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Abstract—The maximum-likelihood (ML) multiuser detector
is well known to exhibit better bit-error-rate (BER) performance
than many other multiuser detectors. Unfortunately, ML detection
(MLD) is a nondeterministic polynomial-time hard (NP-hard)
problem, for which there is no known algorithm that can find the
optimal solution with polynomial-time complexity (in the number
of users). In this paper, a polynomial-time approximation method
called semi-definite (SD) relaxation is applied to the MLD problem
with antipodal data transmission. SD relaxation is an accurate
approximation method for certain NP-hard problems. The SD
relaxation ML (SDR-ML) detector is efficient in that its com-
plexity is of the order of 3 5, where is the number of users.
We illustrate the potential of the SDR-ML detector by showing
that some existing detectors, such as the decorrelator and the
linear-minimum-mean-square-error detector, can be interpreted
as degenerate forms of the SDR-ML detector. Simulation results
indicate that the BER performance of the SDR-ML detector is
better than that of these existing detectors and is close to that of
the true ML detector, even when the cross-correlations between
users are strong or the near-far effect is significant.

Index Terms—Maximum likelihood detection, multiuser detec-
tion, relaxation methods, semi-definite programming.

I. INTRODUCTION

I N code division multiple access (CDMA), a major factor
that limits system performance is the multiuser interfer-

ence caused by the nonorthogonality of the user signature
waveforms. Multiuser detection [1] is a powerful tool for
combating the effects of this multiuser interference. Under
some standard assumptions, the maximum-likelihood (ML)
multiuser detector is optimum in the sense that it provides the
minimum error probability in jointly detecting the data symbols
of all users. Unfortunately, to implement the ML detector, it
is necessary to solve a difficult combinatorial optimization
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problem. The ML detection (MLD) problem can be solved by
an exhaustive search in which the log likelihood function is
evaluated for all possible combinations of the data symbols.
However, exhaustive search is prohibitive for a large number
of users because of its exponentially increasing computational
complexity. Hence, it would be desirable if there were algo-
rithms that could efficiently find the (globally optimal) MLD
solution. It is known that such MLD algorithms exist if the
signal correlation matrix exhibits some special structure. Two
structural constraints that are known to lead to efficient MLD
solutions are i) a band-diagonal signal correlation matrix with a
small number of nonzero diagonals [1]–[3] and ii) a nonpositive
cross-correlation between all pairs of signature waveforms
[4]. However, these structural constraints are rather restrictive
and are satisfied only in some special scenarios of multiuser
communications. In fact, for an arbitrary signal correlation
matrix, it is unlikely that an efficient MLD algorithm exists
because the MLD problem in this general case has been shown
to be a nondeterministic polynomial-time hard (NP-hard)
problem [5], which implies that there is no known algorithm
that can solve the MLD problem with polynomial complexity
in the number of users.

Because of the intrinsic difficulty in solving the MLD
problem, there has been much interest in the development of
suboptimal but computationally efficient ML detectors. A tree
search method has been proposed to perform an incomplete
search for the MLD solution with limited complexity [6]. Mul-
tistage detection [7], the coordinate ascent algorithm [8], and
the expectation-maximization (EM) approach [9] are methods
in which the detected symbols are iteratively updated in an
attempt to increase the log likelihood function. These iterative
methods are similar in that they perform some form of interfer-
ence cancellation. The drawback of interference cancellation
is that if the estimation of the interference is incorrect, the
interference may be aggravated by the interference-canceling
operation.

In this paper, we examine the approximation of the MLD
solution using relaxation methods. Relaxation is an effective
approximation technique for certain difficult optimization
problems. Its rationale is simple in that it relaxes some of the
constraints of the optimization problem such that the relaxed
problem is easier to solve than the original problem. In this
work, most of our emphasis will be placed on semi-definite
(SD) relaxation [10], [11], which is an accurate and efficient
approximation method for certain kinds of NP-hard problems.
We will describe the SD relaxation algorithm for the Boolean
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quadratic-programming (QP) problem [11] and will show
how this algorithm can be applied to the MLD problem with
anti-podal data transmission. There are three advantages of
employing SD relaxation.

