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Diversity Analysis and Design of Space–Time
Multiblock Codes for MIMO Systems
Equipped With Linear MMSE Receivers
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Abstract—This paper addresses the problem of designing op-
timum full-symbol-rate linear space–time block codes (STBC) for a
multi-input multi-output (MIMO) communication system with�
transmitter and � � � receiver antennas and a linear minimum
mean square error (MMSE) receiver. By analyzing the detection
error probability expression for the optimized STBC, it is shown
that for QAM signaling, the maximum diversity gain for such a
system is��� ��. The minimum probability of error STBC de-
sign is then extended to systems in which the transmission spans �
independent realizations from a block fading channel model, and
a (multiblock) linear MMSE receiver is employed. Necessary and
sufficient conditions for the optimality of the code are obtained,
and a systematic design method for generating codes that satisfy
these conditions is presented. The detection error probability and
diversity gain of this optimized linear multiblock transceiver are
analyzed. It is proved that the error probability decreases with �,
and it is shown numerically that the diversity gain increases with
�. Thus, if the corresponding latency can be accommodated, for
sufficiently large � an optimally designed multiblock system with
a linear receiver can exploit the temporal diversity provided by the
block-fading channel and achieve higher diversity gain than that of
any single-block system of the same symbol rate with a maximum
likelihood (ML) receiver. The optimized multiblock linear system
achieves this diversity at a substantially lower computational cost.
In fact, the structure of the optimal codes can be exploited to sig-
nificantly reduce the cost of the multiblock linear receiver.

Index Terms—Detection complexity, diversity gain, linear
space–time block codes, multiblock transmission, multi-input
multi-output (MIMO) systems.

I. INTRODUCTION

T HE design of space–time block codes (STBC) for high
rate transmission with low detection error probability is

one of the core problems in multi-input multi-output (MIMO)
communication systems, e.g., [1]–[10]. A key performance
metric for STBCs is the diversity gain. For an arbitrary STBC
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and an arbitrary receiver, the diversity gain, , can be defined
as [11]

(1)

where is the chosen measure of the error probability and
is the signal-to-noise ratio (SNR). Although it is asymptotic in
nature, the diversity gain plays a key role in space–time code de-
sign because it is an indication of the rate of decay of the error
probability with SNR in the high SNR region; e.g., [12]. For the
narrowband richly scattered block fading MIMO channel, the
maximum achievable diversity gain is , where and

are the number of transmitter and receiver antennas, respec-
tively, and several full-symbol-rate STBCs that enable the max-
imum likelihood (ML) receiver to extract this “full” diversity
provided by the channel have been proposed; e.g., [13]–[15].
However, when higher order constellations are employed, the
computational requirements of the ML detector are often be-
yond the capability of the envisioned communication device.

A linear minimum mean square error (MMSE) receiver,1

on the other hand, is relatively simple to implement. The
full-symbol-rate linear STBC that minimizes the bit error
rate (BER) for a MIMO system employing a linear MMSE
receiver has been presented in [16], [17]. Those codes were
shown to provide significantly better BER performance with
linear receivers than existing STBCs, but, due to the simplicity
of the linear receivers, the diversity provided by the MIMO
channel cannot be fully exploited. Using the expression for the
minimum detection error probability, we will show in Section II
of this paper that the maximum achievable diversity gain for a
general MIMO system with an arbitrary full-symbol-rate linear
STBC and a linear MMSE receiver is , which is, in
general, lower than the full diversity, .

The achievable diversity of a STBC for a block-fading MIMO
channel can be increased by allowing the codewords to span
multiple blocks and employing a multiblock ML receiver [18],
[19]. This enables the transceiver to take advantage of the tem-
poral diversity provided by the channel, but the computational
cost of the multiblock ML receiver is often prohibitive. As in
the single-block case, the use of a linear MMSE receiver re-
duces this cost, but in the multiblock case the design of appro-
priate STBC for linear receivers has yet to be resolved. Some ex-
periments performed in [20] have shown that by interchanging

1That is, a linear MMSE spatial equalizer followed by symbol-by-symbol
detection.
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elements of a (single-block) space–time coded symbol stream
between different blocks, the system error performance may be
improved.

In Section III of this paper, we will consider the design of an
optimum linear multiblock STBC for a MIMO system equipped
with a (multiblock) linear MMSE receiver. As in [18], we adopt
the conventional independent block fading model in which the
channel coefficients remain constant for one block and vary in-
dependently from block to block; e.g., [21]. For such a system,
we present necessary and sufficient conditions on the structure
of the code for the detection error probability to be minimized,
and we show that this minimum error probability is a decreasing
function of the number of blocks, . We also show that for codes
with this optimal structure, the computational cost of the generic
multiblock linear receiver can be substantially reduced. Further-
more, by evaluating the analytic expression for the detection
error probability numerically, we show that the diversity order
grows with . Therefore, can be chosen so that the combi-
nation of the optimal full-symbol-rate multiblock STBC and a
linear MMSE receiver achieves a higher diversity gain than that
of any single-block STBC with ML detection. For a system in
which latency can be accommodated, such a scheme would pro-
vide high diversity without the high computational complexity
associated with ML detection. This is a particular advantage
when higher order constellations are employed.

