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ABSTRACT 

Orthogonal Space-Time Block Codes (OSTBCs) have several de- 
sirable properties for delay limited communication over a coherent 
narrowband (mt) fading multiplc antenna channel. In particular. 
they provide full diversity, and maximum likelihood detection can 
be achieved via linear processing and symbol-by-symbol detec- 
tion. .As a result, the maximal symbol rate arid minimal latencies 
of OSTBCs have been well studied. In this paper, we construct 
orthogonal block codes for frequency-sclective multiple antenna 
channels. and study their symbol rate and latency properties. Our 
code construction is based on direct application of the orthogonal- 
ity constraints. This enables us  to show that the maximum symbol 
rate of an orthogonal block code for a channel with memory length 
1, is 1 / L  times thc maximum rate of an OSTBC for the same an- 
tenna confguration. Orthogonal codcs that achieve this maximal 
rate can be simply constructed via the Kronecker product ofa rate 
maximal OSTBC with an identity matrix of size L. This Kro- 
nccker design scheme can also be applicd to construct orthogonal 
block codes for frequency-selectivc channels with other desirable 
properties. such as minimal latency. 

1. INTRODUCTION 

Orthogonal space-time block coding i s  a popular transmission 
scheme for narrowband coherent multiple antenna wireless links. 
Two key properties of the Cimily of Orthogonal Space-Time Block 
Codes (OSTBCs) are that they enable full diversity gain, and that 
maximum likelihood detection can he achieved by linear process- 
ing and symbol-by-symbol detection. Several design schcmes for 
OSTBCs have been established [1,6, 10, 12-14]. and the limits 
that the orthogonality constraint places on the maximum achiev- 
able (symbol) rate and the minimum achievable latency are well 
understood. There have been several approaches proposed for ex- 
tending OSTBCs to frequency selective channels [3-5,7-9.11,15]. 
These designs typicaily combine existing OSTBCs with certain 
transmission techniques for single-input single-output frequency- 
selective channels, such as Orthogonal Frequency Division Multi- 
plexing (OFDM) or the time-reversal transmishion scheme. 

Thc goal of the present paper is oblain a direct construction of 
orthogonal space time block codes for frequency-selective multi- 
ple antenna channels, so that all the desirable properties of OST- 
RCs can be extended to wideband transmission systems. We seek 
a defnitive statement of the limits that the orthogonality constraint 
places on the symbol rate and the latency of the code. We de- 
rive our construction using a "Lrst principles" approach in which 
we directly enforce the orthogonality conditions. This enables us 
to show that the orthogonality constraint can be decoupled into 
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independent orthogonality constraints in the space and delay do- 
mains, That allows us to show that thc maximum symbol rate of 
any orthogonal block code for o frequency-selective channel with 
memory length L i s  1/L timcs the maximal OSTBC rate for the 
mt-fading case with the same antenna confguration. Orthogonal 
codes which achieve that symbol rate can be simply constructed 
via the Kronecker product o f a  rate-maximal OSTBC for the th t -  
fading scenario [ I ,  6, 121 with on identity matrix of size L. The 
Kronecker coding scheme is also valid for non-maximal-rate de- 
signs, such as minimal latency codes [I4]. If the OSTBC used in 
the Kronecker product operation has the minimum latency. then 
the resulting orthogonal code for the frtquency-selective channel 
also has minimum latency. 

To plscc our  construction in context, we point out that sevcnl 
schemes have been proposed for applying OSTBCs to frequency- 
selective multiple antenna channels. A standard approach is 
to incorporate the principles of orthogonal frequency division 
multiplexing (OFDM), such as the space-timclspace~frcquency 
OFDM (STISF-OFDM) schemes [5].  and the circulant general- 
i zed delay diversity (CGDD) scheme [3]. Thcsc schemes obtain a 
symbol rate which is a factor ofT/(T + ( L  - I)) lowcr than that 
of the corresponding OSTBC, where T is  the length oP the data 
block. For long block lengths this factor can be close to 1, but if 
low latency is required the block length will be short and the effect 
of the cyclic prefx on the symbol rate will be signifcant. Further- 
more. many of these coding schemes do not provide full divcrsity, 
because the channel matrix may drop rank at some subcarrier fre- 
quencies. An alternative technique is  thc time-reversal space-timt: 
block coding (TR-STHC) scheme 14.91. Its symbol rate reduction 
from the OSTBC case is a factor of T / ( T  -t 2(L - l)), and it 
also requires a more complex receiver. The TR-STBC scheme lies 
within a signi&cantly larger class of coding schemes for frequency- 
selective multiple antenna channels [ 151. The symbol rate reduc- 
tions of the schemes in that class are of a similar order to those 
above, and some of the schemes provide full diversity, but the 
(optimal) detection problem remains substantially more expensive 
than that of OSTBCs in h t  fading. 