1) The SD relaxation algorithm is based on solving a convex
optimization problem. Hence, this method does not suffer
from local maxima.

2) The relaxed problem is a semi-definite programming
problem, which is known to be efficiently solvable [12].

3) The SD relaxation algorithm has a theoretical guarantee
that the approximation accuracy is, at worst, moderate
[11]. Moreover, the performance of this algorithm in prac-
tice is substantially better than that of the worst case.

In addition to SD relaxation, we also consider two other relax-
ation methods that have recently been applied to multiuser de-
tection [13], [14], namely, unconstrained relaxation and bound
relaxation. These two relaxation algorithms are related to some
existing detectors, such as the well-known decorrelating and
linear-minimum-mean-square-error (LMMSE) detectors, and a
modified form of the space-alternating generalized expectation-
maximization (SAGE) detector [9]. We will show that both the
unconstrained and bound relaxation methods can be considered
to be further relaxations of the SD relaxation method. This result
suggests that the SD relaxation ML (SDR-ML) detector should
perform better than those existing detectors. This viewpoint will
be supported by our simulation results for synchronous CDMA,
where the bit error rate (BER) performance of the SDR-ML de-
tector is shown to be better than that of other suboptimal detec-
tors including the decorrelator, the LMMSE detector, and the
SAGE detectors. Our simulation results will also show that the
SDR-ML detector yields a BER performance close to that of
the true ML detector, even when the cross-correlations between
users are strong or the near-far effect is significant.

II. PROBLEM STATEMENT

Assuming antipodal data transmission, the received signal for
a multiuser communication system can be represented by the
following equation:

(1)

where
information symbol transmitted byth
user;
unit-energy waveform carrying the infor-
mation symbol of the th user;
received signal energy for theth trans-
mitted waveform;
zero-mean additive white Gaussian noise
(AWGN) with two-sided power spectral
density ;
number of users;
observation interval.

We assume that is a set of nonorthogonal signals.
Equation (1) can be considered to be a generic model for
many multiple signal detection problems, such as the CDMA
multiuser detection problems [1], [2]. In particular, for the

detection problem of synchronous CDMA signals over one
symbol period, is defined to be a set of symbol-syn-
chronous spreading-code waveforms

(2)

of duration , where
number of chips per symbol;
chip duration;
spreading-code sequence for theth user;
self-orthogonal chip waveform over the in-
terval .

The purpose of multiuser detection is to detect given
the observed signal . The ML detector for such a received
signal is optimum in that the probability of incorrectly detecting

is minimized, under the following stan-
dard assumptions.

i) The sets and are known.
ii) The bits are independent and identically distributed

(i.i.d.) and equiprobable.1

Maximum likelihood detection (MLD) can be formulated as [1]

(3)

where

(4)

is an objective function proportional to the log likelihood func-
tion. Here, the th element of the vector is given by

(5)

and is the sampled matched filter output for theth user,
and is the signal correlation matrix, with

diag , and

(6)

being the th element of normalized correlation matrix.
To perform MLD, it is necessary to solve the combinatorial op-
timization problem in (3). As pointed out in Section I, Problem
(3) can be solved using an exhaustive search, in which the MLD
solution is found by evaluating for all .
However, the complexity of the exhaustive search is and,
thus, is prohibitive for large . In fact, for an arbitrary , it is
unlikely that the MLD problem can be efficiently solved (in the
sense of polynomial-time complexity in ) because Problem
(3) is an NP-hard problem [5].

