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ABSTRACT

Orthogonal Space-Time Block Codes (OSTBCs) have several de-
sirable properties for delay limited communication over a coherent
narrowband (fat) fading multiple anienna channel. In particular,
they provide full diversity, and maximum likelihood detection can
be achieved via linear processing and symbol-by-symbol detec-
tion. As a result, the maximal symbol rate and minimal latencies
of OSTBCs have been well studied. In this paper, we construct
orthogonal block codes for frequency-selective multiple antenna
channels, and study their symbeol rate and latency properties. Our
code construction is based on direct application of the orthogonal-
ity constraints. This enables us to show that the maximum symbol
rate of an orthogenal block code for a channel with memory length
I is 1/ L times the maximum rate of an OSTBC for the same an-
tenna confguration. Orthogonal codes that achieve this maximal
rate can be simply constructed via the Kronecker product of a rate
maximal OSTBC with an identity matrix of size L. This Kro-
necker design scheme can also be applicd to construct orthogonal
block codes for frequency-selective channels with other desirable
properties, such as minimal latency.

1. INTRODUCTION

Orthogonal space-time block coding is a popular transmission
scheme for narrewband coherent multiple antenna wireless links.
Two key properties of the family of Orthogonal Space-Time Block
Codes (OSTBCs) are that they enable fult diversity gain, and that
maximum likelihood detection can be achieved by linear process-
ing and symbol-by-symbol detection. Several design schemes for
OSTBCs have been established [1, 6, 10, 12-14]. and the limits
that the orthogonality constraint places on the maximum achiev-
able (symbol) rate and the minimum achievable latency are well
understood. There have been several approaches proposed for ex-
tending OSTBCs to frequency selective channels [3-5,7-9,11,15].
These designs typically combine existing OSTBCs with certain
transmission techniques tor single-input single-output frequency-
selective channels, such as Orthogonal Frequency Division Multi-
plexing (OFDM) or the time-reversal ransmission scheme.

The goal of the present paper is obtain a direct construction of

orthogonal space time block codes for frequency-selective multi- -

ple antenna channels, so that all the desirable properties of OST-
BCs can be extended to wideband transmission systems. We seek
a defnitive statement of the iimits that the orthogonality constraint
places on the symbol rate and the latency of the code. We de-
rive our construction using a “£rst principles™ approach in which
we directly enforce the orthogonality conditions. This enables us
to show that the orthogonality constraint can be decoupled into
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independent orthogonality constraints in the space and delay do-
mains, That allows us to show that the maximum symbol rate of
any orthogonal block code for a frequency-selective channel with
memory length L is 1/L times the maximal OSTBC rate for the
mat-fading case with the same antenna confguration. Orthogenal
codes which achieve that symbol rate can be simply constructed
via the Kronecker product of a rate-maximal OSTBC for the Xat-
fading scenario [1, 6. 12] with an identity matrix of size L. The
Kronecker coding scheme is also valid for non-maximal-rate de-
signs, such as minimal latency codes {14]. If the OSTBC used in
the Kronecker product operation has the minimum latency. then
the resulting orthogonal code for the frequency-selective channel
also has minimum latency.

To place our construction in context, we point out that several
schemes have been proposed for applying OSTBCs to frequency-
selective multiple antenna channels. A standard approach is
to incorporate the principles of orthogonal frequency division
multiplexing (OFDM), such as thc space-timc/space-frequency
OFDM (ST/SF-OFDM) schemes [5], and the circulant general-
ized delay diversity (CGDD} scheme [3]. These schemes obtain a
symbol rate which is a factor of T/(T + (L — 1)) lower than that
of the corresponding OSTBC, where T is the length of the data
block. For long block lengths this factor can be close to 1, but if
low latency is required the block length will be shert and the effect
of the cyclic pre£x on the symbel rate will be signifcant. Further-
more, many of these coding schemes do not provide full diversity,
because the channel matrix may drop rank at some subcarrier fre-
quencies. An alternative technigue is the time-reversal space-time
block coding (TR-STBC) scheme {4, 9]. ks symbol rate reduction
from the OSTBC case is a factor of T/(T + 2(L — 1)), and it
also requires a more complex receiver. The TR-STBC scheme lies
within a signif£cantly larger class of coding schemes for frequency-
selective multiple antenna channels [15]. The symbol rate reduc-
tions of the schemes in that class are of a similar order to those
above, and some of the schemes provide full diversity, but the
(optimal) detection problem remains substantially more expensive
than that of OSTBCs in ®at fading.