It is well known that the price paid for the advantages of or- 
thogonality in the mt-fading environment is a reduction in thc 
maximum (symbol) rate of the system. That is, OSTHCs provide 
a particular trade-off betwcen rate. diversity (BER performance), 
and system complexity'. In this peper, we show that in the case 
of frequency-selective channels, the rate penalty for orthogonal- 
ity is L times larger than that for the Qt-fading case. In spite 

~~ ~ 

'Different coding schemes produce different trade-offs. For example, 
full-rate full diversity designs are available [Z,S]. but they require a more 
complex receiver than an orthogonal design 
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of this. simulation results show that the orthogonal block code 
for frequency-selective channels can provide better performance 
than some existing designs. such as the ST/SF-OFDM [4,53 and 
CGDD 131 schemes. 

The notations used in this paper are reasonably standard: Bold 
upper case letters denote matrices, Aj is a submatrix of A ,  and 
A,,  is a submatrix of A,. Bold lower case letters denote column 
vectors. a, is the j t h  column in  A, a2,j is the ith column in A .  
The vector vec(A) is formed by stacking the columns of A,  (.) 
denotes transpose, (.)" dcnotes the conjugate transpose, and I K  
denotes the identity matrix of size K.  The symbol 0 denotes the 
Kronecker product. 

$ 

2. SYSTEM MODEL 

We consider a multiple antenna communication systetn with 1\/f 
transmit and N receive antennas: The channel between the j t h  
transmit and ith receive antenna is frequency-selective with trans- 
fer function H,i(z) = E,"=;: h$z-'. We assume that the cocfE- 
cients (hji) are independent zero-mean complex circular Gaus- 
sian random variablcs with equal variance. The realization of 
{h;,} i s  assumed to be constant over a block and known at receiver 
but not known at transmitter. The noise is zero-mean Gaussian 
and statistically independcnt among the N receive antennas. We 
consider a block transmission system and wc assume that at least 
( L  - 1) zeros are padded between consecutive transmittcd blocks 
in order lo avoid inter-block interference at the receiver. The trans- 
mitted signal from the j t h  transmit antenna over (T + L - 1) time 
slots is denoted by sJ = (sL,, s2,? . . '  s ~ + ~ - l , j ) ~ .  where 
s ~ + l , j  = . ' = ST+L-~,J'  = 0. The received signal vector at the 
ith receive antenna is 

yi = 3 X i t ~ g  + wi = %is + W i ,  ( 1 )  

where 7 ~ ,  = (yl , i  g(T.l .L-l) ,;)T, and 3 i i  = 
( X l i  Xnji). wherc 7ip i s  the (T + L - 1) x 2' 
lower triangular Toeplitz channel matrix between the jth tnns- 
mit antenna and the ith receiver antenna. Its frst  column 
is equat to (/z$ . . . /L;-' o . ' . o ) ~ .  me vector s = 

(ST . . . sTj)T, stacks all the signals transmitted from the M 
transmit antennas, and w i  is the noise vector at the i th  receive an- 
tenna. Our goal is to design orthogonal block codes for the system 
in (1). To do so we need to reformulate ( I )  such that the signal 
transmission matrix for the system is explicit: 

... 

yz Sjhji  -f- wi = Shi + wi, (2) 
j 

w h e r e S =  (SI SZ . . -  SA[) , and Sj is the (T+L- 1) x L 
Toeplitz signal matrix transmitted from the j t h  transmit antenna, 

4 1  j 0 '.. 
s s j  " l j  ... 