III. SOME BASIC CONCEPTS OFRELAXATION

In general, an optimization problem can be formulated as

(7)

1An additional property of the ML detector is that for sufficiently high
signal-to-noise ratios (SNRs), its bit error probability for any individualb

approaches the lowest achievable [1], [15, pp. 45–48].
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where , , and represent the feasible set, the objective
function, and the maximum objective value achieved by (7), re-
spectively. The following problem

(8)

is called a relaxation of (7) if . The intent of relaxation
is to make the relaxed problem easier to solve than the original
problem by appropriately choosing. However, the solution to
the relaxed problem cannot be directly used as an approximate
solution to (7) because it may not lie in. For this reason, some
approximation techniques are usually required to convert the
relaxation solution to an approximate solution to the original
problem. Hence, a relaxation algorithm should consist of two
steps.

i) Solve the relaxed problem.
ii) Use an approximation algorithm to convert the relax-

ation solution to an approximate solution to the original
problem.

We now illustrate the principle of relaxation by a simple ex-
ample in which an unconstrained relaxation method [13], [14]
is applied to the MLD problem. For simplicity, we assumeto
be of full rank. Now, if the alphabet constraint in (3) is removed,
we obtain the following relaxation:

(9)

Problem (9) is a least-squares problem and, thus, is much easier
to solve than the MLD problem. It can be shown that the solution
to (9) is [16]. Denote the approximate MLD solution
by . To obtain , we can apply an element-by-element
threshold decision to the solution to (9), i.e., choose
if , and otherwise. In fact, this relax-
ation method is closely related to one commonly known subop-
timal detector, namely, the decorrelator. This will be elaborated
in Section V.

We see that the maximum objective value achieved by the
relaxed problem provides an upper bound on the maximum ob-
jective value achieved by the original problem, i.e., .
Hence, if the gap is reduced, it is possible that the re-
laxation solution can be made closer to the solution of the orig-
inal problem, and a more accurate approximate solution may be
obtained. Similarly, if we have another relaxation

(10)

and provides a tighter upper bound than (i.e., ),
then it is expected that relaxation (10) should lead to a better
approximation than relaxation (8). We say that one relaxation
is tighter than another if the maximum objective value of the
former is no greater than that of the latter. In designing a relax-
ation algorithm with good approximation accuracy, it is benefi-
cial to employ a tight relaxation.

IV. A PPLICATION OFSD RELAXATION TO MLD

Unlike the unconstrained relaxation method, which modifies
the alphabet constraint in the MLD problem, the SD relaxation
method considers an increase in problem dimensionality to pro-
vide a tight relaxation. The relative tightness of various relax-

TABLE I
SUMMARY OF THE SDR-ML DETECTOR

ation methods will be discussed in Section V. In this section,
the SD relaxation algorithm for the Boolean quadratic-program-
ming (QP) problem will be described. Then, by showing the link
between the Boolean QP problem and the MLD problem, we
will describe how the SD relaxation algorithm can be applied
to the MLD problem. A summary of the SDR-ML detector is
provided in Table I.

A. Semi-Definite Relaxation

We consider the followingBoolean QP problem:

(11)

where can be any symmetric matrix. To present SD relax-
ation, we consider a reformulation of the Boolean QP problem.
Since Trace , Problem (11) is equivalent to
the following problem:

Trace

s.t.

(12)

The constraint implies that is symmetric, posi-
tive semi-definite (PSD), and of rank 1. Due to the constraint

, Problem (12) is a nonconvex optimization problem.
Now, if the rank-1 constraint is removed from (12), we obtain
the following relaxed problem:

Trace

s.t.

(13)

where means that is symmetric and PSD. Problem
(13) is known as asemi-definite programming(SDP)problem
[12], and therefore, (13) is called anSD relaxationof (11).
An advantage of using SD relaxation is that (13) is a convex
optimization problem and, hence, does not suffer from local
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maxima. Furthermore, an efficient optimization algorithm
based on interior-point methods has been developed for the
SDP problem in (13) [17], [18]. This algorithm is efficient in
that for a given accuracy, a solution to (13) can be found in at
most operations.2 The SD relaxation problem has an
interesting property that will become important later.

