U, we obtain convex constraints. Note that the constraint that
R(c/*) > L(e'*)? > 0 is sufficient to ensure that a filter,
can be extracted (although not uniquely) from a designed auto-
L (Cjw) < |G (CM)| <U (Cjw) forall0 <w<2r (1) correlationr,,, via spectral fa<_:t0rization [9],_ [11]._ _ _
The problem of representing (1) or (2) in a finite manner is
or determine that the constraint cannot be satisfied. Hete, more challenging. [For simplicity, we will phrase our discussion
V=1, andG(e?*) = S gre 7« is the frequency responsein terms of (2).] One standard, bad hoc approach is to approxi-
of the filter. A spectral mask constraint can be rather awkwaraate the constraints by discretizing them uniformly in frequency
to accommodate into general optimization-based filter desigfd enforcing the X linear constraints
techniques for two reasons. First, it is semi-infinite in the sense
that there are two inequality constraints for every [0, 27).

N the design of finite impulse response (FIR) filters, on

often encounters a spectral mask constraint on the magnit
of the frequency response of the filter (e.g., [1]-[4]). That i
for given L(c’*) andU(e?), constrain the (possibly complex)
filter coefficientsgy, so that

L(ej“"f)2 +e<R (ej“’f) <U (ej“’f)Q —€

2wt
W,'LIO,l,...,N—l (3)
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at hand. (Other discretization techniques are also available [12}; all w € [0, 27)\(«r, 3), whereA(e/«) = M4~ g e=iwk

[13].) For certain design problems, algorithms of the exchangea trigonometric polynomial, and Reenotes the real part.
type [1], [3], [4] offer an alternative to direct discretization techSince these LMI formulations apply to segments of the unit
nigues. These methods employ a nonuniformdiscretization of (@jcle and naturally incorporate nonconstant lower bounds, they
at each stage of the algorithm, where the sample points are den be considered to be generalizations of the Positive Real
termined by the stationary points of the current estimate of themma. Theorem 3 also generates LMI formulations of con-
optimal R(e’*) and any points of discontinuity in the mask. (Irstraints of the formR(c’“) < ReB(e/) for all w € [, 5] or
practice, the stationary points are often approximated using fifee all w € [0, 27)\(«, 3), which can be considered to be gen-
uniform discretization [4].) At each stage of the algorithm, an oralizations of the Bounded Real Lemma [18].

timization problem is solved subject to appropriate equality con- Our notational conventions are as follows: Vectors and
straints derived from (2) at those sample points. Although ematrices will be represented by italicized bold lowercase and
change methods often work well for the design of lowpass filtersppercase letters, respectively. The elements of these structures
substantial effortis required to guarantee the algorithm’s converill be indexed starting from zero and will be denoted by
gence [4]. Furthermore, the algorithms may require substantiaédium weight lowercase letters with appropriate subscripts;
“retailoring” in order to incorporate additional constraints on the.g.,¢gx = [g]x andz;; = [X],;. Operators will be represented
filter coefficients (e.g., [14]). Recently, a precise finite represeiyy upright bold uppercase letters. In order to illuminate the
tation of (2) that does not require discretization was developednnections between the results for polynomials on the real line
using dual parameterization methods [15]. However, that repasd trigonometric polynomials on the unit circle, we define
sentation may result in nonconvex design problems.

Inthis paper, we derive a precise finite representation of alarge u(tin) =[1 t ¢
class of spectral mask constraints that results in convex design v(f;n) =[1 ¢ 20 ... ein? ]T (4)
problems. This representation provides a theoretically satisfying
characterization of the mask constraint that avoids the heuristinere the superscript™ denotes the transpose (without con-
approximation of discretization techniques, yet generates praygation). Thus, the components#ft; n) form a basis of the
tically competitive design algorithms. Our development begirfgeal) function space of polynomials of degreen the real line,
with the derivation of a (finite) linear matrix inequality (LMI) whereas the components off; ») form a basis of the (com-
characterization ofthe setoftrigonometric polynomials of agivesiex) function space of trigonometric polynomials of degree
order whose real part is positive over a given segment of the union [0, 2r). Consequently, anth-order polynomialp(t) =
circle (Theorem3). AlthoughthatresultisacontributiontosystelT ;' _ | p;t* can be written ag(t) = u(t;n)”'p, wherelp], =
theory in itself (as outlined later), we also show that it allows us,. Similarly, if the sequence;. denotes the impulse response
to precisely enforce piecewise constant and piecewise trigormd-a causal FIR filter and ifg]. = g, then the frequency re-
metric polynomial spectral masks in a convex and finite manneponseG(c?) = >°7_ gre % = v(6;n)H g, where the su-
As a result, these masks can be incorporated, without apprgxérscript “7” denotes the Hermitian transpose. The (complex
mation, into the diverse class of FIR filter and narrowband beawalued) inner product between two complex matridéand Z
former design problems that can be efficiently solved using welk defined as
established interior point methods (e.qg., [8]-[10]). We will pro-
vide examples that show how our main resultleads to effective al- (X,Z)y=trXx"2z. (5)
gorithms for peak-constrained weighted least-squares design of
linear-phase and nonlinear-phase FIR filters, for the design of e will denote byH’*" the set ofn x n positive semidefinite
bust “chip” waveforms for digital wireless communication systcomplex) Hermitian matrices and )" the subset of{;*"
tems based on code division multiple access and for the desigeonsisting of the real symmetric positive semidefinite matrices.
narrowband beamformers for linear antenna arrays with uncéer a complex numbet € C, we denote the polar coordinates
tain signal and interference directions. as(|z|,argz) € Ry x [0,27),i.e.,x = |z|e! 8%, withargz €

Our main theoretical result (Theorem 3) provides an LMD, 27).
characterization of the set of trigonometric polynomials whose
real part is positive over a segment of the unit circle. When spe- Il. TRANSFORMATION OFPOLYNOMIAL BASIS
cialized to the case where the segment is the whole circle, thi
result generates a new LMI formulation of the Positive Regl .o, polynomials of degreen2on the real line and trigono-

Lemma [16], [17] (and the closely related KaIman—Yakubovicr}hetric polynomials of degree on (0, 2r), where the coeffi-

Ptoﬁ’ovt[k:(\:?] {_emn;\?[) folr TR s;;stje\z/[ms. ;h'staéw for_mflat'or&ients of the trigonometric polynomials may be complex num-

sta ef attory,, =i +1 s m < — L WIINT—m = Tms phers, The main result of this section is stated in Theorem 1, but
R(e*) z Oforallw € [0,27] if and only if there exists an o ¢ tate some intermediate results.