Sj = [ ;  *T j ~ ( T - I )  S ' I ' ,  j ..' 3 ( ' ~ - r . + 1 )  9(T!L)j j ] . (3) 

0 ... sy. j 

The vector hsi = (hyi hh-L)T contains the channel 
cocffcients from the j t h  transmit antenna to the ith receive an- 

a a .  

tenna. and h; = (hli  T . . . hT,i)T is the fength LhI vec- 
tor of stacked channel coefccients from the M transmit anten- 
nas to the ith receive antenna. Based on (2), the vector of all 
the received signals on all N receive antennas can be expressed 
as vec (Y)  = ( I N  @ S )  vec(H) + vec(W),  where the matrix 
H =  (hl ..' h N ) .  

3. ORTHOGONAL BLOCK CODE DESIGN 

The orthogonality criterion for block codes for a frequency- 
selective channel is that the signal transmission matrix (code ma- 
trix) S in (2) is orthogonal. Following the standard conventions 
for OSTBCs formt-fading channels in [6. 12.141. we assume that 
the entries of the code matrix s are 0,  h k ,  &s; or their multiples 
by a : a, The symbols Sk. k = 1 , 2 ,  ... , q  are taken from B 

complex signal constellation. The orthogonality constraint can be 
written as 

The symbol rate of the code is R = *. Since S has a bfock 
Toeplitz structure, the Hurwitz-Kandon theory used in the design 
of OSTBCs for the Elat-Fiding casc can not be applicd directly. 
However, we wifl show that the existing classcs of orthogonal 
codcs for mt-fading channels can be used to design orthogonal 
block codes for frequency-selective channels. Our analysis will 
start with the orthogonality among the sub-matrices in  S. We then 
propose 3 two-step design scheme for orthogonal block codes for 
frequency-selective channels and establish the maximum symbol 
rate. 

As indicated after (2) ,  the code matrix S collects all the sig- 
nals from all the transmit antennas; i.e., S is composed of suhma- 
trices S , ,  j = 1 ,  ' f .  , A I .  Therefore. a necessary condition for 
S to be orthogonal is that each S, is orthogonal. Let st,, the ith 
column of S I .  Because S, has a TocplitL structure, thc largcst 
number of non-zero entries in the f rs t  column of a matrix S ,  that 
is urthogonal can be hounded, as we show in the lbllowing lcmma. 
Funhermore, the zero entries have a certain pattern. This pattern 
plays an important part in  our orthogonal design. 

S H S  = I S k l 2 1 .  (4) 

3.1. Channel length L = 2 

For convcnience we will begin by detailing the design procedure 
f o r  the case of L = 2. The general case is summarized later. 

Lemma 1 Given T 2 2, the Largest number of independent rari- 
ah~es z3 E c if! i/ze cqiiulioti = o is [$I. Que 
such arrungenrent I S  that in which the x3 wi~A even indires are 
zero and those with odd indices are free. 

Proof: The proof will proceed by induction on T.  The statement 
is immediate for T = 2. For T = 3. the largest number of inde- 
pendent non-zero variables for Z~Z;  + x2x: = 0 is 2, which is 
achicvcd when 572 = 0. For T = 4, the largest number of inde- 
pendent variables for sls; + zzaz + z3z; = 0 is still 2. Possible 
arrangements include the case where x2 = z4 = 0. Thus the 
statement is true for T = 2nt + i, m = 1, i = 1 , 2 .  

Suppose that for a given K 2 2, the statement is true for 
T = 2K + i. i = 1,2, i.e., the largest number of independent 
variables is K 4- 1, and the non-zero variables have odd indices. 
For T = 2(K  + 1) + ,i, i = 1,2. we have 
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where A = xiLl 22(K~1)+3-1";(K+l)+j. By the induc- 
tive hypothesis, ~ ~ ~ ~ + 1 ) z 3 z ; + 1  = 0 and ZZ?,, = 0. m = 
1,2,-.. , K + 1. Therefore, to prove the statement for T = 
2(h' + 1) 4- i, i = I, 2, we need only consider A. For the case 
where i 
A = O  
are K+ 

- - 1, A = 2 2 ( ~ + 1 ) 2 2 ( ~ + 1 ) + 1 .  but since Z Z ( K + I )  = 0, 
independent of the value of Therefore there 
2 independent variables and the statement holds for i  = 1, 