Property 1 [11]: The solution to (13) is independent of the
diagonal elements of .

This property can be verified by defining
and letting

(14)

Substituting (14) into (13), the SD relaxation problem is refor-
mulated as

s.t.

(15)

Obviously, the solution to the SD relaxation problem does not
depend on the diagonal elements of.

B. Approximate Boolean QP Solution via Randomization

We have seen that by replacing the rank-1 constraint of
the original problem with a symmetric PSD constraint, SD
relaxation leads to an increase in problem dimension. Since
the original and relaxed problems have different problem
dimensions, some special techniques are required to convert the
SD relaxation solution to an approximate Boolean QP solution.
A randomization method has been proposed for this conversion
process [10], [11]. To gain an intuitive understanding of the
randomization, we consider alternative expressions of the
Boolean QP and SD relaxation problems. The Boolean QP
problem in (11) can be expressed as

(16)

Define to be the solution of (16). Notice that is also
the solution of (16) because both and achieve the same
objective value. For the SD relaxation problem, let ,
where is any square-root factor (e.g., the
Cholesky factor) of . Substituting into (13), we
obtain the following equivalent problem:

(17)

where represents the 2-norm. Defineto be the solution of
the SD relaxation problem in (13), and define
to be a square-root factor of . Then, is the solution of the
equivalent problem in (17). Comparing (16) with (17), an in-
teresting parallel can be observed: The increase in dimension-
ality in the SD relaxation problem causes the replacement of

2Interior-point algorithms are iterative algorithms that terminate once a pre-
specified accuracy has been reached. For the SDP in (13), the complexity per
iteration isO(n ) [17], [18], and for a given accuracy, the number of iterations
required is at mostO(n ).

the scalar product with the inner product . Hence, it
appears that one should be able to approximateusing . In
the randomization process described below,is approximated
by making a vector-domain threshold decision onwith the
cutting hyperplane being randomly chosen. Defineto be the
approximate solution generated by the randomization method.
The randomization consists of the following steps.

1) Randomly generate a cutting hyperplane that passes
through the origin. Such a hyperplane can be represented
by , where is a random vector
uniformly distributed on an -dimensional unit sphere.

2) For , choose if lies “below” the
cutting hyperplane, i.e., , and choose
otherwise.

Define to be a function where theth element of
is 1 if and otherwise. We notice that the above

two steps of the randomization can simply be expressed as

(18)

Usually, to further improve the approximation quality, the ran-
domization is repeated a number of times, and the randomized
solution yielding the largest objective function value is chosen
as the approximate solution. This procedure is stated in Step 4
of Table I. Often, this randomization method can achieve an ac-
curate approximation with a modest number of randomizations.
For example, in the application of CDMA multiuser detection,
which will be shown in Section VI, the number of randomiza-
tions required to achieve good BER performance is 10 to 20.
We also point out that the randomization process (with a modest
number of randomizations) is computationally efficient since its
operation count is , where stands for the
number of randomizations. In fact, the complexity of the ran-
domization process (with modest ) is almost negligible
compared with that of solving the SDP problem.

As we point out in the following property, in some situations,
it is sufficient to perform the randomization only once.

Property 2: Let with , and
let be a random vector uniformly distributed on an-dimen-
sional unit sphere. For any rank-1such that

(19)

holds with probability 1.
Proof: Since , its square-root factor is deter-

mined as

(20)

for some . Assuming that , we have

(21)

where may either be 1 or . To prove that (21) holds
with probability 1, we consider the probability that
. According to [10], can be obtained by drawing an i.i.d.

Gaussian random vector, followed by a normalization, i.e.,

(22)

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 20:07:19 UTC from IEEE Xplore.  Restrictions apply. 



916 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 4, APRIL 2002

The condition is equivalent to . Then, it can
be easily shown that the probability tends to zero,
and thus, (19) holds with probability 1.