M x M positive semidefinite Hermitian matriX' such that By a result from classical complex analysis [19], the complex

o M—-1—m o A
tr(X) = moand> " X]eyme = rm, forl < m < exponential functior’® can be represented as a (complex) ra-

M — 1. (For later notational convenience, we will index the elﬁonal function oft over the real line
ements of vectors and matrices starting from zero.) However,

Theorem 3 generates LMI formulations of more general con- o t+i (t+g)
straints of the formRi(¢/*) > Re A(¢/“) for all w € [, B] or TS T 1t

e

In this section, we establish a one-to-one correspondence be-
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This mapping from € (—co, o) to 8 € (0, 27) is one-to-one. Then
In fact, it is a conformal mapping and is closely related to the o AT
“pilinear transform,” which is used to map the left half plane 1= ei00 ¥ (#2n)" fo

to the unit disc in the standard transformation of analog filter (1+3)"
designs into the discrete-time domain [20]. This mapping prgz, q

vides the basis for relating the polynomials over the real line

with trigonometric polynomials over the unit circle. The fol- u (tQ;n)Tf[ + jt ('u, (t%n— 1)T]’[,1)
lowing lemma further relates an arbitrary poweref to a ra- I =

2 n

tional function oft. (1+1%) /=19

Lemma 1: Let# € (0,2x) andt € R be related by = bR

) where
o0 — (t+4)? .
1+ 2¢
fo= Z(—l)" <2k> he(k;n)
Then, for any positive integegr> 1, we have k=0
£=0,1,....,n (9)
1 : (20 gk
6]10 — i -1 k < ) tQ(Z_k) and
(1+e2) <kz_0( "2k

‘ 200 + 1)
4 fo=> (-1)F he(kin —
+1Z ‘<2k+1>t2(1k)1>' & k=0( D <2k+1> lkin = 1)
£=0,1,....,n—1. (10)

Proof: This is a simple application of Newton’s binomial
formula. Q.E.D.
Let us define a lower triangular mat€¥(n) of size(n+1) x
(n + 1) whose {, j)th entry is given by

n—1y n—m/(n n—1\ _ m/ln
o { 0, foro<i<j-1 © <m )‘ n <m>’<m—1>_ﬁ<m)
9:i() =1 ("9 forj<i<n 6 i
(n21) s (oh)=(0)-

Notice that the diagonal entries Gf(n) are equal to 1; hence, which are valid for anym = 0,1,...,n — 1. An immediate
it is invertible. We will denote the columns @é#(n) by g,(n), consequence of the above identities and (7) is that
4 =0,1,...,n. In addition, for eacl) < k£ < n, we define a

Proof: The proof follows directly from Lemma 1 and the
definitions of f, andfé Q.E.D.
Now, consider the elementary identities

(n+ 1) x (n + 1) matrix H(k; n) whose {, j)th entry is given hj(kin) +hj(k—1;n) =hj1(k—1;n).  (11)
b : . . .
Y Alternatively, the above identity can be established from (8).
hij (ki) - Sinceh;(0;n) = g,(n), a simple induction argument shows
! . that
n—yj . . .
. , fork<ji<n,j—k<i<n-—k
= <”_Z_k> _J ’ h;(k;n) € spar{gy(n),g,(n),...,g;(n)} . (12)
0, otherwise.

) The following lemma further strengthens the above relation.
Lemma 3: It holds that

We will denote thejth column of this matrix byk; (k; n). Ob-

Kp (10 _ g ,
viously, we havel (0; n) = G(n). We remark that (=1)"h;j(k:n) = g;(n) € span{go(n), g1(n), ... ’gﬂ—l(”()l}g')
ek . Proof: Fora giveny, letw(k) = (—1)*h;(k;n) — g;(n).
w(z;n) hy(k;n) = Z < n-J ) z We will prove the lemma by induction dn Fork = 0, we have
S \n—i—k w(0) = h;(0;n) — g;(n) = g;(n) — g;(n) = 0; therefore, (13)
holds trivially. Consider now & € {1,2,...,j}, and make the
_ ik Z < n—j ) ¢ hypothesis thais(k — 1) € span{go(n), g, (n),...,g;_(n)}.
n—j- We have
— n—j
o ® (k) = (1)) g n)
Based on (8), we can now restate Lemma 1 as follows. = (=1)* (hj(k; n)+h;(k—1;n))
Lemma 2: Letf € (0,2x) andt € R be related by +(=1)*hy(k—1;n)—g,(n)
_ YAy 1. P
o (t+))? = (=" (k=Lin)+(=1)* " hy(k—1;n) —g;(n)
= = (=1)*hjs (k—1; n)+w(k — 1).
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By (12), we know that

hj—1(k —1;n) € span{gy(n), g:(n), . ..

Hence, ifw(k — 1) € spadgy(n),g;(n),...
w(k) € spagy(n), g, (n), ...

» 951 (”)} .

+9;-1(n)}, then
,9;—1(n)}. Sincew(0) satisfies
(13), a simple induction argument completes the prépE.D.

2705

Proof: The bijectivity of n(¢) follows from simple cal-
culus. The remaining part of the theorem is due to the invert-
ibility of " andF'. Q.E.D.

I1l. CHARACTERIZATION OF NON-NEGATIVE POLYNOMIALS
ON A SEGMENT

Now, we can substitute (13) into (9) and (10) to obtain the In this section, we characterize the set of trigonometric poly-

following relations:

()

€ Span{yo(”)ayl (n)...

- <i: <22(/1¢i?>> g;(n—1)

79]'—1(” - 1)} .

7.9;'71(”)}

and

espan{go(n - 1)791(” - 1)7 re

As a result, we have that

Span{f07f17"'7fj} = Span{!}o(”)ayl(”)w~~79j(”)}
forj=0,1,...,n
and
Span{anfla-"afj} = Span{QO(n - 1)ayl(n - 1)a
!Ij(”_l)}
forj=0,1,...,n— 1.
This implies that the matrices
F:[-f07 {17 M) -fn] and
F:[an fla L] fn—l]

nomials that are non-negative over a segment of the unit circle.
The main result will be stated in Theorem 2, but first, we state
some preliminary results. We begin with a review of a well-
known characterization [21], [22] of hon-negative polynomials
over a line segment iR. We refer to Powers and Reznick [23]
for arecent survey on characterizations for polynomials that are
non-negative on an interval.

Proposition 1 (Markov-Lukacs)Letp € R?**! anda,b €
R,a < b. Then

u(t;2n)Tp > 0forall t € [a, ]
if and only if there exis € R"**! andr € R™ such that
u(t;2n)Tp = (u(t;n)7q)” + (t— a)(b— 1) (u(t;n — 1)7r)°.
Moreover, it holds that
u(t;2n)'p > 0forall £ € [a,0)
if and only if there exisg € R"**! andr € R™ such that
u(t;2n)p = (u(; n)Tq)2 + (t —a) (u(t;n — 1)Tr)2 .

The following corollary of Proposition 1 provides a charac-
terization for polynomials that are non-negative over the com-
plement of a finite symmetric interval iR.

Corollary 1: Letp € R>"*1, and leta > 0 be a given posi-

must be invertible. In light of Lemma 2, this establishes @e number. Then

one-to-one correspondence between polynomials of degree 2
on the real line and trigonometric polynomials of degneen
(0, 2r). We summarize the result in the following theorem.