II. SINGLE-BLOCK TRANSMISSION

In Section II-A, we will review the optimality conditions in
[16] on linear STBCs for single-block transmission and linear
reception. Then, in Section II-B, we will determine the diversity
gain of codes that satisfy those optimality conditions.

A. Optimal Linear STBC for Single-Block Transmission

Consider a MIMO communication system equipped with
transmitter antennas and receiver antennas, in
which each of the channels linking these antennas is as-
sumed to be block flat-fading, i.e., the fading channel coefficient

that links the th transmitter and the th receiver antennas
remains constant during a period of time slots (designated a
block) and may change to another state independently after the
duration elapses. We assume to be independent and identi-
cally distributed (i.i.d.) circularly symmetric complex Gaussian
with zero mean and unit variance. The channel state informa-
tion is assumed to be unknown to the transmitter but available
at the receiver. Let us form the channel gain matrix with ele-
ments, . If we denote as the vector of signals
transmitted by the antennas at the th time slot, then, over
time slots, the block of signals to be transmitted through can
be represented by the signal matrix . For single block
transmission, the received signals, denoted by the matrix

, of the system can then be written as

(2)

where is the SNR at each receiver antenna and is the ad-
ditive noise, which has a circularly symmetric complex white
Gaussian distribution of unit variance, denoted .

We will focus on systems that employ a full-symbol-rate
linear STBC. Since we are considering systems in which

, that means that symbols are transmitted per
block, and the code word in (2) is a linear combination of
code matrices

(3)

where are the symbols to be transmitted and are selected
from a particular constellation. These symbols are assumed
to be independent with zero mean and unit variance. For reasons
of implementation simplicity, we will focus on systems with a
linear MMSE receiver, and a natural goal is to design the set

so that the detection error probability for that receiver is
minimized, while satisfying the power constraint

(4)

where denotes trace of a matrix. Several researchers have
studied this problem in the past few years [4], [5], [16], [17],
[20], [22]. In particular, the following result from [16] provides
necessary and sufficient conditions on the structure of the set

to achieve the minimum BER for a system with 4-QAM
signaling (and a linear MMSE receiver), under the standard ap-
proximation [23] that the residual (spatial) intersymbol interfer-
ence (ISI) is Gaussian.2

Lemma 1 ([16, Theorem 1]): Consider a MIMO system trans-
mitting 4-QAM signals using a full-symbol-rate linear STBC
and a linear MMSE receiver. Under the standard Gaussian ap-
proximation of the interference at the input to each symbol de-
tector, the average BER, , has a lower bound given by

(5)

where denotes expectation over the random channels.
Equality in (5) holds if and only if the code matrices satisfy
the following two conditions:

i) the set is trace-orthogonal, i.e., for
, where is the Kronecker delta;

ii) each is unitary up to a constant, i.e.,
.

The -function in (5) is defined as
. Lemma 1 states that the jointly unitary

and trace-orthogonal code structure is necessary and sufficient
for minimizing the average BER for single-block transmission
of 4-QAM signals, under the Gaussian ISI approximation.
These optimality conditions also apply to any square QAM
constellation (with Gray coding) at high SNR [16]. They are
also necessary and sufficient for the minimization of the average
mean square error (MSE) of the detector inputs, irrespective
of the transmitted constellation [25]. A code that satisfies the

2The distribution of the ISI converges almost surely to a proper (circular)
Gaussian distribution as� increases [24].
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conditions of Lemma 1 can be systematically generated from
a normalized DFT matrix [16].

B. Performance Analysis

For codes designed for single-block transmission, the min-
imum BER given by Lemma 1 is in the form of the expected
value of a -function over the random channels. To gain insight
into the role of each parameter in the performance of a system
employing such codes, we would like to capture the optimal per-
formance in a form that is independent of the random channels.
To do so, we examine the minimum BER at high SNRs and de-
termine the diversity gain, , cf. (1). This can be done by con-
centrating on the dominant term in the expression in (5) at high
SNR, i.e.,

terms involving higher orders of

where the coefficient is often referred to as the coding gain
[2].

Since the channels are assumed to be i.i.d. zero-mean
Gaussian random variables, the channel matrix is of distri-
bution and the matrix product is of Wishart
Distribution [26], [27]. Let , denote the
eigenvalues of ordered as .
(Inequality between adjacent eigenvalues occurs almost surely.)
Then [26], [27], the joint probability density function (pdf) of
the eigenvalues is given by

(6)

where ,
with being the Gamma function for complex multivariate,
which is defined as .

Observe that in (5) the random channel appears in the form
only, and the trace term in the denominator can be ex-

pressed as

(7)

Using the standard bound on the -function [28]

(8)

and combining (7) and (8) we have the following upper bound
on the minimum BER:

(9)

where the joint pdf of the eigenvalues is given
by (6). For finite number of transmission antennas, the following
result can be obtained by evaluating (9) and focusing on the term
containing the lowest order of .

Theorem 1: For a MIMO system that transmits 4-QAM sig-
nals using the optimal linear STBC described in Lemma 1, the
diversity gain and coding gain obtained by
a linear MMSE receiver are given by

(10a)

(10b)

Proof: See Appendix A.