Applying Property 2 to the SD relaxation algorithm, we see
that if is of rank 1, then, with probability 1, the approximate
solution for any number of randomizations is equal to either the
sign of the dominant eigenvector of or its negative version.
This special property will be useful in proving an important the-
orem in the next section.

Finally, we point out that the approximation accuracy of the
randomization method has been theoretically analyzed by Nes-
terov [11]. It was shown that for a sufficient (yet finite) number
of randomizations, the approximation accuracy of the random-
ization method is, at worst, moderate. However, as will be ap-
parent from the simulation results in Section VI, the SD relax-
ation algorithm often exhibits very good approximation accu-
racy in practice. Furthermore, the number of randomizations re-
quired to achieve good approximation accuracy is often much
smaller than that suggested by Nesterov’s (worst-case) analysis.

C. SD Relaxation ML Detector

To apply the SD relaxation algorithm to the MLD problem,
the original MLD problem has to be rewritten in the same form
as (11). Define a scalar . Since for
any , (3) can be rewritten as

(23a)

(23b)

(23c)

Clearly, (23c) is equivalent to the Boolean QP problem in (11),
where , and

(24)

Let be the optimal solution of (23a). Since and
attain the same maximum objective value in (23a)

(25)

Hence, we can use the SD relaxation algorithm described in pre-
vious subsections to approximate the solution to (23c) and then
use the relationship in (25) to obtain an approximate MLD so-
lution. A summary of the SDR-ML detector is given in Table I.
Finally, we conclude from previous subsections that the com-
plexity of the SDR-ML detector is .

V. RELATIONSHIP OF SDR-ML DETECTOR TOOTHER

MULTIUSER DETECTORS

In this section, we will consider two other relaxation methods
called unconstrained relaxation and bound relaxation for the
MLD problem. It will be illustrated that some existing multiuser
detectors can be viewed as approximate MLD algorithms using

these two methods. Then, we will prove that both the uncon-
strained and bound relaxation methods are further relaxation of
the SD relaxation method, and therefore, it is expected that the
SDR-ML detector should perform better than those existing de-
tectors.

A. Unconstrained Relaxation and Bound Relaxation

The unconstrained relaxation (UR) algorithm, which has been
briefly described in Section III, is formulated as

(26a)

(26b)

where
given by (4);
approximate solution using UR;
element-wise threshold decision function.

UR is a loose relaxation since there is no restriction on the pos-
sible values of . An ad hocmethod that may partially com-
pensate this problem is to add a penalty function to (26a):

(27)

where is the penalty function, and is a con-
stant. The reason for choosing such a penalty function is to
implicitly constrain the magnitude of while maintaining the
least-squares nature of the relaxed problem. Interestingly, the
penalized UR problem in (27) is still a relaxation of the MLD
problem. To illustrate this point, we consider a restriction of
(27), where the original feasible set is replaced by the alphabet
set

(28)

Clearly, Problem (28) is an equivalent MLD problem because
is a constant for any . Thus, (27) is a relax-

ation of the equivalent MLD problem in (28).
As described in Section III, the major advantage of using UR

is the availability of a closed-form solution. Assuming
to be a full-rank matrix, the solution to (27) is given by [16]

(29)

and it can be shown that

(30)

To see how the penalized UR method is related to some of the
existing suboptimal detectors, we consider the outputs of three
well-known linear detectors, viz. the matched filter detector, the
decorrelator, and the LMMSE detector, which are given, respec-
tively, by

(31)

(32)

(33)
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See [1] for the detailed derivations of the above detectors. Basi-
cally, the matched filter detector is a single-user detector that is
optimal in the absence of multiuser interference, whereas the
decorrelator and the LMMSE detector use different forms of
linear mapping to suppress the multiuser interference.

Comparing (30) with (31)–(33), the equivalence between the
UR detector and the linear detectors above can be clearly seen.
If the UR problem is not penalized, i.e., , then

. On the other hand, if is chosen to be such that the
influence of the penalty function to the UR problem is adjusted
according to the noise power, then . Finally,
if the UR problem is overpenalized such that ,
the approximate solution approaches

. Thus, each of the linear detectors in (31)–(33)
can be viewed as approximate ML detectors under UR.