Theorem 1: The mapping;(t) := arg((t + 5)2/(1 + t?))
is a bijection betweelR and (0, ). In particular, the inverse
functionn=1(6) for 6 € (0,2r) is given by

u(t;2n)'p > 0forallt ¢ (—a,a)
if and only if there exisg € R"*! andr € R™ such that
u(t; 2n)Tp = (u(t; n)Tq)2 + (t2 - a2) (w(t;n — 1)TT)2 .

Proof: Let p;, := pa,—; fori = 0,1,..
t # 0, we have

1 T
u(t; 2n)Tp = 2" <'u, <Z, 271) i)) .

Sincet? > a? > 0for all t € (—a, a), it follows that

<in @ .,2n. Then, for

T 1 _cosh’

n(6)

Furthermore, for any vectgr € R?"*!, there exists a vector
¢ € R?"*1 such that

2n .
Z Pitz n '
=0 ___ _Re <c0 + Z (car — Jeok—1) CJ’CU(i))

(1+¢2)" po u(t;2n)'p > 0forall ¢t € (—a,a)
forall t € R. if and Only if
Conversely, for any vectoe € R?"*!, there exists a vector 11
p € R2*t1 such that u(s;2n) 'p > Oforall s € [——, —} .
a a
QZ’E ; (77_1(9))1‘ . By Proposition 1, the above relation holds if and only if there
i=0 _ ; k6 existg € R**! and# € R™ such that
3. = Relc+ Z (cor — jean—1) e
1+ (n=18))" k=1 1—a?%s?

forall € (0,2n). u(s;20)7p = (u(s;n)7g)” + — (u(sin — )77,

a
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Letting if and only if there existg € R x C™ such that

2
q|”.

n—1—i

_ e YH .
G = Gn_; andr; := ! , fori=0,1,....n Rev(6;n)"p = |”(97 n
a

)H

We are now ready to establish the main result of this section.
Theorem 2:Letp e Rx C*, 0 < a < 3 < 2w, and let
,3) be given by (16). Then

proves the result. Q.ED.

The next corollary further extends Corollary 1 to the cas(?
where the interval is nonsymmetric.

Corollary 2: Letp € R**+! anda,b € R,a < b. Then

Rewv(8;n)"p > 0forall 6 € [a, /] (29)
. T
u(t;2n)"p > Oforall £ & (a,b) (14) it and only if there exisy € R x C" andr € R x €L such
if and only if there exisy € R**! andr € R™ such that that
Rew(6;n) v(;n)"q
u(t; 2n) p = (u(; n)Tq)2 +(t—a)(t—b) (uw(t;n — 1)Tr 2 = [l [J
(15) (Rev(9 Dd(a, 3)) |v(8;n — 1 | . (20)
Proof: It is obvious that (15) implies (14). Suppose now
that (14) holds. Let us define Moreover
si=2%—(at+d), a=b—a Rev(#;n)p > 0forall 6 € [0,2r)\(a,8)  (21)

n n—1
Itis clear (e.g., from Newton’s binomial formula) that there e%f and only if there exisy € R x C" andr € R x C such
istsp € R*+L such that that

Rewv(8;n) |11 (6;n) q|

u(t; 20)p = w(2t — (a +b); 20)"p = u(s;2n)"p
(Rev(9 DHd(a, B)) [v(8;n — 1)HEr* . (22)

Since(s? — a?) = 4(t —a)(t — b), Corollary 1 implies that (15)
holds for somey € R**! andr € R”. Q.E.D. Proof: In light of Lemma 4, it is obvious that (20) implies

The next lemma determines a simple trigonometric polyn¢t9), and similarly, (22) implies (21). We now establish the con-
mial that is non-negative over a given segment of the unit circlerse relations. Fix somee R x C™ such that (19) holds. We
but is nonpositive over its complement. In particular, giveimtroduce a vectop € R?"*! as
a, 3 € [0,2n), we define a vectod(«, ) € R x C as
{ﬁ?v‘,:Repi, fori =0,1,...,n

_ —a)— pai_1 =Imp;, fori=1,2,...,
|:COSO4 —(:Ci)se/f'a) Ejgjséﬁ_ 1)04) Cfa>o0 D2i-1 P i n
d(a, ) == { g Using Theorem 1 and its notations, we have
) ’ if «=0.
7 (1 — em) ! _ o T'5
(16)  Rew(6;n)"p % for all 6 € (0,2r). (23)
We remark that
Recall from Theorem 1 thaj(t) := arg((t + j)2/(1 + %))
(0, 5) = Eﬁrol Smad(a’ﬁ) (17) is a bijection betweef® and (0, Zr). For convenience, we let
and n(oo) = 0 to obtain a bijection betweeR U {cc} and [0,
B cos o 2r). Leta := n~1(«) andb := n~1(p). Sincen is a bijection
d(er, 21 — o) = 2(1 ~ cos ) [ —1 } (18)  petweerR U {oo} and [0, 2r) andy is a decreasing function, it

follows that
Lemma 4:Let 0 < o < S < 27, and letd(«, 3)
be defined as in (16). Then, the trigonometric polynomial n([b,>0)) =10,8], [b,00) =n"*([0,H]).
Rew(#; 1)"d(«, 3) satisfies the following properties:
and fora > 0 that
Rew(6; 1)Hd(«,3) >0, foralld € («,f)
Rewv(6; 1) d(«,3) <0, forallé € [0,27)\[e, 5. n([b,a]) = [a, B, [b,a] =1 ([, B]).

Finally, we also need the following well-known representa- Since (19) holds, it follows from (23) that(¢;2n)%p > 0
tion result for trigonometric polynomials that are non-negativier all ¢+ € [a,b]. As a result, we may apply Proposmon 1lto

over the entire unit circle. conclude that for givenr and 3, there existy € R**! and
Proposition 2 (Riesz-Féjer)Letp € R x C™. Then 7 € R™ such that
Rew(6;n)%p > 0forall 6 € [0,2n7) u(t;2n)p = (u(t; n)Té)Q + (t—b)(a—1t) (u(t;n — 1)T'F)2
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if o > 0, or yieldingcy = —b/2 ande; = (b4 5)/2. Itis easily verified that

2 2(1 — cosa)(1 — cosBe, fora >0

d(a,f3) = { 2(1 — cos B)e, for a = 0.

‘\%e complete the proof by setting= 2(1 — cos «)(1 — cos B)F
for oo > 0 andr = 2(1 — cos )7 for « = 0. Q.E.D.