Remarks:
1) Although the derivation provided here is for 4-QAM sig-

nals only, Theorem 1 can be extended to a general (Gray
coded) square QAM constellation with bits per symbol,
where is a positive integer. In particular, using the BER
approximation in [29] (and the Gaussian ISI approxima-
tion), the minimum BER achieved by a unitary trace-or-
thogonal code at high SNR is given by [16]

(11)

where and . We observe
that the constants and are positive and independent
of , and hence (11) and (5) have the same dominant order
of , i.e., the same diversity order. However, the coding
gain does depend on the signal constellation.

2) The dependence of the diversity gain in (10a) on
implies that increasing the degrees of freedom (i.e.,

and ) of a full-symbol-rate system does not guarantee
improved diversity gain for a linear receiver.

3) It is interesting to compare the diversity gain in (10a) with
that of a MIMO system in which the data symbols are
transmitted directly, without a space–time code (i.e., spa-
tial multiplexing), and a linear zero-forcing (ZF) receiver is
employed. In [30], [31], [32, p. 546], and [33], it was shown
that the diversity of that scheme is also . This
shows that when a linear receiver is employed, the use of a
BER-optimal full-symbol-rate STBC does not increase the
diversity gain.3 (The lower BER obtained by the optimal
STBC is due to an increase in the coding gain.) This is in
contrast to the case of ML detection. In that case, the di-
versity of the direct transmission scheme is , whereas
a system that employs a well-designed full-symbol-rate
STBC can obtain the maximum diversity gain, which is

.
Since the diversity achieved in (10a) is less than the maximum
diversity obtainable for single-block coded systems employing

3Analogous insight is obtained from the recently derived diversity-versus-
multiplexing trade-off for linear receivers [34].
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Fig. 1. � (curve) and simulated average BER (symbols) for optimized single-block transmission.� � �� � � �� �� �.

an ML detector, in the next section we will develop a multiblock
transmission scheme that increases the diversity of MIMO sys-
tems with a linear MMSE receiver. Before we do so, we provide
a numerical example that verifies the diversity analysis above.

Example 1: In this example, we verify the diversity analysis
in Theorem 1 by evaluating the BER performance of an optimal
single-block transmission scheme with 4-QAM signaling in an
i.i.d. Rayleigh fading environment. (Performance comparisons
with other STBCs were provided in [16].) The performance is
evaluated using the expression in (5) and via simulation. Two of
the specific space–time codes used in the simulations are pro-
vided in Appendix C.

1) In the first experiment, we consider a system with
, and hence the transmission data rate is

bits per channel use (pcu). In Fig. 1 we consider the cases
of and receiver antennas and we show that
the negative slopes of the (analytic and simulated) average
BER curves increase with and are equal to

, verifying the results in Theorem 1. (These curves also
illustrate that the Gaussian approximation of the ISI leads
to an accurate expression for the minimum average BER,
even when is only 2.)

2) In the second experiment, we fix , and
we examine the BER performance for and . The
resulting averaged BER curves are plotted in Fig. 2. We ob-
serve that at high SNR, all the curves have the same slope,
and hence, the same diversity gain. However, the larger the
value of , the lower the BER that the system achieves,
even though the data rate is bits pcu. These observa-
tions verify the analysis (cf. Theorem 1), which showed
that diversity gain is only related to , and that
systems with larger have larger coding gains.

III. OPTIMAL LINEAR STBC FOR MULTIBLOCK TRANSMISSION

WITH LINEAR MMSE RECEIVER

In the optimal STBC for single-block transmission presented
in Section II-A, each data symbol is distributed among the
elements of the matrix , but is constrained to the given block
of channel uses. In multiblock transmission [18], each symbol
may be distributed over all the elements of the block signal
matrices , and this offers the opportunity to
take advantage of the time diversity offered by the block-fading
channel. In this section, we examine the design of a multiblock
linear STBC for use with a (multiblock) linear MMSE receiver,
and show that a substantial increase in diversity can be achieved.

Consider blocks of the independent block fading
channel model, and let denote the channel matrix for
the th block. For full-symbol-rate transmission, we require

symbols to be transmitted during these blocks, i.e.,
. We consider a linear multiblock

space time code in which each can be written as

(12)

where are the matrices to be designed and are con-
strained to have the power evenly allocated over all blocks,

(13)

Using (12), the received signal for each transmitted block is
given by

(14)
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Fig. 2. � (curve) and simulated average BER (symbols) for optimized single-block transmission.� � � � �� �� �.

Since the received signals from each block contain informa-
tion from all symbols, we need to jointly detect the sig-
nals from all blocks at the receiver. If we collect the
symbols transmitted in blocks in the vector

, and if we vectorize each block of received
data in (14) with and , then we
can write the blocks of received signals as

...
. . .

...

...
(15)

Using the underbraced terms, we can rewrite (15) as

(16)

where the equivalent channel matrix is of dimension
, and is the square coding matrix that

is to be designed. We note that the th column of , denoted by

, is an -dimensional vector containing elements of the
code matrices for the th symbol in all blocks, i.e.,

(17)

The (multiblock) linear MMSE equalizer for the system
model in (16) is (e.g., [35])

(18)

and the equalized signal is

(19)

Each of the elements of is then detected by a symbol-by-
symbol detector. The symbol error covariance matrix of the de-
tector inputs is given by

(20)

For later convenience, we define , where and
are the real and imaginary parts of , respectively, and to

be the corresponding equalized signal. The error covariance of
can be written as

(21)

where is of dimension , and and are
both and are respectively defined as

where the superscript “ ” denotes complex conjugate.