Next, we consider the bound relaxation (BR) method, which
has been recently applied to multiuser detection in [13] and [14].
Instead of allowing the relaxation solution to lie in , the BR
method constrains the relaxation solution to lie within a-di-
mensional cube. The BR algorithm is formulated as follows:

(34a)

(34b)

Bound relaxation has two advantages.

i) It is tighter than the unpenalized UR method.
ii) The relaxed problem has a concave (quadratic) objec-

tive function and linear inequality constraints, and hence,
(34a) is a convex optimization problem [19].

There is an existing multiuser detector that is closely related
to the BR method. In [9], Nelson and Poor considered the
SAGE algorithm as a method of suboptimally solving the
MLD problem. It can be seen that one of the modified SAGE
detectors, namely, the SAGE detector with unit-clipper-step,
actually uses a coordinate ascent method [8] to solve (34a) and
then takes the sign of the solution to (34a) as the approximate
MLD solution. (See [13] and [15, pp. 89–92] for details.)

B. Relative Tightness of Various Relaxation Methods

We note that we can represent the UR and BR methods, both
with and without a penalty function, by a generalized expression
as

(35)

where and are constants, and denotes the max-
imum objective value achieved by Problem (35). We call (35)
the generalized bound relaxation (GBR) problem. It is observed
that if is positive definite, then the objective function in
(35) is strictly concave, and thus, the solution to (35) is unique
[19]. (Note that if is of full rank, or if , then
is positive definite.) Let be the solution of (35), and let

be the approximate MLD solution of the

GBR problem. By following the same procedure as described
in Section IV-C, (35) can be rewritten as

Trace

s.t.

(36)

where with , and

(37)

If the rank-1 constraint in (36) is replaced by a symmetric PSD
constraint, we obtain an SD relaxation of the GBR problem

Trace

s.t.

(38)

where is the maximum objective value achieved by (38). Let
be the solution of (38), and let - be an approximate

MLD solution obtained from applying the randomization proce-
dure in Section IV-B to . We have the following equivalence
theorem.

Theorem 1: The GBR problem given by (35) and its SD re-
laxed version given by (38) are equivalent in that they achieve
the same maximum objective value, i.e.,

(39)

Furthermore, if is positive definite, then with probability 1

(40)

for any number of randomizations.
Proof: We first prove (39) by showing and

. The former is obvious since (38) is a relaxation of (35). To
show the latter, we consider a reformulation of (38). Let

(41)

where is a symmetric matrix, and . We note
that is equivalent to due to the Schur
complement [20]. By substituting (41) into (38), Problem (38)
can be reformulated as

Trace

s.t.

(42)

Since

Trace (43)
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for any . It follows from (43) that

Trace (44)

for any feasible . Furthermore, since the diagonal ele-
ments of a PSD matrix are non-negative

(45)

for any feasible . Now, define to be the solution
of (42). Applying (44) and (45) to (42), we get

(46a)

(46b)

Thus, (39) follows.
Next, we prove the equivalence in (40), using the assumption

that the matrix is positive definite. Since , the
equality sign holds in (46a) and (46b). Comparing (42) with
(46a), we see that must satisfy the following condition:

Trace (47a)

which is equivalent to

Trace (47b)

Using standard properties of positive definite and semi-definite
matrices [21, p. 318], it can be shown that (47b) holds if and
only if

(48)

Hence, for a positive definite (and thus invertible) , we
must have

(49)

Subsequently, the solution to (38), which is denoted by, is of
the form

(50)

Comparing the two equivalent problems (35) and (42), we see
that . We also notice that is unique because
is unique for a positive definite . Finally, by applying
Property 2 to (50), it can be shown that for any number of ran-
domizations, (40) holds with probability 1.