Theorem 2 provides a complete analytical characterization of
the set, sa¥?, of trigonometric polynomials that are non-nega-

u(t;2n)7p = (u(t;n)7q)” + (¢ — b) (u(t;n — 1)TF)

if &« = 0. Due to Theorem 1 and Proposition 2, there must ex
ag € R x C"and ar € R x C*! such that
N2
uw(t;n)l'q 2
(G

2 n
(1+2) tive over a segment of the unit circle. In particular, it shows that
and any trigonometric polynomial if2 can be written as a (non-neg-
T2 atively) weighted sum of two squared trigonometric polyno-
(u(t;n — D7) =o(n(t);n — 1)1+ 2 mials [see (20)—(22)]. This result will be used in the next section
(T4t ’ ' to develop an LMI representation of the polynomial$in
Furthermore, we know from Theorem 1 that for giveand
3, there must exist somee R x C such that IV. LINEAR MATRIX INEQUALITY FORMULATION
(t = b)(a— 1) In this section, we will use a result of Nesterov [24] and The-
5 =Rewv(n(t); e (24) orem 2 of Section Ill to develop an LMI representation for
1+1 which is the set of trigonometric polynomials that are non-neg-
if « > 0,o0r ative over a segment of the unit circle.
F—b " In [24], Nesterov showed how to obtain an LMI representa-
o2 Rewu(n(t);1) ¢ (25) tion for the cone of functions representable as a (weighted) sum

of squares of functions in a given linear functional spegeln

if o = 0. We have now shown that (19) implies the existence @r case, the linear functional spakde under consideration is
vectorsg, #+ andc such that the space of all trigonometric polynomials of degree at most
9 Clearly, the components af#; n) form a basis ofV,,. Below,
| we paraphrase the representation result of Nesterov for our func-
tional spacéeV,,.

Proposition 3: Let A C [0, 27) be a given subset. Let there
With an analogous argument, using Corollary 2, Theorem 1, apd 1, given trigonometric polynomials that are non-negative
Proposition 2, we can show that if (21) holds, then overA:

Rev(6;n)"p = |v(6;n)"q

+ (Rev(6;1)"¢) lu(f;n — 1)"# 2

Rewv(6;n)p = |U(9; n) HQ|2

— (Rev(e; 1)Hc) |71(9;7‘L _ 1)H,;,

Rew (Q;nk)Hwk >0foralld € A
2

where foreactk = 1,2,...,m,n; € {0,1,...,n}, andw;, €
R x C™. LetLg(:) : C*t! s C(*+Ux(+1) pe a linear oper-
ator such that

Li(w(6;)) + La(v(8;n)" = 2 (Rew (651)" wy.)

It remains to show thatis a positive multiple ol(cv, 3).
Notice that

Rew(n(t);1)"c = Recv(n(t); 1) = Re (co —|—Elcj"(t)>
(j + 1) cv(l;n—ng)v(@;n —ny)
=Re <co + c:L—(1 —i—t?)) Vo € [0,27).
— b Let¢ > 1andN > n + 1. Consider the cone
(141¢2)
. (CO —Rec; +2tImecy + (Co + Recl)tQ) K :{p cR x C™ | Rev(e;n)f—[p

Comparing this with (24), we obtain fer > 0 that

H

£ N
2
(t = b)(a — 1) 1 =3 (Rev(Bm) wi) Y- \v ;7 — na)" g
14+ 2 - (1 + t2) k=0 m=0
. (CO - Re61 + 2t Im C1 + (CO + R661) t2) . for Someqn1,7k c R % Cn_nk }. (26)

This implies that ] ] o
Then, we have the following alternative LMI description/of

14ab ab—1+(a+0b)j

Co = ’ Cc1 = . m
’ 2 icz{peRxC"|p+£jeo=ZLz<Xk>
For o = 0, we have to obtaie from k=1
t—b 1 5 for somex .. H(n+17nk)><(n+lfnk) R
1+t2:(1—‘rt2) (co—Recl+2tlmcl+(co+Rec1)t) k€ Tty €€
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whereey is the first column of thén + 1) x (n + 1) identity form of these LMI representations, we need to make precise the

matrix, andL} : C(rTUx(n+1)  Cn+l s the adjoint linear linear operatord.;. This is what we do next.

operator ofLy. We define the unit lower trianguldn + 1) x (n+ 1) Toeplitz
Consider now the set of (the real part of) trigonometric polynatricesl’o ,T'1 », .- ., Tnn @S

nomials of orden, i.e., functions Rey(8; ) pin 6 € [0, 27), 1, fi=k+; o
with coefficientsp € R x C". Given0 < o < § < 2r,we  [Lhnly; = {07 otherwise‘,j with4,5 € {0,1,...,n}.
define the sets 7 (32)
Thus, Ty, = I and (T}, X) = 22‘:_0’“ Xoprye forall X €
Kle,B) = {P €R x C" |Rev(#;n)p >0 Ctx(n+1) Thatis,(T. ., X) is the sum of the elements on
the kth lower off diagonal ofX. Let us define a linear operator
L: Cn-l-l — C(n—l—l)x(n—i—l) as
forall 6 € [«, /3]} (27) n
L(y) = woTo, + 2 i . 33
and (v) = wTlon + ;U . (33)

It can be checked thdi(y) is lower triangular and
L(v(8;n)) + L(v(8;n)) = 20(0;n)u(8; n)"

forall 8 € [0, 2n).
forall 6 € [0, 27r)\(a,/3)}. (28) (34)

K(a, ) := {p €R x C" | Rev(f;n)p >0

Thus,K(«, 8) andK(«, 3) describe the sets of (the real parts ofir0 determine the adjoint operatb’, we note that

trigonometric polynomials that are non-negative over a segment Liw). X = oo (To X\ 492 S AT X
of the unit circle. We also let (L), X) = 9o (Lo X) + Zy,( ions X)

=1
=y"L*(X), VX e CUtx+D
where the adjoing = L*(X) € C™t! is given by
(_Z()I<fl“'()7n,)(>7 QZ:2<Tz,n7X>7 fori21,2,...,7’L.
forall 6 € [0, 27r)} (29) (35)

) ) _ _ ~In addition, we need to define a family of operatd&y; «, 3) :
describe the trigonometric polynomials that are non-negative gn-+1 ,_, ¢(n+1)x(n+1) that are linear iy € C**! and param-
the entire unit circle. We may interprit(«, 3) andK(a, ff) @s  eterized by, 3 € [0, 2]. Letd(q, 8) = [do(ev, B), d1(cx, B)]F
convex cones ifR*" . Since (the real part of) a trigonometricye given by (16). Then
polynomial is non-negative on a closed segment if and only if it S

K(0,27) := {p €R x C" | Rev(8;n)p >0

is non-negative on the corresponding open segment, these conesy (y: «, 3) :=do(av, ) <UOT0 ol 2 Z T, n_1>
are invariant to the opening or closure of either end of the given o =
segment. This fact simplifies the application of the LMI descrip- n
tions of these cones that we now develop. By Theorem 2, these +di(a, B) <Z yka_l,n_1>
cones can be equivalently described as k=1
n—2
K(a, 8) = {p € Rx C"|Rev(8;n)"p = |v(9;n)Hq|2 +di(a. B) <Z y’“T’““:"—l)'
k=0
It can be checked that
+ (Rew(6; ) d(a, B)) [u(B;n — 1)"r|” Y Y
A(v(8,n)) + A(v(8,n))" =2(Rew(6;1)" d(cv, 8))v(0;n — 1)
for someg € R x C" andr € R x C"l} cv(6;n—DHE Ve €0,2r).