LIU et al.: DIVERSITY ANALYSIS AND DESIGN OF SPACE–TIME MULTIBLOCK CODES 4807

As is in the case of single-block STBC design, we will first
consider the bit error probability for 4-QAM symbols. If we
approximate the residual ISI at the output of the linear MMSE
equalizer by zero-mean Gaussian noise [23], [24], the averaged
error probability over the bits can be written as

(22)

The objective now is to obtain the structure of codes that min-
imize this error probability; i.e., the structure of
subject to the power constraints in (13). The solution to this
problem is provided by the following theorem:

Theorem 2: Consider a MIMO system transmitting 4-QAM
signals using a full-symbol-rate multiblock linear STBC and a
linear MMSE receiver. Under the standard Gaussian approxi-
mation of the interference at the input to each symbol detector,
the average BER has a lower bound given by

(23)

Equality in (23) holds if and only if the code matrices satisfy
the following two conditions:

i) the set is trace-orthogonal in an -block sense, i.e.,

for (24)

ii) each is unitary up to a constant, i.e.,
.

Proof: See Appendix B.

Remarks on Theorem 2:
1) Lemma 1 is a special case of Theorem 2; i.e., for ,

the statements are identical.
2) Following similar arguments to those in [16], [25], and [36]

and those that follow Theorem 1, the two conditions in
Theorem 2 can be proved to be necessary and sufficient in
minimizing BER for any square QAM signal constellation
at high SNR, and necessary and sufficient for the minimiza-
tion of the average MSE of the detector inputs, irrespective
of the transmitted constellation.

3) Since is the code for the th symbol transmitted
through the th realization of channel, the first optimality
condition enforces an orthogonality relation between dif-
ferent symbols while maintaining equal power allocation
for each symbol. The second optimality condition ensures
that each symbol, , is evenly distributed over all the
channel fading coefficients for each of the channel
realizations (via the use of a unitary coding matrix ),
and the power allocated to transmit each symbol through
each of the channel realizations is equal.

4) Equation (23) shows that is a function of ;
i.e., . In the following, we will prove that

; i.e., the detection error prob-
ability decreases with the increase of . For notational sim-
plicity, we write , where

, and .
First, we note that is a convex function of when

; e.g., [16]. Now, consider having inde-
pendent blocks, among which we choose any combination
of different blocks for transmission. In total, there are

different combinations. For each combination
of blocks, we jointly transmit signals that have been
space–time coded in the manner described in Theorem
2, and the expected value of the error probability over
the random channels is . Averaging over all the

combinations, this value remains unchanged; i.e.,

(25)

Applying Jensen’s inequality [37] to the right side of (25),
which contains the convex function , we arrive at

(26)

Equality in (26) holds iff the channel realization in each
of the blocks is identical. Therefore, under our
independent block fading model, we have strict inequality
in (26) with probability one.

IV. PERFORMANCE ANALYSIS: MULTIBLOCK TRANSMISSION

USING OPTIMUM CODE

In the previous section, we derived an expression whose
expected value over the random channels yields the minimum
BER for multiblock transmission; cf. (23). We also
proved that decreases as increases. However, to
understand the roles that each parameter plays, we would
like to evaluate the expectation in (23). First, by writing

, with being the th eigenvalue for
can be written as

(27)

where denotes the joint pdf of all
. Since the channel matrices

are statistically independent for different , we have
, where each

satisfies (6). Due to the complexity of
the -function and , the integration in (27) appears to
be intractable. However, we observe from (27) that
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Fig. 3. � (curve) and simulated average BER (symbols) for optimized multiblock transmission for different � for the case of� � � � �.

depends on the parameters and . To examine the
properties of in relation to multiblock design, in the
following we evaluate numerically in terms of ,
and , keeping so that in the case of , the
diversity .

A. Finite

Since the channel eigenvalues are independent from one
block to another, the evaluation of (27) with respect to is
relatively simple. However, the channel eigenvalues are not
independent within each block, hence this evaluation could
be quite tedious for large . The task can be made simpler
following the general procedure outlined below.

i) We let , so that
.

ii) Let . Then we can obtain by
successive integration such that, for

(28)

where
.

iii) Let . Since the random variables are in-
dependent from block to block, we have

(29)

where “ ” denotes convolution, which can be efficiently
carried out using the FFT.

iv) Let , then and (27) becomes

(30)

For finite and , the above procedure yields, numerically, the
value of , from which we can appraise the gain obtained
from the multiblock design, as we will demonstrate in the fol-
lowing simple example.

Example 2: In this example we evaluate the performance
of an optimized multiblock linear transceiver via numerical
evaluation of and BER simulations, under the i.i.d.
Rayleigh channel model that we have considered. (Some of
the specific space–time codes used in the simulations are pro-
vided in Appendix C.) In Fig. 3 we have plotted the bit error
rate against the SNR for different values of for the case of

, for which bits pcu. This figure
confirms the statement in Remark 4 following Theorem 2 that

decreases as increases, and it illustrates the manner in
which decreases with increasing .