Theorem 1 provides the important implication that the SD
relaxation algorithm for the GBR problem is equivalent to the
GBR algorithm itself in the sense that they have the same tight-
ness and that they produce the same approximate solution under
the assumption of being positive definite. More impor-
tantly, due to Property 1 (in Section IV-A), the SD relaxation
problem in (13) can be re-expressed as

Trace

s.t.

(51)

Fig. 1. Near–far performance of (a) the SDR-ML detector and the true ML
detector. (b) Various multiuser detectors. The number of users is 4, and the user
of interest is 3 with2E =N = 11 dB. Note that for the SAGE detectors,
decorrelator initialization is employed, and the number of stages is 5.

where is given by (37). Obviously, the equivalent GBR
problem in (38) is a relaxation of (51), whereof the equality
constraints in (51) are replaced by inequality constraints.
Hence, SD relaxation is tighter than GBR, and therefore, it
is expected that the SDR-ML detector should yield a better
approximation than any GBR-based detectors. The superior
performance of the SDR-ML detector is demonstrated in the
following section.

VI. SIMULATION RESULTS

We now demonstrate the performance of the SDR-ML de-
tector in a number of synchronous CDMA scenarios.

Example 1: The purpose of this example is to compare the
BER performance of the ML detector and that of the SDR-ML
detector. Since the ML detector is computationally prohibitive

Authorized licensed use limited to: McMaster University. Downloaded on August 14,2010 at 20:07:19 UTC from IEEE Xplore.  Restrictions apply. 



MA et al.: QUASI-MAXIMUM-LIKELIHOOD MULTIUSER DETECTION 919

TABLE II
MAXIMUM -ABSOLUTE CROSS-CORRELATION VALUES AND SUM-SQUARED

CROSS-CORRELATION VALUES OF TWO SPREADING CODES. GOLD-31 AND

KAS-15, RESPECTIVELYSTAND FOR THE LENGTH-31 GOLD CODESWITH

K = 16, AND THE LENGTH-15 KASAMI CODES(LARGE SET) WITH K = 15

to implement for large , we are restricted to the case of a
small number of users. In this example, we consider a four-user
system with spreading factor equal to 7. The corresponding
signal correlation matrix is given by

(52)

We are interested in a near–far simulation scenario in which the
BER performance of a particular user is evaluated under various
interfering user signal energies. The simulation setting is sim-
ilar to that in [9] and is given as follows. User 3 is chosen to be
the desired user with SNR fixed at , whereas
users 1, 2, and 4 are treated as interferers with

. (Similar results are obtained when one
of the other users is chosen as the desired user.) The number
of trials for the simulation is set to be 1 000 000. The near-far
performance of the true ML detector (implemented via exhaus-
tive search) and the SDR-ML detector is plotted in Fig. 1(a),
where the symbol represents the number of randomiza-
tions. For reference, the no-interference lower bound is plotted
in the same figure. (The no-interference bound is the perfor-
mance of user 3 in the absence of users 1, 2, and 4, and, hence,
is independent of the abscissa.) It is seen that the performance
of the SDR-ML detector improves significantly with and
that its BER for is almost the same as that of the
true ML detector. We also compare the BER performance of the
SDR-ML detector with that of various suboptimal multiuser de-
tectors in Fig. 1(b), using the same scenario as in Fig. 1(a). Re-
call from Section V that the matched filter detector, the decor-
relator, and the LMMSE detector can be regarded as uncon-
strained-relaxation detectors, whereas the SAGE detector with
unit-clipper -step can be viewed as a bound-relaxation de-
tector. (It should also be pointed out that the SAGE detector
with hard-decision -step is structurally equivalent to a se-
rial-update interference-canceling detector [9].) It is seen that

Fig. 2. BER performance in a 16-user synchronous CDMA system using
length-31 Gold codes. (a) Average BER of the SDR-ML detector with different
number of randomizations. (b) Average BERs of various multiuser detectors.
Note that for the SAGE detectors, decorrelator initialization is employed, and
the number of stages is 5.

the SDR-ML detector provides better BER performance than
these alternative suboptimal detectors, which supports our view-
point in Section V that SD relaxation should perform better than
unconstrained relaxation and bound relaxation.