To determine the adjoint operator Af, we fix anyy € C**!
and (30) and anyX € C™*™ and consider
= n 2 —

K(e, B) = {P € R x C"|Rew(8;n)"p = |v(6;n)" q] (Ay; @, ), X) = do(av, ) <yo (Ton—1,X)

2
— (Rew(#; )" d(a, B)) |v(8;n — 1) "
( ) | | +2Z§k <Tk,n—17X>
for someg € R x C™ andr € R x C"‘l} Pt
31 -
( ) —|—d1(0€,ﬁ) <Z yk <Tk—1,n—17X>>
whered(«, 3) is given by (16). Notice that botk’(«, 5) and k=1
K(w, 3) are in the form of (26) since each elementef, 3) n—2
or K(«, ) can be written as a (non-negatively) weighted sum + di(e, ) <Z U (Tk+1,n—1,X>>
of squares. Therefore, Proposition 3 implies thaty, 5) and k=0
K(«, 3) both possess an LMI description. To derive an explicit =y" A (X;a,p).
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Thus, the adjoing = A*(X; «, ) is given by (36), shown at only consider the subsegment, fr], and the LMI descriptions
the bottom of the page. Combining this with (30), (31) and (3%) Theorem 3 can be simplified to
and invoking Proposition 3, we obtain the following key result. n
Theorem 3:Let0 < a < 3 < 27. SupposeC(a, 3) and Kiear(e) I{p € Rt Zpk cos(kf) > 0, forall 6 € [omr]}
K(a, 3) are given by (27) and (28). L&t" andA* be the adjoint k=0
operators defined by (35) and (36). Then, the cddgs, ) and {
=3P

K(c, 3) admit the following LMI description: p=L"(X)+A"(Z;a, 21 — )

K(e, ) = {P|P +&jeo = L*(X) + A" (Z; o, B) for someX € 5'_(1_"'1'1)><("'|'1)7 Ze Sixn} (40)
for someX € H{ XY (for non-negativity on §, ]) and
ZeH" e R} (B7) Kieal(@) :{p € Rt Zpk cos(k@) > 0, for all § € [0, a]}
k=0
and
_ ) . . =<plp=L"(X) - A" (Z;0,21r — )
K, B) = {p|p +&jeo = L*(X) — A™(Z; o, B) {
for someX € HE:—l—l)X(n—l—l) for someX e S—(i—n-l-l)X(TH-l)’Z c SZXn} (41)
ZeH"EERS. (38) (for non-negativity on [Oq]), whereA*(Z; a, 27 — ) is given
by (36) withdp(«, 27 — o) andd; («v, 27 — «) simplified to be
Moreover [see (18)]
K(0,27) = {L*(X)|X c H$+1)><(N+1)} ) (39) do(c, 2w — @) =2cosa(l — cosw) and
di (o, 2m — ) = — 2(1 — cos ). (42)

Theorem 3 provides an equivalent LMI description for a . ) i
trigonometric polynomial that is non-negative over a givelyotice thatX andz in (40) [and (41)] are real symmetric, rather
segmentd, 3] (or its complement) of the unit circle. (Observéan complex Hermitian. To see why we can restrict to real sym-
thatK(a, 27) = K(0, ).) As mentioned in Section |, this LMI Metric matrices, consider a Hermitian positive semidefinite ma-
formulation is of practical interest because it generates a precidé X = (Ren)x(z +J(Im X) given in the representation (37).
finite representation of the spectral mask constraints that ¥&'ceX € 71"", forrealg € R", we have that
often encountered in the design of digital filters. Furthermore, 0 < ¢* Xq = ¢ (Re X)q + jq* (Im X)q = ¢* (Re X)q.
the LMI formulation of the mask results in filter design probyence, Rex ¢ S, Moreover, Re(T;,,X) =

lems that can be efficiently solved via well-established interiQir, ' Re X). Thus, if the imaginary parts of the coeffi-

point methods [25]. We will give some detailed examples igientsp; are restricted to zero, then sindg and d; in (42)

Section V. are real, we can replacX and Z [obtained from (37)] by

~ Equation (39) is a new formulation of the POsiRe x and ReZ with both ReX and ReZ still being positive
tive Real Lemma [16], [17] (and the closely relatedgemigefinite.

Kalman-Yakubovich-Popov [KYP] Lemma) for FIR sys-
tems (see also [24] and [26, Sec. 3.2]). The new formulation V. APPLICATIONS

is the dual of the standard formulation and states that fgr ) .
~M+1<m<M-1,withr_,, = 7, R(c®) > 0 for We now show how the results of Section IV can be applied

: ; ; MxM  tothe design of FIR filt d to data-ind dent band
all ¢ € [0,2n) if and only if there exists aX € M~ 0 the design o liters and to data-independent harrowban

such that #X) = 7o and 307 5" " [X]ewme = rm for beamformers.
1< m_g_ M — 1. Thus, Theorem 3 can be seen as an exten5|gr_1 FIR Filter Design
of Positive Real Lemma for FIR systems. o ) )

Now, let us consider the special case of real trigonometric!n Optimization-based designs of (real-valued) FIR filters,
polynomials of the formy""_, p cos(k6) with coefficientsp ¢~ ON€ often encounters a (relative) spectral mask constraint of the
R+ and segments of the form[2r — a]. Sincecos(k#) and form ' ' '
the segment are symmetric with respectfte= =, we need  (L(¢’*) < |G (¢°)| < CU (¢/%) forall6 € [0,7] (43)

g0 = do(cv, B) {(To,n—1,X) + di(, B) (T1,n—1,X)

qr = 2d0(0€,ﬁ) <Tk,n—17X> +d1(0&,ﬁ) <Tk—1,n—17X>+dl(O‘7ﬁ) <Tk+1,n—17X>7 for k= 1,2,...,71—2 (36)
Gn—1 = 2d0(0€,ﬁ) <Tn71,n717X> + dl(av /3) <Tn72,n717X>

gn = di(a, B) (Tn—1,n—1,X) .
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where( > 0, and a normalization constraint either on the filteFor autocorrelation designﬁt = ES = 0, and hence, the con-
coefficients or or(. [We have used the “breve” notation to disstraint/z — qugeo € Kreal(27 f5) is redundant.

tinguish (43) from (1).] As discussed in the introduction, the The constraints in (46) define the set of feasible filters. The
mask constraint can be made convex by constraidiig’®) question that remains is which of these filters is the “best.” A
to have “linear phase,” or by reformulating the constraint itarge class of filter design objectives can be cast as the minimiza-
terms of the autocorrelation sequencg = >, grgr—m as tion of a convex quadratic function of the parameters. This class
C2L(e7%)? < R(e?%) < ¢2U(<7)2. In both of these cases,includes the weighted least-squares approximation of some de-
we can exploit the results of Section IV to precisely transforgired magnitude response [3], [4], [9]. Filter design problems in
the piecewise constant and piecewise trigonometric polynomihis class take the following form: Given a positive semidefinite
portions of the mask into pairs of LMIs. The first step is to writenatrix @, a vectol, and an integeg € {1, 2}, find Z achieving

G(e??) or R(e??) in the form Rew(6; -)" p. To do so, we define min#7 QF — A% (47)
M € RGM-DXM gndJ € RM*M sych that z
o J subject to (46) and a linear normalization constraint on either
M=1|1 o0 and T:= [ 1.0 } (44) or ¢ or show that none exist. This generic design problem can be
0 I 0 21 solved by solving the following convex optimization problem.