It is well known that the price paid for the advantages of or-
thogonality in the mat-fading environment is a reduction in the
maximum (symbol) rate of the system. That is, OSTBCs provide
a particular trade-off between rate, diversity (BER performance),
and system complexity'. In this paper, we show that in the case
of frequency-selective channels, the rate penalty for orthogonal-
ity is L times larger than that for the Dat-fading case. In spite

IDifferent coding schemes produce different trade-offs. For example,
full-rate full diversity designs are available [2,8], but they require a more
complex receiver than an orthogonal design
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of this, simulation results show that the orthogonal block code
for frequency-setective channels can provide better performance
than some existing designs. such as the ST/SF-OFDM [4, 5] and
CGDD [3] schemes.

The notations used in this paper are reasonably standard: Bold
upper case letters denote matrices, A; is a submatrix of A, and
A;; is a submatrix of A;. Bold lower case letters denote column
vectors, a; is the jth column in A, a; ; is the ith column in A%".
The vector vec(A) is formed by stacking the columns of A, (-}
denotes transpose. (+)™ denotes the conjugate transpose, and T x
denotes the identity matrix of size K. The symbol & denotes the
Kronecker product.

2. SYSTEM MODEL

We consider a multiple antenna communication system with Af
transmit and & receive antennas. The channel between the jth
transmit and ith receive anlenna is frequency-selective with trans-
fer function H;:(z) = 5;01 h%;z~%. We assume that the cocfg-
cients {h%;} are independent zero-mean complex circular Gaus-
sian random variablcs with equal variance. The realization of
{hgi} is assumed to be constant over a block and known at receiver
but not known at transmitter. The noise is zero-mean Gaussian
and statistically independent among the ¥V receive antennas, We
consider a block transmission system and wc assume that at least
(L — 1) zeros are padded between consecutive transmitted blocks
in order to avoid inter-block interference at the receiver. The trans-
mitted signal from the jth transmit antenna over (T+ L — 1) time
slots is denoted by 8; = {s1; 52 sT4L-14)" » where
ST+1,5 = "+ = sr+r-1,; = 0. The received signal vector af the
ith receive antenna is

yi=2j’}{jésj+w@;=ﬁis+W1¢, n

where (yl,i y(TAI-L—l),i)Tv and 7‘(1'
(Ha: Hap), where Hy is the (T + L — 1) x T
lower triangular Toeplitz channel matrix between the jth trans-
mit antenna and the #th receiver antenna. Its £rst column
is equat to (A% hy~t 0.--0)T. The vector s
(sf s}})T, stacks all the signals transmitted trom the A
transmit antennas, and v, is the noise vector at the Zth receive an-
tenna. Our goal is to design orthogonal block codes for the system
in (1). To do so we need to reformulate (1) such that the signal
transmission matrix for the system is explicit:

Y

yi:Zthji'!"wi:Shi‘i’wi; @

2

where § = (51 S2 Sar},and Sjisthe (T+L—1)}x L
Toeplitz signal matrix transmitted from the jth transmit antenna,
31 0 [}
s S1 G 4]

S;= | #ristr-n, v AT-L+1 3)
D ary 3(T-L) j
0 0 51-'_.;

_IZT .
The vector h;;i = (AY; hi')" contains the channel
coeffcients from the jth transmit antenna to the #th receive an-
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tenna, and h; = (hl; RT;)" is the tength LM vec-
tor of stacked channel coeffcients from the A transmit anten-
nas to the ith receive antenna. Based on (2), the vector of all
the received signals on all V receive antennas can be expressed
as vec(Y) = (In ® S) vec{H) + vec{ W), where the matrix
H=(h --- hy)

3. ORTHOGONAL BLOCK CODE DESIGN

The orthogonality criterion for block codes for a frequency-
selective channel is that the signal transmission matrix (code ma-
trix) S in (2) is orthogonal. Following the standard conventions
for OSTBCs for Mat-fading channels in [6, 12, 4], we assume that
the entries of the code matrix S are 0, £y, £s; or their multiples
by i = +/—1. The symbols 5. k = 1,2,--- , q are taken from a
complex signal constellation. The orthogonality constraint can be-
writlen as

SHS =31 lse|*T. (4)

The symbol rate of the code is B = T_'I+LT1 Since S has a block
Toeplitz structure, the Hurwitz-Randon theory used in the design
of OSTBCs for the Hat-fading casc can not be applicd directly.
However, we will show that the existing classes ot orthogonal
codes for Mat-fading channels can be used to design orthogonal
block codes for frequency-selective channels. Qur analysis will
start with the orthogonality among the sub-matrices in .S. We then
propose a two-step design scheme for orthogonal block codes for
frequency-selective channels and establish the maximum symbeol
rate,