In order to assess the impact of increasing on the achieved
diversity, we numerically evaluated (and scaled) the negative
slope of the error rate curves at high SNR; cf. (1). The (scaled)
slopes at an SNR of 24 dB are plotted in Fig. 4 for the cases
of and a number of values of .
We observe that, as predicted by Theorem 1, for all three
systems have a slope of . We also observe that the
slopes become larger (i.e., the error rate curves become steeper)
as increases. As one might intuitively expect, for the
high SNR slope of the systems with more antennas is steeper
than those with fewer antennas, even through the data rate is

bits pcu.

B. For Asymptotically Large

When the code is jointly designed for a large number of
blocks, the effect of can be analyzed in the following way.
Let the fractional part in the argument of the -function in (27)
be written as . As
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Fig. 4. Numerical approximation of � ���� �� ��� � at � � �� dB for different values of � for the cases of� � � � �� � � � � �, and� � � � �.

, we can apply the law of large numbers and write the
denominator as

(31)

where the last step is valid for any positive number since
the summand is a constant. The pdf of is the marginal density,
which can be obtainable from the joint pdf of the ordered eigen-
values in (6) by first deriving the joint pdf of
the unordered eigenvalues and then integrating, resulting in [3]

(32)

where is the associated La-
guerre polynomial of order and degree , with ( )
being the binomial coefficient. Substituting (32) into (31), we
obtain

(33)

where, for notational simplicity, we have rewritten the square
of as a polynomial in ascending powers of with
coefficients . If we let , (33) can be written as

(34)

In the following, we analyze the diversity gain for two cases.
1) : In this case, (34) equals

(35)

where the exponential integral is defined as [38]
, with being Euler’s

constant . Therefore, (35) can be written
as

where the terms inside parentheses are ordered in de-
scending order of . At high SNR, we have

(36)

Since , applying the upper bound on the
-function in (8) to (30), and using (36), the upper bound

on the minimum error probability is given by

(37)

It can be shown that for any fi-
nite positive integer , and hence we conclude that as
increases, the maximum diversity gain achievable by linear
MMSE receiver grows without bound.

2) : Let .
Then the term inside the braces in (34) can be integrated.
Evaluating it at high SNR, we obtain the expression in (38),
shown at the bottom of the page. Comparing (38) with (36),
we observe that the terms (38) are of higher order of
than that in (36). Therefore, the maximum diversity gain
grows unboundedly with in this case, too.
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V. GENERATION AND DETECTION OF THE OPTIMUM

MULTIBLOCK CODE

A. Code Generation

For the case of single-block transmission (i.e., ), there
are various ways of generating space–time code matrices that
satisfy the optimality conditions in Lemma 1; cf. [16]. In this
section we generalize the DFT-based method described therein
in order to generate matrices that satisfy the optimality condi-
tions for the multiblock case (cf. Theorem 2) for an arbitrary
number of blocks, .

The basic building block of a multiblock code is the
matrix given by (17), .
To construct these building blocks, the following simple proce-
dure can be taken.

1. We first generate matrices
, using the following steps.

a) Form a row permutation matrix such that

where is the identity matrix.
b) Form the normalized DFT matrix

, with being the
th column.

c) Generate the matrices according to the following
equation:

where is the matrix obtained by putting the
elements of the vector on the diagonal of an

diagonal matrix, and is an
zero matrix. It can be easily verified that all the
matrices satisfy the unitarity and trace-orthog-
onality conditions stated in Theorem 1, and hence

forms an optimal single-block code.
2. Now, generate an normalized DFT matrix and denote

it by . The set of optimal building block code matrices
can now be obtained by

(39)

where and denotes
the th column vector of the matrix .

We now verify that the code matrix generated by the proposed
algorithm satisfies the optimality conditions for a multiblock
code in Theorem 2: Since is a scaled unitary matrix and
since each element of has equal nonzero magnitude, it fol-
lows that is a scaled unitary matrix, and hence the second
condition in Theorem 2 is satisfied. To simplify our verifica-
tion of the first condition, we first map the double index
in an arbitrary one-to-one fashion to the single index, , where

. Now, for and
, we have

which is the first condition in Theorem 2.

B. Detection of the Optimum Multiblock Code

For an -block STBC, a total of symbols have to be
jointly processed at the receiver. Thus, the complexity of a given
receiver is expected to be larger than that of the corresponding
receiver for the single-block case. However, as we will show
below, for codes with the optimal structure given in Theorem
2, the per-symbol computational cost of the linear MMSE re-
ceiver can be greatly reduced. Furthermore, for optimal codes
constructed using the above technique, the computational cost
can be further reduced.

The computational cost of a linear (multiblock) MMSE re-
ceiver is dominated by the cost of obtaining the equalized signal
vector

(40)

If, in accordance with Theorem 2, unitary trace-orthogonal sig-
naling is employed, the special structure of the code matrix
can be used to reduce the cost of evaluating (40). First, the uni-
tarity of can be used to rewrite as

(41)

(38)
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TABLE I
NUMBER OF MULTIPLICATIONS REQUIRED TO DETECT EACH BLOCK OF��

SYMBOLS; � � � � � � �; QPSK SIGNALING

where our definition of has been generalized to allow
for matrix arguments, and

(42)

Equation (41) is obtained by using the definition of in (15) to-
gether with the property of Kronecker product that

. We observe that the expression in (41) contains the
inverse of matrices of size , whereas the expression
in (40) contains the inverse of a matrix of size .
If we substitute (41) into (40), the equalized signal vector can
be written as

(43)

where is the vector defined by
.