) ) ) ) ) Problem 1: Givengq from (46) and giver§} = LL' 1, fos fas
wherel is the(M — 1) x (M - 1) identity matrix, and] is the Lo Lo Ly, U, U, andM, findz € RM achievingmin I — 217 %
(M—-1)x(M-1) matrix with ones on the ant|'—d|a~gonajlwandoveri’ ¢ >0, X0, x00 x® xGu ¢ Sﬁ“M, Z00
zeros elsewhere. For a filter of lengiti, if we definer € R su M—1)%(M—1 . ; Mx M

Z6w ¢ gM=VXM=D gnqifq = 1, XD e SM*M gng
such thaf#],, = 7,0 < m < M — 1, then (50) — M —1xM—1 oy T +
Z e 8¢ , subjecttg|L " z||3 < T

R (eje) = dM=Vb (g 2(M — 1)) M7

T3 — (1] %6 —L* @Y _ A* [ 7@D. _

= Rev(6; M — 1) I7. Iz = ¢lieo =L (X ) A (Z 2 L, 2m (1 fpﬁ
Similarly, for afilter of odd lengtl2Af — 1 thatis symmetricand -  ¥a . ® (48)
centered at the origin, if we defidee RM such thafgl, = g, 1%~ ¢"Lieo =L (X ) (49)

joy _ . s y -

0 < k< M-—1,thenG(e )'_ Rev(Q,M.— 1)"Ig. The (1% — T =L* (X(pu,)> (50)
frequency response of other linear-phase filters can be writtén ?
in related ways, but for brevity, we will consider only the oddcqf/;zeo _I# =L* (X(su)) + A* (Z(Su); 27 fs, 27 (1 — fs))

length symmetric case.

To further simplify our exposition, we will first consider the
design of a simple lowpass filter with a piecewise constant magd, if¢ = 1
A natural extension to a piecewise trigonometric polynomigtz _ c1j4¢, = L* (X(sé)) +A* (Z(S”; 27 fs,2m (1 — fs))
mask is provided later in this section, and extensions to bandpass (52)
and multiband filters are implicit in the design in Section V-B, 4 5ne of the normalizations = 1 or ¢’ = 1, for a given
The simple piecewise constant lowpass spectral mask Canvg‘étor ¢, or show that none exist.

(51)

written in the form of (43), where In Problem 1, (48), (49), and (52) enforce the lower bound
pr 0<o<2nf, constraint of the spectral mask, and (50) and (51) enforce the

L () =< I, 2nf, <6 <2rf, and upper bound constraint. Problem 1 consists of a linear objec-

L, 2nf,<6<m tive, linear equality constraints [(48)—(51) and (52) where appli-

o 7, 0<6<2rf cable], alinear inequality constraint gnpositive semi-definite-
U () :{ - - ° (45) ness constraints on the varioXsand Z matrices, and the con-

_ Uy 2mfy << _ straint||L7#||2 < . The set of vectorfl", (L”£)T]" € RV +1

with f, andf, denoting the normalized frequencies of the pasgat satisfy this last constraint can be transformed to the intersec-
band and stopband edges, respectively, f,, < fs < 1/2and jon of a “rotated” second-order coneftt!+2 and a hyperplane
0<U, £Up0< Ly <UpandL, < Ly In the case of (g g. [26]). Hence, Problem 1 is a convex symmetric cone pro-
linear-phase filters, we sét, = —U, andL, = —U,, whereas gram [27], [28], which can be efficiently solved using well-es-
for autocorrelation designs, we set = L, = 0. By observing  taplished interior point methods [29]. Furthermore, infeasibility
the common form o&+(e’?) andR(e’®) and thatl, < L < L, can be reliably detected. # represents the autocorrelation se-
andl, < U, the spectral mask constraint can be rewritten inquence of the filter, then an optimal filter can be obtained from

’3\‘

generic form as the solution of Problem 1 by spectral factorization [9], [11].
Iz — qugeo € Kreal (27f,) We now demonstra’Fe the ﬂe_xibility of this de_sign method py
i — qugeo € Kreat(0) and s_olvmg a number of filter design problems using small varia-
T3 — (1Ley € Kyom (27f,) tions on Problem 1. . _
¥ - Example 1:Consider the design of a length 49
{ quvf,?eo — 12 € Krear(0) (46) FIR filter which has the minimal “stopband energy”
(e — I € Kyear (271 f5) E, = (r) [y, |G(¢"*)?df, subject to the spectral

whereg = 1 andz = g when we design an odd-length symmask in (45), withf, = 590/4915.2, f, = 740/4915.2,
metric filter andg = 2 and# = r for autocorrelation designs. L = 107%'%, U2 = 10%1%, U2 = 107%, i.e, f, = 0.12,
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Fig. 1. Power spectra of length 49 filters from Example 1, along with the corresponding mask. In Fig.*li&c}he optimal value of from Problem 1. (a)
Linear-phase filter minimizing stopband energy. (b) Nonlinear-phase filter minimizing stopband energy. (c) Nonlinear-phase filter miniopaitigmof energy
in the stopband.

fs ~ 0.15, £1.5 dB passband ripple and 40 dB stopbandf /(c/®)¢ in the roll-off region be described by the real part
suppression. (The choice of this particular mask is explainedafa trigonometric polynomial, i.e., 16t (c’?)? = Re B, (¢’?)

Example 3.) For an odd-length symmetric filté, = §°Qa, for ¢ € [2r,,2nf,], where B, (%) = S 02 b, pe=9%k.
where@Q = IQI Then, this portion of the mask can be described in the notation
[Q] = 2(sind + j) + sindi — 5))4 . (sinc(2fc(i ) of Section IV and Problem 1 by

¢, — Iz e K(2rf,,2nf) (53)