For the case where i = 2, A = Z ~ ( K + ~ ) + ~ Z ~ ( K + ~ ) + ~ .  where we 
have used the fact that z ~ ( ~ + ~ )  = 0. To ensure that A = 0 one of 
variables z2(Kfl)+l and z2(x+l)+z must be zero. Hence, there 
are still K - t  2 independent variablesand ifwe set 22(K+1)+2 = 0 
the free variables have odd indices and the even indexed variables 
are zero. Therefore. the statement holds for i = 2 and the proof is 

Orthogonality of Sj requires that ~ f ~ j s 2 . j  = 0, j = 
1, . ~ . , Af. By applying Lemma I to this case, the non-zero entries 
f o r s l j  can be chosen as {sn,jln = l,.?;.. ,2([;] - 1) + I}.  
Thcrefore, S has the form, 

complete. 0 

( $ 1  1 0 3 1  2 0 "' 51 hl 0 
0 SI 1 0 SI 2 . . . . . .  0 31 

5 5 1  0 9 3 2  0 %? hi 0 
0 s3 1 0 33 2 " '  'I. 0 5 3  A, 

. . . . . .  

. . . .  . . . .  . . .  . . . . . .  , i, SI,, 0 a b 2  . ' '  " '  0 s(. *, 
where b = 2[:1~ 1. Now it can be seen from (6) that S is orthog- 
onal i f  and only if the &rst columns among a11 S,'s orthogonal; 
ix . ,  if thc matrix G = (s1,l  SI;^ ... s l ,n r )  is orthogonal. 
Thus. the constraint for the orthogonality of S can be decoupled 
into constraints for orthogonality i n  the delay and spatial domains. 
Therefore. an orthogonal design strategy can be implemented by 
the following two sleps. 

Step 1:  Delay domain - Make thc signal matrix for each 
transmit antenna. Sj,  orthogonal. 

Step 2: Spatial domain - Make the frst signal vector 
among different transmit antennas orthogonal, i.e., make 
the matrix G = (a,,, 3 1 , ~  I . . SI,,,) orthogonal. 

The maximum diversity gain for a frequency-selective channcl is 
M N L  13, IS]. That gain can be decomposed into the multipath 
diversity gain L and spati?! diversity gain M N .  In OUT approach, 
the orthogonality constraint in StGp 1 extracts the multipath divcr- 
siry and that in Step 2 extracts the spatial diversity. Therefore, our 
approach provides full diversity, as cxpxted. The design scheme 
leads to the following proposition. 

Proposition 1 The maximum svmbol rute of an or~/aogotral block 
code for a frequencv-selecfive chanizel of Leng!li L = 2 and M 
transmit anrennas is R = &,p,,,cr/2, where is the rate 
achieved b.y a rate-niuxinzal orfhagonal spctce tiitre block code Q 
fur a t b t  furling chatinel with M frcmstnit anfeiinas. The code 
inalrix S = Q @ I2 aclrievw this rate, and the delav of tliaf code 
is d = 2&,, where d,,, is flie delay of Q. 

Proof: By applying Lemma I ,  we need only consider code 
matrices of the form in (6). From the discussion above, the ef- 
fective size of G is x AI i f  the zero entries are excluded. 
Suppose a code matrix Q for a mat fading channel has a maxi- 
mum rate = htwr /ds l r ,  where hl is the number of sym- 
bols transmitted. and Lt is the delay. The corresponding T for 
a frequency-selective channel is determined by = &,. The 

minimum T must be odd and is given by T = 2(& - I )  + 1. 
Given that L - 1 zeros are padded between the blocks in the 
frequency-selective case, the delay for a frequency-selective chan- 
nel is d = T + L - I = ZL!Q~. Therefore, the maximal rate is 
R = h1/(2dm1) = &,-,,/Z. The non-zero entries in the Erst 
column in alf Si's can take the corresponding entries of Q. Due 
to the block Toeplitz structure of the code matrix S, it can be writ- 
ten as the Kronecker product of Q and an identity o f  size of 2. 
S = Q @ I a .  a 

Note that the proof of Proposition 1 indicates that if the OS- 
TBC used in the Kronecker product operation has minimum la- 
tency, the resulting orthogonal code for the frequency-selective 
channel also has minimum latency. Therefore, the minimum la- 
tency of an orthogonal code for L = 2 i s  2Lrmin, where d,,,,, is 
the minimum delay of thc OSTBC for the mt-fading case. 