As indicated after (2), the code matrix S collects all the sig-
nals from all the transmit antennas; i.e.. 8 is composed of subma-
trices 8, § = 1,--- , M. Therefore, a necessary condition for
S to be orthogonal is that each S; is orthogonal. Let s, ; the th
column of §;. Because S; has a Toeplitz structure, the largest
number of non-zero entries in the £rst column of a matrix S5 that
is orthogonal can be bounded, as we show in the following lemma.
Furthermore, the zero entries have a certain pattern. This pattern
plays an important part in our orthogonal design.

3.1. Channel length . = 2

For convenience we will begin by detailing the design procedure
for the case of L = 2. The general case is summarized later.

Lemma 1 Given T > 2, the largest number of independent vari-
. 5 T-1 * _ - T

ables ;€ C in the equation 2=t zyzi =0 IS.l—-i_-E. One

such arrangement is that in which the x; with even indices are

zero and those with odd indices are free.

Proof: The proof will proceed by induction on T', The statement
is immediate for T = 2. For T' = 3, the largest number of inde-
pendent non-zere variables for x5 + xax = 01is 2, which is
achicved when zz2 = 0. For T' = 4, the largest number of inde-
peadent variables for zyx3 + Toxs + xsxy = 0is still 2. Possible
arrangements include the case where @2 = za4 = 0. Thus the
statementistrue for T =2m+it.m=1,1=1,2.

Suppose that for a given K > 2, the statement is true for
T = 2K + 4. ¢ = 1,2, i.e., the largest number of independent
variables is K -+ 1. and the non-zero variables have odd indices.
ForT = 2(K + 1) +14,i=1,2, we have

e 2K+ z
Zj(:{HH_ TiTjp1 = Ej(=1+ Vx50 + A, 5

Authorized licensed use limited to: McMaster University. Downloaded on August 15,2010 at 18:23:20 UTC from IEEE Xplore. Restrictions apply.



rl

where A P ie1 T2 )41k 1y45-  BY the induc-

tive hypothesis, Z?Sﬁ'l)z:f:r;ﬂ = 0 and z2n = 0, m
1,2,--+ ,K + 1. Therefore, to prove the statement for T
2(K + 1} + i, i = 1,2, we need only consider A. For the case
wherei = 1, A = THK+ITARK41)+1- but since Taik41) = 0,
A = 0independent of the value of 25k 41341. Therefore there
are K +2 independent variables and the statement holds for¢ = 1.
For the case where £ = 2, A = Ta(ki1y+ 102k +1)+2. Where we
have used the fact that zz(x41) = 0. To ensure that A = 0 one of
variables T $1)+1 and T( K+ 1)42 MUst be zero. Hence, there
are still K+ 2 independent variables and if we set Zogx 4 1y42 = 0
the free variables have odd indices and the even indexed variables
are zero. Therefore, the statement holds for ¢ = 2 and the proof is
complete. 0

Orthogonality of §; requires that sf' sz 0, j =
1,---, M. By applying Lemma | to this case, the non-zero entries
for sy,; can be chosen as {sn jln = 1,3, - ,2([31 - 1) +1}.
Therefore, § has the form,

sp1 0 312 0
9 57497 0
531 0 s3p3 O
0 533 0

8§19 -

O 55, O apg o D
where b = 2[ 27— 1. Now it can be seen from (6) that S is orthog-
onal if and only if the £rst columns among all §';’s orthogonal;
ic., if the marix G = (s11 812 s1,a1) is orthogonal.
Thus, the constraint for the orthogonality of & can be decoupled
into constraints for orthogonality in the delay and spatial domains,
Therefore, an orthogonal design strategy can be implemented by
the following two-steps.

e Step 1: Delay domain — Make the signal matrix for each
transmit antenna, S, orthogenal.

e Step 2: Spatial domain — Make the £rst signal vector
among different transmit antennas orthogonal, i.¢., make
the matrix G = (81,1 81,2 81,21 ) orthogonal.

The maximum diversity gain for a frequency-selective channcl is
MNL [3,15]. That gain can be decomposed into the multipath
diversity gain L and spatial diversity gain M N. In our approach,
the orthogonality constraint in-Step 1 extractsthe multipath diver-
sity and that in Step 2 extracts the spatial diversity. Therefore, our
approach provides full diversity, as expected. The design scheme
Ieads to the following proposition.