+Sinc(2/.( _‘7))) where eithe, or « is to be padded with zeros so that they
for 0 < 4,7 < M — 1 and sin¢z) = sin(rz)/(xx) for are both of dimensiod/ = max{Mp_, M}. For linear-phase
z # 0and 1 forz = 0. For a general filter, = [ #, filters, the rolloff must also be incorporated into the lower mask
wherely = 1/2 — f., andl,, = —2f.sing2f.m) for 1 < L(cﬂj) becauseG(eJ") is not constrained to be non-negative,
m < M — 1. Therefore, optimal filters can be designed using€- L(¢’®) = —Re Bi(¢/?) for 6 € (2 f,, 2 f,]. Hence, for
Problem 1 with the normalization constraipt= 1. For f, = the linear-phase case, we require (53) and
(fp + f5)/2, the power spectrum of the optimal linear-phase I+ ¢y € K(2nf,2nfs). (54)

filter is _shovx_/n in Fig. _1(a)_, and that of an optimal nonlinea‘r:or this roll-off example, the complete spectral mask is de-
phf‘sz filter is Sl\*)lo"‘l’”b”t‘) F'ga 1(b). E?Ch design problem Wasineq by (46), (53), and (54), with (54) being redundant in
sove usmlg a a”taa _S aseM'g(;ger_al}r;plT.rpose shymmetrlc A& case of autocorrelation design. Therefore, the design of non-
program solver called SeDuMi [26]. The linear-phase case V‘ﬁ?ear—phase filters that minimize the objective in (47) subject to

solved in 3.5 s on a 400 MHz Pentium Il workstation, Whereqﬁe new mask can be achieved by adding two variabl’é§“? c
the nonlinear phase case required 24 s. The sharper cutoff ang .. ; andz ¢ H(M_I)X(M_l)]to Problem 1, along with
+ H

improved high-frequency decay of the nonlinear-phase filter ar . !
clear from these figures. Although these filters minimize th%1e ad(zhtlonal constraint

stopband energy, they do not minimize the proportion of thgb, —I%— £ jeq = L* (X(”o)) +A” (Z(m); 27 fr, 27ffs)

total energy of the filter in the stopband. A nonlinear-phase filter (55)

that does so can be found by removing the constrairt 1  where£™) ¢ R is unconstrained. (Note that in Problemad,
from Problem 1 (and, hence, allowing the mask to “float”) ani$ already constrained to be real.) For linear-phase filters, we
replacing it withro = 1. The resulting optimal autocorrelationrequire two more variables, namel), Y ¢ HY>*M and
was obtained in 25 s, and the power spectrum of an optimal filtgrot) ey
is shown in Fig. 1(c). Observe that the flatter passband response

in this case is achieved without greatly affecting the stopbadd -+ ¢by — £V jeq = L*(X D) + A* (Z(ml); 27 fr, 27&722
decay. O (56)

In some applications, one may wish to enforce a spectral maskere£(™* ¢ R is unconstrained. In the following example,
constraint that is not piecewise constant. For example, one nveg revisit the designs in Example 1 with a new mask, which
wish to have a “roll-off” zone that provides a more gradual trarcontains a roll-off section.
sition between the passband and stopband in Fig. 1. (See Fig. Example 2: Consider the mask from Example 1, and
for an example.) We will now demonstrate how the large andtroduce a “tighter” stopband constraint consisting of a
diverse class of piecewise trigonometric polynomial masks céirst-order trigonometric polynomial roll-off on the magnitude
be precisely enforced using Theorem 3. For simplicity, we wifipectrum betweerf, = 740/4915.2 and f; = 0.25 and a
restrict our attention to the case of enforcing a roll-off coreonstant bound on the magnitude fo25 < f < 0.5. More
straint on a lowpass filter, but the techniques can be easily gapecifically, in the roll-off regionv € [2x f., 27 f5], we enforce
eralized. Letf, denote the frequency at the “left edge” of thdG(e’“)| < (Bi(e?*), where the first-order trigonometric
roll-off portion of the mask, and lef, denote the frequency atpolynomial B (¢?*) has real coefficients, o andb; ; chosen
the left edge of the subsequent constant portion. Let the portiguch thatB, (¢/2*f+) = 10~2 and By(¢’?"/) = 10723, and

S:”_I)X(M_l), and the additional constraint
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Fig.2. Power spectra of length 49 filters from Example 2, along with the corresponding mask( nigthe optimal value of . (a) Linear-phase filter minimizing
stopband energy. (b) Nonlinear-phase filter minimizing stopband energy. (c) Nonlinear-phase filter minimizing proportion of energy in thek stopba
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Fig. 3. Equivalent discrete-time model of baseband PAM.

3

in the constant portion of the stopband € [27 f,, ], we
enforce|G(e?*)| < (10725, That is, the rolloff “starts” at y
fr = 0.15 with a suppression level of 40 dB and rolls off to 2951
a suppression level of 50 dB g = 0.25 from which point,
the required suppression level remains 50 dB (see Fig. 2). Note _ 29
that sinceR(e/) = |G(e/)|?, |G(e7*)| < (Bi(e?*) for

w € [2n f., 27 f5] can be imposed directly on the power spec-
trum by enforcingR(e’*) < (?Ba(e’?) forw € [2n f,., 27 £5],
where By(e/*) is a second-order trigonometric polynomial 28t
with coefficientsby o = b7 o + b71/2, ba1 = 2b10b1,1 and

bao = b7 /2. The power spectra of the length 49 linear and
nonlinear phase filters that minimize the stopband energy with

fe = (fp + f+)/2, subject to the spectral mask, are shown in ‘
Fig. 2(a) and (b), and that of the nonlinear-phase filter that — 27o° 0% 100 10 or o°
minimizes the proportion of the total energy of the filter in €

the stopband is shown in Fig. 2(c). (The optimal designs wefg. 4. Tradeoff between the sensitivity amdfor the 1S95 standard for
obtained in 14, 95, and 99 s, respectively, using the seth mple 3. The_ %" gnd“‘o" denote the positions achieved by the 1S95 filter
described in Example 1.) Note that these filters have similgrc| the robust flter in Fig. 5(b), respectively.

passband characteristics to the corresponding filters in Example

1 but that the stopband characteristics are substantially altefledt© Unknown channel(gistortion. If the unknown channel is
by the new mask. [ Mmodeled asy, = & + ¢, whered,, is the Kronecker delta

In the transmission of digital data by pulse amplitude moddwhichis th_e impulse response of a di_s_to_rtionless channel), then
lation (PAM), we often encounter design specifications in tern¥! @ppropriate measure of the sensitivity ?f the PAM scheme
of a spectral mask of the form in Fig. L. In fact, the mask in Fig.i% the worst-case MSE over a bounded set;bfs [31]. For a
is that specified for the “chip” waveform in the 1S95 digital celgiven bound: on the ISI, this sensitivity can be minimized by
lular communication standard [30]. A simplified block diagrangolving Problem 1 witke = 7, 7o = 1, @ = I, 1 = 0, and the
of a PAM scheme is shown in Fig. 3. The transmitted pow&dditional constraint in (57) [31].
is normalized to unity, i.es, = 1. In order to control the in- Example 3: The filter specified for the synthesis of the chip

tersymbol interference (ISI) in a distortionless channel, we c¥f@veform in IS95 has length 48 ardl = 4 and satisfies the
enforce the constraint spectral mask specified in the standard (and illustrated in Fig. 1),
but it generates a large MSE in a distortionless channel. To ef-
2 ZT%Q Se (57) ficiently determine whether this MSE can be reduced while si-
>0 multaneously reducing the sensitivity to unknown channel dis-
for some (small} > 0, [31]. This term is the mean squaretortion, the modified version of Problem 1 was solved for var-
error (MSE) ind,, in Fig. 3 in the absence of noise and channébus values ot. (Each solution was obtained in about 23 s.) The
distortion. Whene = 0, this constraint is equivalent to self-tradeoff is shown in Fig. 4, from which it is clear that the 1S95
orthogonality (that is, t@; being a “root-Nyquist” filter), but filter can be greatly improved upon. The spectra of the IS95 filter
whene > 0, it allows us to trade ISI for other system propertiesand a representative optimal filter are plotted in Fig. 5. The ro-
One of these properties might be the sensitivity of the MSE bust filter provides a substantially lower “chip error rate” than

2.85f

Sensitivity
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Fig. 5. Power spectra (in decibels) of the filters in Example 3 with the IS95 mask. Hei®the optimal value of from the modified version of Problem 1. (a)
1S95 filter. (b) Robust filter.
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15 €
E,/ Ny, dB . - .
b/ o d Fig. 7. Minimal stopband edgg against ISI bound for the 1S95 mask. X"
Fig. 6. Simulated chip error rates (CER) in a slowly varyinglenotes the position of the I1S95 filter.
frequency-selective Rician channel against signal-to-noise ratio for Example 3.