Let us examine some examples of Proposition I for systems 
with I, = 2 and difterent numhers of transmit antennas M .  For 
M = 2, the minimum block length is T = 3. The code rnatcix 
S = (SI SZ) =   SI,^ S Z , ~  s1.z 52,~). The orthogonality 
constraint in delay domain (Step I )  makes S1 and S2 orthogonal. 
Hence. after Step 1. we have 

/ S i t  0 I s 1 2  0 \ 

where the superscript (',') represents fig = 2 and L = 2. The role 
or Step 2 is to make the frst columns in SI and Sz orthogonal. 
i.e., to make the matrix G = ( s i , l  s1,2) orthogonal. I f  the zero 
entries are excluded, G has an effective size of 2 x 2. The maxi- 
mum number of symbols that can bo transmitted is 2. and this rate 
is achieved by Alarnouti's scheme [ l J .  The delay in this case is 
d = T + L - 1 = 4, the rate is 2/4 = l/2, and thc code matrix 
can be constructed as 

For the case of M = 4 antennas at the transmittcr, the minimum 
block length is T = 7. Thc maximum symhol rate of an orthogn- 
nal code is 3/8, and a rate-maximal code is 

5 1  0 1 3 2  0 1 5 3  0 1 0 0 
0 SI l o a ? [  0 s 9 (  0 0 

-83 o I si 0 I 0 o 1 - 3 3  0 

(9 )  
31 s'3 5 3  0 

where Qg = (1;; 2 :), is the 3/4 OSTBC for a mt 

fading channel [12-f4j. Observe that the codes S ( 2 2 2 )  in (S) and 
S(4v2) in (9) not only have the maximum rate but also have min- 
imum latency, since Alamouti's scheme and Q J  have the mini- 
mum latency. For the case of M = 3, an orthogonal code can be 
obtained from the A4 = 4 case in (9) by removing 2 columns, say 
the last two columns, The maximal symbol rate remains the same. 

For M = 5 and 6 transmit antennas, the maximum rate of an 
OSTBC for a mt-fading channel is 2/3. and this can be achieved 
with a with code length of 15 [6 ] .  Applying the 2/3 code to our 

33 - 5 2  

4 
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design approach, the maximum orthogonal code rate for L = 2 is 
R = 1/3 with delay of30. The code has the form 

Q: 8 1 2 ,  (10) s("2) = 

where Q a  is given in [6] .  The code S(5*2) in (10) has the max- 
imum rate but not minimum latency because Q x  has the max- 

imum rate but not minimum latency. The minimum latency of 
OSTBC for 5 or 6 transmit antennas in the mt-fading case is 
2r'og2 ' '1 = 8, [14]. Therefore. the minimum latency of the or- 
thogonal code for il.I = 5,6 and L = 2 is 16, rather than the 
delay of 30 required by the code in (IO).  However, our design 
scheme can be applied to construct a minimal-latency orthogonal 
code for frequency-selective channels of L = 2 by simply using 
the minimum latency OSTBCs described in [14] in the Kronecker 
product. (The resulting codes are not necessarily rate maximal i f  

It is also possible to construct a non-maximal-rate and non- 
minimal-latcncy orthogonal block code using our design proce- 
dure, For example, for 1, = 2 and ill = 4 a rate 1/4 orthogonal 
block code can be constructed as Q 4 8 1 2 ,  where Q 1 is the rate 
1/2 OSTBC given in  131. 

hi 3 5.) 

3.2. General case 

For a fnquency-selective channel with length L 2. 3, our rcsults 
can be gcncralized to the following lemma and proposition. The 
proof of the lemma is givcn in the Appendix, and that of the propo- 
sition is analogous to the proof of Proposition I. 