Proposition 1 The maximum symbol rate of an orthogonal block
code for a frequency-selective channel of length L = 2 and M
transmnit antennas is B = Ruymac/2, where Ruyrmo 5 the rate
achieved by a rate-maximal orthogonal space time block code Q
Jor a ¥at fading channel with M transmit antennas. The code
matrix § = Q & Iy achieves this rate, and the delay of that code
is d = 2dny, where du, is the delay of Q.

Proof: By applying Lemma [, we need only consider code
matrices of the form in (6). From the discussion above, the ef-
fective size of G is [Z] x M if the zero entries are excluded,
Suppose a code matrix € for a Hat fading channel has a maxi-
mum rate Roymas = o/, WHETe ¢oy is the number of sym-
bols transmitted, and dw, is the delay. The corresponding T for
a frequency-sclective channel is determined by [%T = ¢huy. The
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minimum 7" must be odd and is given by T = 2(dn, — 1) + L.
Given that L — 1 zeros are padded between the blocks in the
frequency-selective case, the delay for a frequency-selective chan-
nelisd = T + I, — 1 = 2du,. Therefore, the maximal rate is
R = ¢ui/(2du) = Bmumax/2. The non-zero entries in the £rst
column in all §;’s can take the corresponding entries of Q. Due
to the block Toeplitz structure of the code matrix S, it can be writ-
ten as the Kronecker product of @ and an identity of size of 2.
§=Q1I,. a

Note that the proof of Proposition 1 indicates that if the OS-
TBLC used in the Kronecker product operation hras minimum la-
tency, the resulting orthogonal code for the frequency-selective
channel also has minimum latency. Therefore, the minimum la-
tency of an orthogonal code for I = 2 is 2dky-min, Where dogr.min i$
the minimum delay of the OSTBC for the nat-fading case.

Let us examine some examples of Propositien 1 for systems
with £ = 2 and difterent numbers of transmit antennas Af. For
M = 2, the minimum block length is T = 3. The code matrix
S = (S1 52) = (81,1 S2.1 81,2 52,2). The orthogonality
constraint in delay domain (Step 1) makes 5, and S2 orthogonal.
Hence. after Step |, we have

s1t 0 [s12 O
(2,2) _ 0 s31] 0 3532
S-‘”Pl - sz1 0 ]sza2 O ' M

9 s31] O s3z

where the superscript 2% represents M = 2and L = 2. Therole
of Step 2 is to make the £rst columns in S, and S; orthogonal,
i.e., to make the matrix G = (81,1 §1.2) orthogonal. 1T the zero
entries are excluded, G has an effective size of 2 x 2. The maxi-
mum number of symbols that can be transmitted is 2. and this rate
is achieved by Alamouti’s scheme [1]. The delay in this case is
d=T+ L —1=4,the rate is 2/4 = 1/2, and the code matrix
can be constructed as

L3} 0 53 0

2,2) 0 = 82
S = —s5 0 s} O
¢} —55 U.i;

For the case of M = 4 antennas at the transmitter, the minimum
block length is T = 7. The maximum symbol rate of an orthogo-
nal code is 3/8, and a rate-maximal code is

O3

§1 &2
={ -4

)

—%

)@b

31 0 |s2 G) sa O | O o
0 5, | 0 szt 0O 53 | D [#]
-33 0 |s] 0 O 0 |~s33 O
* -
(4.2) 0 —s3 | 0 E 0 !} 0 —s3 )
s = | -2 o oo st 0| s2 © _Qj®12
0 —s3] 0 0] 0 s | O sz
[} 0 |s3 0|-83 0 | sy D
0 0 ] G835 0 —s3] 0 5
C)]
5] 83 83 V]
.
. — —s5 87 O a3 q .
where Q@3 = (_85 0 &7 s ), is the 3/4 OSTBC for a mat
9 sy —sq 31

fading channel [12-14]. Observe that the codes S®2 in (8) and
8§ in (9) not only have the maximum rate but also have min-
imum latency, since Alamouti’s scheme and Q% have the mini-
mum latency. For the case of A = 3, an orthogonal code can be
obtained from the M = 4 case in (9) by removing 2 columns, say
the tast two columns, The maximal symbol rate remains the same.