20 25 30

0 5 10

0.1235,
Legend—Dashed: 1S95 filter. Solid: robust filter.
the 1S95 filter in a slowly varying frequency-selective Rician 0.123- 7
fading channel, as shown in Fig. 6. (See [31] for the detdils). .% '
Example 4:In addition to tradeoffs between ISI and sen- ...
sitivity, tradeoffs between ISI and bandwidth are also of in- &
terest in the design of PAM schemes. For a given level of ISI, a £
filter achieving the minimum bandwidth can be efficiently found & o122}
using a bisection-based search on the stopband edge of the ma:§

for the feasibility boundary of a convex cone feasibility problem
[31]. That feasibility problem is based on the modified version
of Problem 1 used in Example 3. (This is a variation of the
method used to find minimum bandwidth self-orthogonal fil- 012},
ters in [10].) The resulting tradeoff for the 1S95 spectral mask
is plotted in Fig. 7, from which it is clear that the 1S95 filter is_,

di f h . il Fig. 8. Trade-off between the minimum white noise gai¥w and the
some distance from the optimal filters. U interference suppressigm\;| for maximum sidelobe levels\; of 0.1 dB

(solid), —18 dB (dotted),—20 dB (dashed), and-22 dB (dot-dashed) for
B. Beamformer Design Example 5. The, O, ando denote the tradeoffs achieved by the beamformers
in Fig. 9.
In standard narrowband beamforming applications, the out-

puts of each antenna element at a given instant are linearly cdhfnt at theuth instant and if(n) denotes the complex envelope
bined to form the array output at that instant [32]z}f(n) de- Of the array output at that instant, then
notes the complex envelope of the output ofttieantenna ele- y(n) = z(n)Tw = wxz(n)

0.1215f

25 30 . 35 40
Interference suppression, dB
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Fig. 9. Beam patterns with minimal white noise gain, subject to 40 dB interference suppression and different maximum sidelabg, leweissample 5, along
with the corresponding masks. (&), = —18 dB. (b)A, = —20dB. (c)A, = —22 dB.

wherewy, is the “weight” applied to the output of thkgéh antenna  different values of the maximum sidelobe level and the “look
element, andw. |, = . Itis well known [32] that if the array direction ripple” A, can be efficiently found. Examples of
geometry is linear, with equi-spaced elements with separdtiosuch tradeoffs (fotn; = 0.1 dB) are presented in Fig. 8, and
and if the array operates on signals with wavelengtthen the examples of the resulting beam patterns are shown in Fig. 9.
(complex) “gain” of the array for a signal arriving at an angle (Each optimabl- was computed in about 7 s.) These examples
to broadside (perpendicular to the array) is clearly demonstrate the role that the sidelobe level constraint
W(g) = W (Cﬂw(d/A) sin [;5) plays in determining the shape of the beam pattern. O

whereW (¢’?) is the Fourier transform oy, ande’™ deter- - V. CONCLUDING REMARKS
mines the “phase center” of the array. For simplicity, we will
focus on the standard case where: ) /2. In this paper, we have provided a compact representation of

In many applications, we would like to control the “beam pafiecewise constant and piecewise trigonometric polynomial
tern” of the arraylW(¢)|2, but that results in nonconvex Con_spectral mask constraints via linear matrix inequalities. This

straints onwy. Using the autocorrelation of the weights = representation is precise and avoids the heuristic approximation
> Wilk—m, We have thatR(¢) = 3, e " snd = of the mask incurred when discretization techniques are used.
|W(¢)[2, and therefore, bound constraints|®¥(¢)|2 resultin  The representation is also convex, and it generates practically
linear constraints on,,,. For anM-element array competitive design algorithms (based on well-established
- ) e interior point methods) for a diverse class of FIR filtering and
R(¢) = Rew(msing; M — 1)" I7 narrowband beamforming problems. Using such algorithms,

where[ily, = rm, 0<m < M —1 andI was defined in Sec- (in)feasibility of the spectral mask can be detected reliably,
tion V-A. Therefore, piecewise constant and piecewise trigonghich is especially important when the design problem is
metric polynomial constraints qﬁ/(¢)|2 can be compactly en- solved iteratively in a binary search scheme (such as in minimal
forced in an analogous way to that for the spectral masks in Sé&&gth filter design). In addition to these applications, gener-
tion V-A, as we now demonstrate in a 5imp|e examp|e derivéﬂizations of our results to rational filters (i.e., infinite impulse
from [32, Fig. 2.5]. response filters) and to multidimensional filters are of interest
Example 5: Suppose that a desired signal impinges on i@ control theory, as well as signal and image processing, and
16-element linear equi-spaced array with element separat®fig currently being pursued. In closing, we point out that we
d = \/2 from an angle ofb; = —18° & 6° and that interfering have efficiently solved the design problems that result from
signals arrive from angles in the range = 21.5° + 6°. Our compact representation (e.g., Problem 1) using a sophisti-
An interesting data independent [32] beamforming problefi@ted, but general purpose, convex cone program solver [26].
is to minimize the response to (spatially) white noise (i.eAlthough this is convenient from a practitioner’s perspective,
w”w = o) subject to the gain in the direction of the desire®e€ believe that more efficient implementations of our design
signal being within=A, dB and to the gain in the direction@pproach can be obtained by developing an application-specific
of the interferers being less thax; dB. Furthermore, to guard Solver that exploits the extensive algebraic structure that our
against unexpected interferers from other directions, we wofl@sign problems possess. Recent work on application-specific
like to keep the sidelobes below, dB and to constrain the solvers for problems from the same class [33], [34] suggests
main lobe (as determined hi,) to be within—18 + 13°. In  that the resulting reductions in computational and memory
short, our objective is to minimize the white noise gain, subjetgquirements can be substantial.
to a mask of the shape in Fig. 9. This problem can be cast in
a similar way to Problem 1 witk = 7, { = 1, @ = 0 and
l = —ep/2, except that the vectdr and the variousX andZ
matrices may be complex. Therefore, the tradeoffs between th&@he third author would like to thank Prof. Y. Nesterov for
white noise gain and the level of interference suppression, fraring his ideas and for stimulating research in this area.
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