Lemma 2 Given T 2 L, the largest nunzber of independent vari- 
ables x3 E C in the I; - 1 equations 

T--e 

~ " , z ; . k t = o  1!=1,2;.- , L - l ,  ( 1  I )  
3-1 

Proposition 2 The nia.ri~nu~n synbul ruk of an orthogonal bk~ck 
codeJor n freqIienc?i-selEctir?r channel of length L and M transirzi~ 
oiztmnus is R = &r.rn(lr/L, where &,.,,,ar is ihe rute uuhieved 
D.y a maximal rure orikogonal space time block code Q for U mt 
fudirrg chmnel with M transmit antennas. The code matrix S = 
Q 8 Ii, achieves this rule, m d  ilie delay of that code is d = Ld,,,, 
where &, is the delay of Q . 

Analogous to the case where L = 2, the minimum latency of 
the orthogonal code i s  Ldmt-min- 

4. SIMULATION 

We consider a system with 2 transmit antennas and 1 reccive an- 
tenna. The channel is a frequency-selective Rayleigh fading chan- 
nel with memory length 2. We compare the proposed orthogonal 
code with the ST-OFDM and CGDD schemes. Each scheme is 
allocated the same transmission power and we consider schemes 
with a symbol block length of 4. Using Alamouti's code [I] .  the 
ST-OFDM and CGDD schemes [3,5] will require 5 channel uses, 
and these schemes have a symbol rate of 4/5. In contrast. the pro- 
posed scheme has a symbol rate of l /2 .  

........................................ ......... 

Fig. 1. BER performance against block SNR for our orthogonal 
design (at 1 bits per channel use) and the ST-OFDM and CGDD 
schemes (at 4/5 bits per channcl use). 

- I . .  . . . .  :.. . . . . . . . . . . . . . . . . .  .......... 1 

I U 

Fig. 2. BER performance against block SNR for our orthogonal 
design (at 2 hits per channel use) and the ST-OFDM and CGDD 
scherncs (at 8/5 hits per channel use). 

In  Fig 1 we have provided the BER performance of the pro- 
posed scheme when 4-QAM signalling is used. In this case the bit 
rate is 1 hit per channel use. In that Egure wt' have also plotted 
the BElZ performance of thc ST-OFDM and CGDD schemes with 
BYSK signalling, which results in a slightly lower bit rate of 4/6 
bits per channel use. In Fig 2 we have provided the RER perfor- 
mance of the proposed scheme with 16-QAM signalling (2 bits per 
channel use) and that of the ST-OFDM and CGDD schemes with 
4-QAM signalling (8/5 bits per channcl use). 

Despite the fact that these confgurations result in the proposed 
scheme having a higher data rate than its competitors. the simu- 
lation results demonstrate improved performance at moderate-to- 
high SNKs. This is due to the fact that the proposed scheme pro- 
vides full diversity. Actually. the performance advantage of the 
proposed scheme is slightly larger than shown, because we have 
neglected thc power used to transmit the cyclic prefx in  the calcu- 
lation of the SNR for the ST-OFDM and CGDD schemes. 

5. CONCLUSION 

A direct construction of orthogonal block codes for frequency- 
selective multiple antenna channels has been derived. The max- 
imum achievable (symbol) rate was found and a rate-maximizing 
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code structure was specifed. The orthogonal design can he real- 
ized by a two-step orthogonality strategy. The frst step is to make 
the signal matrix transmitted from each antenna self-orthogonal. 
This step obtains delay diversity. The second step is to make the 
Erst signal vector among all transmit antennas orthogonal. This 
step obtains spatial diversity. For a oat-fading channel only the 
second step needs to be considered, This two-step design strat- 
egy reveals the relationship between the orthogonal block codes 
for frequency-selective channels and those for mt-fading chan- 
nels. An orthogonal block code for a frequency-selective channel 
of memory length of L can be simply constructed by the Kronecker 
product of an existing orthogonal space time block code matrix for 
the bt-fading channels with an identity matrix of size of L. If 
the orthogonal space-time block code for the mt-fading channels 
used in the Kroncckerprcduct operation is rate maximal or fatency 
minimal. the resulting orthogonal code for the frequency-selective 
channels is rate maximal or latency minimal, respcctively. 

Acknowledgement: The authors wish to thank Dr. Zhi- 
Quan (Tom) Luo of The University of Minnesota and Dr. Jim- 
Kang Zhang of McMaster University lor valuable discussions. 