For M = 5 and 6 transmit antennas, the maximum rate of an
OSTBC for a @at-fading channel is 2/3. and this can be achieved
with a with code length of 15 [6]. Applying the 2/3 code to our
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design approach, the maximum orthogonal code rate for L = 2 is
R = 1/3 with delay of 30. The code has the form

s =Q3 oI, (10)
where Q§ is given in [6). The code §GD i (10} has the max-
imum rate but not minimum latency because Q% has the max-

imum rate but not minimurn latency. The minimum latency of
OSTBC for 5 or 6 transmit antennas in the Hat-tading case is
glles2 M1 _ @ [14]. Therefore. the minimum latency of the or-
thegonal code for M = 5,6 and L = 2 is 16, rather than the
delay of 30 required by the code in (10). However, our design
scheme can be applied to construct a minimal-latency orthogonal
code for frequency-selective channels of L = 2 by simply using
the minimum latency OSTBCs described in [14] in the Kronecker
product. (The resulting codes are not necessarily rate maximal if
M >5)

It is also possible to construct a non-maximal-rate and non-
minimal-latcncy orthogonal block code using our design proce-
dure. For example, for I = 2 and M = 4 a rate 1/4 orthogonal
block code can be constructed as Q% & I, where Q% is the rate

1/2 OSTBC given in {13].

3.2. General case

For a frequency-selective channel with length L > 3, our results
can be gencralized to the following lemma and proposition. The
proof of the lemma is given in the Appendix, and that of the propo-
sition is analogous Lo the proof of Proposition 1.

Lemma 2 Given T > L, the largest number of independent vari-
ables x; € Cinthe L — 1 equations

=

—£
*
Tjxipe =0
1

¢=1,2,--- ,L—1, (an

=
Il

is [Z). The free variables can be x1, xr 41, -, Tyt
Proposition 2 The maximum symbol rate of an orthogonal block
code for a frequency-selective channel of length L and M transmit
antennas is R = Ruarmar/ L, where Rugmae is the rate achieved
by a maximal rate orthogonal space time block code Q for a Bat
fading channel with M transmit antennas. The code matrix § =
Q& I, achieves this rate, and the delay of that code is d = Ldg,,
where doy s the delay of Q.

Analogous to the case where L = 2, the minimum latency of
the orthogonal code is Lduy.min-

4. SIMULATION

We consider a system with 2 transmit antennas and 1 reccive an-
tenna. The channel is a frequency-selective Rayleigh fading chan-
nel with memory length 2. We compare the proposed orthogonal
code with the ST-OFDM and CGDD schemes. Each scheme is
allocated the same transmission power and we consider schemes
with a symbol block length of 4. Using Alamouti’s code [1]. the
ST-OFDM and CGDD schemes [3, 5] will require 5 channel uses,
and these schemes have a symbol rate of 4/5. [n contrast. the pro-
posed scheme has a symbol rate of 1/2.

Fig. 1. BER pertormance against block SNR for our orthogonal
design (at 1 bits per channel use) and the ST-OFDM and CGDD
schemes (at 4/5 bits per channel use).

SMR 08

Fig. 2. BER performance against block SNR for our orthogonal
design (at 2 bits per channel use) and the ST-OFDM and CGDD
schemes (at 8/5 bits per channel use).

In Fig 1 we have provided the BER performance of the pro-
posed scheme when 4-QAM signalling is used. In this case the bit
rate is 1 bit per channel use. In that £gure we have also plotted
the BER performance of the ST-OFDM and CGDD schemes with

" BPSK signalling. which results in a slightly lower bit rate of 4/5

282

bits per channel use. In Fig 2 we have provided the BER perfor-
mance of the proposed scheme with 16-QAM signalling (2 bits per
channel use} and that of the ST-OFDM and CGDD schemes with
4-QAM signalling (8/5 bits per channc! use).

Despite the fact that these confgurations result in the proposed
scheme having a higher data rate than its competitors, the simu-
lation results demonstrate improved performance at moderate-to-
high SNRs. This is due to the fact that the proposed scheme pro-
vides full diversity. Actually, the performance advantage of the
proposed scheme is slightly larger than shown, because we have
neglected the power used to transmit the ¢yclic pre£x in the calcu-
lation of the SNR for the ST-OFDM and CGDD schemes.