In our evaluation of the computational cost of computing
, we will focus on the number of multiplications required.

Computing from using the above expression, and ex-
pression for in (42), requires multiplications, where

is the number of multipli-
cations required to compute each . Computing from
using (43) requires a further multiplications. There-
fore, the number of multiplications required to detect each of
the blocks of symbols is , which grows
only linearly with , with coefficient . That said, if one
adopts the particular code structure proposed in Section V-A,
the cost of computing can be substantially reduced. From the
code construction algorithm in Section V-A, we observe that
each column of matrix has nonzero elements, each of
which is generated from two DFT matrices, and . As a
result, each element of the equalized signal can be written as

(44)

where and are integers, and
. Equation (44) can be computed effi-

ciently by a standard FFT algorithm [39], [40]. For example,
if and are self-composite with base 2, then computing

from requires multiplications.
By exploiting the FFT algorithm in the computation of
from using (43), the number of multiplications required to

detect each of the blocks of symbols is reduced to
. As increases, the growth of

this expression with is dominated by the linear term, which
has the coefficient . (Recall that the corresponding
coefficient for a generic optimally structured code is .)
For comparison, for a generic full-symbol-rate single-block
transmission scheme with a constellation of cardinality , the
ML detector requires (at most) multiplica-
tions to detect each block (of symbols).4

To provide a concrete comparison between the computa-
tional cost of the multiblock linear MMSE receiver with the
signaling scheme provided in Section V-A and the ML receiver
for single block communication, we consider a MIMO system
with and a signal constellation of size ;
e.g., QPSK. The number of multiplications required to detect
each block of symbols is provided in Table I. From this
table, it can be seen that with the signaling scheme proposed in
Section V-A, the computational cost per-block of multiblock
signaling grows slowly with the number of blocks, , and is
much less than that of the ML detector for single-block trans-
mission. A performance comparison of the systems in Table I
will be provided in Example 3 in the ensuing section.

VI. PERFORMANCE COMPARISON

In this section, we compare the BER performance of the pro-
posed multiblock code design with that of some conventional
single-block STBCs.

Example 3: We consider the case of antennas
and 4-QAM signaling, which results in a transmission data rate
of bits pcu. In Fig. 5 we compare the average BER
performance of the proposed multiblock scheme with linear
MMSE reception to that of some conventional single-block
MIMO transmission systems with ML detection, namely, the
direct transmission scheme, in which no STBC is used (i.e.,
spatial multiplexing), and the scheme that transmits using the
“Golden Code” [15], which possesses a constant minimum
determinant and hence high coding gain. It is well known
that the combination of the Golden code transmission and
ML detection extracts the full diversity offered by the channel
(i.e., in this example), and that direct transmission
does not enable full diversity. We observe from Fig. 5 that at
high SNR (above 19 dB), the proposed 8-block code with the
linear MMSE receiver performs better than single-block direct
transmission with ML detection. Now, from Fig. 4, we can
predict that for , the diversity gain for the proposed
multiblock scheme with linear reception will be higher than 4,
which is the full diversity of the single-block system. This is
indeed the case in Fig. 5. In particular, the performance curve
for the multiblock scheme with shows a slightly higher
diversity gain, while the scheme with shows a signifi-
cantly higher diversity gain than that of the Golden code with
ML detection. It is worth noting that these gains are achieved

4While this paper was under review, some specific single-block transmission
schemes for which ML detection can be achieved using fewer operations have
been developed (e.g., [41]), but the cost of such schemes remains exponential
in �.
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Fig. 5. Performance of the proposed multiblock transmission scheme (with a linear MMSE receiver) and the single-block direct transmission and Golden code
schemes with ML detection for the case of� � � � �.

at low computational cost, as shown in Table I in Section V-B.
However, we should also point out that Fig. 5 demonstrates that
at low SNRs, systems with ML detection can provide better
performance than those with linear MMSE receivers.

VII. CONCLUSION

In this paper, we have analyzed the maximum diversity gain
associated with a MIMO system equipped with a linear MMSE
receiver, for which an STBC of minimum detection error prob-
ability has been designed. The calculated diversity gain of

has been verified by simulations. Indeed, the same diver-
sity gain has previously been shown to be achievable in the sim-
pler cases of direct transmission (i.e., spatial multiplexing) with
linear ZF reception. Here, we showed that employing the op-
timum unitary trace-orthogonal code together with the MMSE
receiver will not increase the diversity gain, but we also showed
that this scheme achieves a lower BER due to its higher coding
gain. To improve the performance of a MIMO system with linear
reception, we considered multiblock transmission, in which the
space–time code spans realizations of a block fading channel.
Such a scheme provides additional time diversity, and we de-
signed an optimum STBC that minimizes the probability of
error under (multiblock) linear MMSE reception. Our analysis
showed that the diversity order of the proposed system grows
with , while the per-symbol detection complexity is little more
than that for a single-block design with a linear receiver. Thus,
if the latency of jointly detecting signal blocks can be accom-
modated, the multiblock code design is an attractive alternative
for increasing the diversity gain of a MIMO system at low com-
putational cost.