6, APPENDIX: PROOF OF LEMMA 2 

For the case of L = 2, the statement collapses to that in Lemma 1, 
the proot’ of which involved induction on T. To prove the 
more gcneral statement i n  Lemma 2, we will employ an addi- 
tional (outer) induction on L. 

The (outer) inductive hypothesis that the statement holds for 
L = P statcs that for T 2 P there arc frec variables i n  

and that they may be chosen to bc zl,zp+l,“- , X ~ ( ~ T , - ~ ~ + ~ .  

To show that this hypothesis implies that when L = P + 1 the 
statcment holds for at1 ‘1’ 2 P + 1 we will use a structured induc- 
tion argument on T. We will trcat the caseof1’ = P+l separately, 
and then will use induction on K and i to show that the lemma 
holds for T = K ( P  f I )  + i Cor all K 2 1 and 1 5 i 5 P f 1. 

For’l’= P+1 wehavethatSp+l,c = S ~ , t + A p + 1 , e , w h e r e  
A,+,,, = ~ p + ~ - ~ m > + ~ .  By the (outcr) inductive hypothcsis (on 
L)wehavcthatSp,f  =OandAp+l ,e  = O f o r a l l l ’ < B S  P-1.  
Therefore, we need only enforce S p + 1 , p  = z~z>,, = 0. To 
do so, we can simply set xp+] = 0, which results in one free 
variable, 5 1  I as stated in thr lemma. 

For ?’ = P -I- 2, wc have S p + 2 , ~  = Sp+1,1 $- At, where 
Ap+z.e = x p + 2 - ~ x : + ~ .  Under the (outer) inductive hypothesis 
(on L). S P + I , ~  = 0 for I 5 B I: P - 1 and Ap+,.e = 0 for 
2 5 5 P. Therefore, the equations which remain to be satisfed 
are Sp+l.p = ~ ~ x * p + ~  = 0 and AP+Z,I = ZP+IIP+P = 0. By 
setting xp+1 = 0 we satisfy both equations and retain the largest 
number of free variables. Hence the lemma holds for T = P + 2. 
We now make the (inner) hypothcsis that the lemma holds for T = 
P + 1 + i for some 1 5 i 5 P ,  and examine the equations when 
T = P C 2 + i. Under this hypothesis, S p + z + i , ~  = 0, except 
when e = i. When e =  i wt: have SP+Z+~,+ = ip+2xp+2+i, and 
hence we must choose z p + ~ + i  = 0 in order to satisfy ( I  I ) ,  We 
have now shown that if the lemma holds for L = P then i t  holds 
for L = P f 1 and P + 1 5 T 5 Z(P + 1). What remains to be 
shown is that the lemma also holds for larger values OPT. 

Suppose that for some K 2 2’the statement holds for L = 
P + 1 and T = K ( P  + 1) + m, for all 1 5 m 5 P + 1. and . 

consider the case where T = ( K  + 1)(P + I) + i ,  for 1 5 i 5 
P + 1. For i = 1 we have SiIc+1)(P+.1)+1.t = + K + I ) ( P + I ) . P  + 
”(p-i.i)(~-+~)+i-ez;K+I)(Ptl)t~. The inductive hypothesis on 
K ensures that S(K+l)(P+l).t = 0 and Z ( K + ~ ) ( P + I ) + I - - P  = 0 
for afl 1 I e 5 P. Hence, z : ( K + ~ ) ( P + ~ ) + ~  may he chosen freely, 
and the lemma hofds. If we assume that the lemma holds for T = 
( K  + 1)(P + 1) + i for some I 5 i 5 P. then for T = ( K  + 
1)(P + 1) + i + 1 we have that S(~+.l)(p+l)+i+l,~ : 0. except 
when I = i. Therefore, in order to satisfy (1  I )  we must choose 
x(K+l)(P+l)+i+l = 0. Hence. the femma holds for T = ( K  + 
1)(P + 1) + i, 1 5 i 5 P + 1. These induction arguments on 
K and i verify that the outer induction argument on L holds for all 
values o f T  2 2(P + 1) -k 1, and hence the proof is complcte. 