5. CONCLUSION

A direct construction of orthogonal block codes for frequency-
selective multiple antenna channels has been derived. The max-
imum achievable (symbol) rate was tound and a rate-maximizing
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code structure was specifed. The orthogonal design can be real-
ized by a two-step orthogonality strategy. The £rst step is to make
the signal matrix transmitted from each antenna self-erthogonal.
This step obtains delay diversity, The second step is to make the
£rst signal vector ameng all transmit antennas orthogonal. This
step obtains spatial diversity. For a Hat-fading channel only the
second step needs to be considered. This two-step design strat-
egy reveals the relationship between the orthogonal block codes
for frequency-selective channels and those for Hat-fading chan-
nels. An orthogonal block code for a trequency-selective channel
of memory length of £ can be simply constructed by the Kronecker
product of an existing orthogonal space time block code matrix for
the mat-fading channels with an identity matrix of size of L. If
the orthogonal space-time block code for the Rat-fading channels
used in the Kronecker product operation is rate maximal or latency
minimal, the resulting orthogonal code for the frequency-selective
channels is rate maximal or latency mintmal, respectively,
Acknowledgement: The authors wish to thank Dr. Zhi-
Quan (Tom)} Luo of The University of Minnesota and Dr. Jian-
Kang Zhang of McMaster University for valuable discussions.

6. APPENDIX: PROOF OF LEMMA 2

For the casc of L = 2, the statement collapses to that in Lemma 1,
the proof of which involved induction on T. To prove the
more general statement in Lemma 2, we will employ an addi-
tional (outer) induction on L.

The (outer) inductive hypothesis that the statcment holds for
L = P states that for T > P there arc [ L] frec variables in

. T
{iL‘jIST,g & Zz;f{l}jﬂ:;+e =0,f= 1,2, -- .,P - l} -

=
and that they may be chosento be =y, 2pyq, - -- ST PP 1)t
To show that this hypothesis implies that when [ = P 4 1 the
statement holds for all 77 > P + 1 we will use a structured induc-
tion argument on T". We will treat the case of T = P-+1 separately,
and then will use induction on K and 7 to show that the lemma
holdsfor T=K(P+ 1)+ iforall K > land1 <¢ < P+ 1.

ForT" = P+ 1 we have that Spiie = S_p,e + Apyie, where
Apyqe = 2ppi-rkpy . By the (outer) inductive hypothesis (on
Lywehavethat Spp = 0and Apiy e =0foralll < £ < P -1,
Therefore, we need only enforce Spy1,p = T12p = 0. To
do so, we can simply set zpy; = 0, which results in one free
variable, x1. as stated in the lemma.

For T = P + 2, we have Spyas = Spyi,e + H¢. where
Api2¢ = Tpia_eTpya. Under the (outer) inductive hypothesis
{fon L), Spyre = 0for1 < £ < P—1and Apyze = 0 for
2 < 2 £ P. Therefore, the equations which remain to be satisfed
are SP+1,,P = 1‘1.’1)}:+1 = (and AP+2,1 = TpPy1Tp42 = 0. By
setting xpy) = O we satisfy both equations and retain the largest
number of free variables. Hence the lemma holds for T = P + 2.
We now make the (inner) hypothesis that the lemma holds for T’ =
P+ 1+iforsome l <i < P, and examine the equations when
T = P 4+ 2+ i. Under this hypothesis, Spiayie = 0, except
when € = 1. When £ = i we have Spyoqqi = Tpyo®pypys. and
hence we must choose = py24; = 0 in order to satisfy (11), We
have now shown that it the lemma holds for L = P then it holds
for L =P+1and P+1<T < 2(P + 1). What remains to be
showa is that the lemma also holds for larger values of T

Suppose that for some K > 2 the starement holds for L =
P+land T = K(P+ 1} +m.forall 1 € m < P+ 1. and
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consider the case where T = (K + 1){(P + 1} +d,for1 <4 £
P+ 1. Fori =1 we have S(K—+1)(p+1)+1'g = Sk+1)P+1)e +
TP 1K +1)+1— €Lk +1)(P+1)+1- T1he inductive hypothesis on
K ensures that Sy 1ypa),e = O and Terpryparypi—e = 0
forall 1 < ¢ < P. Hence, @k 4.1)p41)+1 May be chosen freely,
and the lemma holds. If we assume that the lemma holds for T’ =
(K+1)(P+1)+iforsomel <¢< P thenforT = (K +
(P + 1) + 1+ 1 we have that S; 41y Pt 1)+it1,e = 0. except
when £ = ¢. Therefore, in order to satisfy (11) we must choose
Toryer+134i41 = 0. Hence, the lemma holds for T = (K +
D(P+1)+41<i< P+ 1 These induction argurments on
K and ¢ verify that the outer induction argument on L holds for all
values of T > 2(P -+ 1) + 1, and hence the proof is complete.
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