APPENDIX A
PROOF OF THEOREM 1

Substituting the pdf of the eigenvalues in (6) into the RHS of
(9) and denoting it by , we have

(45)

The proof of the theorem requires successively integrating (45)
by parts. In the following, we examine the result of each stage
of integration by parts and select the nonzero term that has the
lowest order of . To proceed, we first introduce the following
function sequences to simplify the notation. For ,
we define

(46a)

(46b)

(46c)
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with . From (46b), we have
, where de-

notes the first derivative w.r.t. . Since is also a function
of other eigenvalues , we define

for (47)

Since the lower limit of integration is , we examine the
values of and at this limit. From (46b), we have

. Now, the eigenvalues are ordered by strict
inequality such that . Therefore, for

is finite and at high SNR, is negligible
with respect to 1. Hence, and therefore we
have . Similarly,

for a finite number of transmitter
antennas.

To evaluate (45), we use “integration by parts” such that for
general functions and of

(48)

where and . The
proof of the theorem now follows the procedure as outlined
below.

a) : Let denote the innermost integral in
(45). Integrating by parts we have

(49)

where and

.

Now, the value of is the difference of the two terms
obtained by substituting the upper and lower limits. For
the upper limit always contains the
factor and is therefore zero. For the lower
limit contains the factor . If

, since , then we have
. Substituting and ,

we have . Further integra-
tion w.r.t. will not increase the order of
in this term and thus this contains the lowest order of .
If , then and we have to examine

.

b) : In this case, for (49), and we
examine . Integrating by parts

(50)

where

(51a)

(51b)

The last step of (51a) is obtained by observing that the first
term is zero for both limits, since . Now

(52)

where this result is due to the fact that the other terms of
the differential all vanish after the limits are substituted,
i.e., is only nonzero in the limit . Thus,
using (52) in (51a), we have

(53)

which contains . Similar to the case of , if
, then contains the lowest order

of . Further integration w.r.t. will not
change the order of . However, if ,
then and we have to integrate in (51b) by
parts, i.e.,

where

(54a)

(54b)

where (54a) is obtained by observing that both and
are equal to zero at the upper and lower limits under
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the condition . Now

(55)

Equation (55) is the result after the limits have been
substituted into the second derivative. Here,
consists of two terms. If , then the
first term is independent of . From (54a), the factor

, which contains the factor ,
is independent of or any other eigenvalues and the
order of will not increase upon further integration
w.r.t. . Hence, this is the lowest order of

. On the other hand, if , the first term
in (55) is zero. Now, we can obtain the lowest order term
in two different ways.

i) Consider of (54b) and perform integration by
parts. Here, we focus on reducing the power index of

to zero so that the integration has nonzero
result at . The order of will not increase
upon further integration w.r.t. the other eigenvalues.

ii) When the upper limit is substi-
tuted, the second term in (55) is nonzero. Putting
this term back in (54a), together with the factor

which is a function of
and , this whole quantity of has to be
further integrated w.r.t. , and there-
fore increasing the order of .

Thus, the problem of seeking the lowest order of has
been reduced to the following questions. Is it the terms in
Step i) for which, in integrating by parts, the index
of is reduced to zero after differentiation w.r.t. ?
Or is it the term in Step ii) which yields the term involving
the lowest order of after all the integrations w.r.t.

? We will examine the questions in parts c)
and d) below.

c) The order of by Step i): The first integration of
in (49) yields together with which involves
no reduction in the index. The second integration
yields together with and reduces the index
by 1. Thus, to reduce the index of from to
zero, we need to differentiate the function
times. This yields , which contains the
SNR term . The nonzero component of the
integration is ,
which is independent of . Substituting this nonzero
term into (45), we obtain the term in containing the
lowest order of , namely

(56)

where was defined in (6). Observe that the in-
tegration in (56) will not increase the order of . Now,
multiplying both the numerator and denominator of (56)
by , we can write

(57a)

(57b)

The last step in (57b) is obtained by observing that the
integrand inside the braces of (57a) is the same pdf as (6),
and thus its integration results in unity. From (57b), we
observe that for high SNR the order of is given by

(58)

This is thus the lowest order of contained in the term
obtained when the lower limit is substituted.

d) The order of obtained by Step ii): Putting the second
term of (55) into (54a) and then the result into (45), and
taking the terms involving outside, the in-
tegral w.r.t. is

(59)

where and have been defined in a general
form in (46b) and (46c), respectively. We note that the
indices of the factors and in
have increased by one extra fold and by 2, respectively, in
comparison to the corresponding indices in . Equation
(59) has a similar structure to (49), and hence integrating
(59) by parts follows a similar pattern, i.e.,

(60)

where
and

. Due

to the property of , we only have to
examine the effect of on the index of .
Again, applying integration by parts of (48) to

, we have

(61)
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where

and

The term is zero since contains the term

which yields zero at either
limit of 0 or . A nonzero result is obtained from

at the limit of by having three
more steps of integration by parts on , each in-
volving the differentiation of and re-
sulting in the power index being reduced to zero. This
nonzero term is given by

(62)

Further integration of (62) w.r.t. repeats
the same procedure as in (59) and reveals similar struc-
tures, i.e., each time the factors in the denominator in-
creases by and the subscript of re-
duces by 1. Continuing the procedure until the integration
w.r.t. , we have (63)