7. REFERENCES 

S .  M. Alamouti, “A Simple Transmit Diversity Technique for Wire- 
less Communications,” IEEE J, Selecr. Areus Coriiintin., vol. 16, pp. 

H .  El Garnal and M. 0. Danien. “Linear Threaded Algebraic Space- 
Time constellations.” IEEE fian.5. lnjimiur. T / i w q ,  pp. 2372- 
23868. Oct. 2002. 
D. Gore, S. Sandhu and A. Paulraj. “Delay Diversity Codes for Fre- 
quency Selective Channels,” in  Pwc. In!. Cm$ Cuiiwtmi., vol. 3. 

E. G. Larsson, P. Sroica, E. Lindskog and J .  Li. “A Space-Time 
Block Coding for Frequency-Selective Channels,” in Pro(:. hit. 

2002. 
K.  F. Lee and I). B .  Williams. “A Space-Time Coded Transmitter 
Diversity Technique for Frequency selective Fading Channcls.” in 
IEEE Sensor ArIuy Q Mtilrichuttnel S i p i d  Pwcrssi!ig Wkslfp,  pp. 
149-152, Mar. 2000. 
X . 4 .  Liang, “Orthogonal Designs With Maximal Ram,’’ IEEE 
Twns. If$?vvftuf. Theory, vol. 49, pp. 2468-2503, Oci. 2003. 
Y. Liu, M. P. Fitz, 0. Y. Takeshira, “Space-time Codes Perfomiance 
Criteria and Design for Frequcncy Selective Fading ChanneIs,” in 
PWC. lEEE fur. Conj: Cutrfwil.,  vol. 9, pp, 2800-2804, 2001. 
X. Ma and G. E. Gianoakis, “Full-rate Full-diversity Complex-feld 
Space-time Codes for Frequcncy- or Time-selective Fading Chan- 
nels,” in Pmc. A , ~ i I ( i i i i ~ r  C<J# on Signalr. Swterns m d  Coritpfer5, 

P. Stoica and E. Lindskog, “Space-Time Block Coding for Channels 
with Intersymbol tnterfercnce,” Digilul Signul Processing. vol. 12, 
pp. 616-627, Dec. 2002. 
W. Su and X.-G Xia. “On Space-nine Block Codes from Coinplex 
Orthogonal Designs,” Wireless h ” u l  Ct~ir~iiri~ii., vol. 25, pp. 1-26, 
Apr. 2003. 
W. Su. Z. S.  Masoud, and K.  J. R. Liu. “Obtaining Full-Diversity 
Space-Frequency Codes from Space-Time Codcs via Mapping,” 
IEEE Puns. Sixnrrl Pruuessing, vol 5 1, pp. 2905-2916, Nov. 2003. 
V. Tarokh and A. R. Calderbnnk, “Spacc-Time Block Codes from 
Orthogonal Designs,” IEEE fiurrs. Inforitrr. Theory, vol. 45. pp. 

V. Txokh and A. K. Calderbank, “Space-Time Codes for High Data 
Kate Wiretess Cummunjcation: Performance Criterion and Code 
Construction,” lEEE 7 i . u ~  Cumuw., vol. 47, pp. 199-207, Feb. 
1999. 
0. Tirkkonen and A. Hottinen. “Square-Matrix Embeddable Space- 
Time Block Codes for Complex Signal Constellations*” IEEE Truns. 
/flf;7rmr. Thanrv, vol. 48. pp.384-395, Feb. 2002. 
S .  Zhou and G. B. Gimnakis. “Single-Carrier Space-Time Block- 
Coded Transmissions Over Frequency-Selective Fading Channels,” 
IEEE Truns. frttmnut. Thwry. vol49. pp. t64-179. Jm. 7003. 

14.51-1458, Oct. 1998. 

pp. 1948-1953.2002. 

CtIilf: ACOLf,&Y, . ~ / J W C / I .  srh.,W/ flncr.wiiig, Vol. 3. pp. 2405-2409, 

Vol2.p~. 17l4-1738,?000. 

1456-1467, July 1499. 

283 

Authorized licensed use limited to: McMaster University. Downloaded on August 15,2010 at 18:23:20 UTC from IEEE Xplore.  Restrictions apply. 