(63)

where, from (46b) and (46c),
and . We note that

, and the nonzero result of integrating
comes only from the lower limit . Again, this

term is arrived at by repeated integration by parts until
the index of the term in reaches 0. The
resulting nonzero term with minimum steps of integration
by parts is given in (64), at the bottom of the page. Now,

we can evaluate the power index of in (64). We
observe that each or contains (unity power index).
Thus, ignoring the constant coefficients, the power index
of in is the sum of the exponents of the functions

and in the denominator of (64), i.e.,

(65)

Equation (65) provides the order of obtained by con-
tinuing the integration of w.r.t. .

e) We now compare the two lowest orders and estab-
lished respectively in (58) and (65). We note that

since
. Therefore, is the lowest order of in

the result of evaluating of (45), and is therefore the
diversity order for the single-block MIMO system.

APPENDIX B
PROOF OF THEOREM 2

We can prove Theorem 2 by first deriving several consecu-
tively achievable lower bounds on the error probability given
in (22) until we reach a minimum independent of the design pa-
rameters. This is followed by examining the conditions required
on the optimal to obtain each of the lower bounds.

1) First Lower Bound: Using the convexity property of the
-function [16] in (22), we obtain the first lower bound on

by employing Jensen’s inequality [37], i.e.,

(66a)

(66b)

where is the symbol error covariance matrix given by (20).
Equation (66b) holds due to the fact that tr .
Equality in (66a) holds iff the diagonal elements of are all
equal, i.e., if the MSEs of all the bits are equal. Since we are
transmitting 4-QAM symbols having symmetry in both real and
imaginary parts, this is equivalent to

(67)

2) Second Lower Bound: The following two lemmas [42] are
provided here to facilitate the development of the second lower
bound.

(64)
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Lemma 2: For any square matrix we have
.

Lemma 3: For any nonsingular Hermitian symmetric pos-

itive semidefinite (PSD) matrix we have

, where equality holds iff
, i.e., iff is block diagonal.

Lemma 3 can be repeatedly applied to generalize the result to
a nonsingular Hermitian symmetric PSD matrix partitioned into
multiple submatrices.

Applying Lemma 2 to the error covariance matrix in (20)
yields

(68)

where we define . From the definition of in
(15), we can see that is an block diagonal ma-
trix. Each diagonal block ,
is also block diagonal of dimension , containing
identical subblocks of .

Now, writing in (68), we note that this
nonsingular Hermitian symmetric PSD matrix can be par-

titioned into blocks of submatrices
. Denoting by the th submatrix on

the diagonal of and applying Lemma 3, a lower bound for
in (68) can be obtained, namely

(69)

Equality in (69) holds iff , for .
But each can be further partitioned into submatrices

, of dimension . Denoting by
the th submatrix on the diagonal of and applying
Lemma 3 to each of the bracketed term in (69) results in

(70)

where equality in (70) holds iff

for (71)

i.e., is block diagonal having nonzero diag-
onal submatrices.

Furthermore, for any positive definite matrix
is convex with respect to [37]. Thus, applying Jensen’s
inequality to this convex function in the inner sum of (70) and
employing Lemma 2 leads to

(72)

where . Equality in (72) holds iff all are
equal, i.e.,

for (73)

Combining (70) with (72) results in

(74)

with equality holding iff (71) and (73) are satisfied. Since the
function is monotonically increasing
with , substituting (74) in (66b) establishes the second lower
bound for the average asymptotic BER such that

(75)
Again, equality in (75) holds iff the conditions in (71) and (73)
are met simultaneously.

3) Final Lower Bound: Equation (75) still depends on the
design variable and therefore needs to be further minimized
to obtain a constant achievable lower bound. We observe that
the elements of the channel matrix are of i.i.d. distribution,
hence the stochastic properties of remain unchanged by the
multiplication of a unitary matrix. By pre- and postmultiplying
permutation matrices to the eigenvalue matrix of in (75) and
following similar procedures of averaging over all permu-
tations, as in [3], [16], we arrive at

(76)

with equality holding iff

(77)

The lower bound in (76) is independent of the design matrix
and is therefore a genuine lower bound on the value that can be
achieved by a designer, in the sense that it can be computed prior
to the design.

4) Optimal Linear STBC: The minimum BER given in (76)
can be achieved iff the four conditions in (67), (71), (73), and
(77) are satisfied simultaneously. Equations (71), (73), and (77)
jointly imply that , i.e., must be unitary.
Equation (67) requires all the diagonal elements of to be
equal, i.e.,

(78)

and this must hold for any channel realization.
Now, (20) can be rewritten as

, where we
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have used the condition that must be unitary. Thus, the th
diagonal element of is

(79)

where is the th column of the coding matrix and is the
coding submatrix in the th block for the th symbol. The second
step in (79) is possible because of the relationship between
and in (17). On the other hand, the right hand side of (78)
can also be written as

(80)

Substituting (79) and (80) respectively into the left and right
sides of (78), the condition becomes

(81)

Thus, for any channel realization , the condition in (67) holds
iff .

APPENDIX C
MULTIBLOCK STBC FOR SIMULATIONS

In this section, we provide two of the multiblock codes that
were used in the simulations. The codes were designed using the
method in Section V-A are represented by the
matrix .

1) Code for

2) Code for

where
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