Example 2: In the second example, we are interested in
average BER performance of a number of multiuser detectors
when all users have the same signal strength. Two sets of
spreading codes, namely, the length-31 Gold codes with

and the length-15 Kasami codes (large set) with
, are chosen for the test. Measures of the cross-corre-

lations of the two spreading code sets are tabulated in Table II.
It is observed that the length-15 Kasami codes exhibit a much
stronger cross-correlation than the length-31 Gold codes.
Figs. 2 and 3 show the average BER performance of the various
multiuser detectors for the two code sets. For reference, we
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Fig. 3. BER performance in a 15-user synchronous CDMA system using
length-15 Kasami codes. (a) Average BER of the SDR-ML detector with
different number of randomizations. (b) Average BERs of various multiuser
detectors. Note that for the SAGE detectors, decorrelator initialization is
employed, and the number of stages is 5.

have also plotted the no-interference lower bound and Verdú’s
theoretical upper bound [1] on the BER performance of the
true ML detector. We first observe that the SDR-ML detector
provides good BER performance for . Moreover, it
is seen that the BER performance of the SDR-ML detector is
better than that of the other multiuser detectors, particularly in
the case of length-15 Kasami codes, where the performance of
other detectors is considerably degraded by the strong signal
cross-correlations. In the case of length-31 Gold codes, the
BER of the SDR-ML detector ( ) lies well below
Verdé’s upper bound [1] on the BER of the true ML detector. In
the case of length-15 Kasami codes, the BER of the SDR-ML
detector is below Verdú’s upper bound for

dB, and slightly above Verdé’s upper bound at
dB. Since Verdú’s upper bound is tight for

Fig. 4. Near–far performance plots illustrating the average BERs of the
desired users versus the SNRs of the interfering users. (a) Sixteen-user
synchronous CDMA system using length-31 Gold codes. (b) Fifteen-user
synchronous CDMA system using length-15 Kasami codes. Note that for the
SAGE detectors, decorrelator initialization is employed, and the number of
stages is 5.

sufficiently high SNRs [1], we infer that the performance differ-
ence between the SDR-ML detector and the true ML detector
should be small. (Recall that the computational cost of empiri-
cally evaluating the BER performance of the exact ML detector
is prohibitive in this scenario.)

Example 3: In the third example, we use the length-31 Gold
codes and the length-15 Kasami codes in the previous example
to test the near–far performance of the various detectors. The
simulation setting is as follows: Users 1 to 8 are the interferers
with . Users 9 to are
the desired users with SNRs fixed at

dB. The number of trials for the simula-
tion is 1 000 000. Due to space limitations, we illustrate the av-
erage near–far performance of the desired users in Fig. 4, instead
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of showing the near–far performance plots for each user. Again,
the SDR-ML detector is seen to provide better average BER per-
formance than the other suboptimal detectors. Although it is not
shown here, the near–far performance of the SDR-ML detector
for each user was also observed to be better than that of the other
detectors.

VII. CONCLUSION AND DISCUSSION

In this paper, we have applied the SD relaxation method to
approximately solve the NP-hard MLD problem with a poly-
nomial-time complexity of . Simulation results have
shown that the SDR-ML detector achieves BER performance
close to that of the true ML detector, even when the signal
cross-correlations are strong or the near–far effect is significant.
Moreover, we have shown that some existing detectors such as
the decorrelator, the LMMSE detector, and a particular form of
the modified SAGE detector can be considered as degenerate
forms of the SDR-ML detector. The resulting expectation that
the SDR-ML detector should perform better than those detectors
was confirmed by simulations that showed that the SDR-ML de-
tector often provides substantially improved performance. Since
those existing detectors require operations [cf., (32) and
(33)], the SDR-ML detector offers an attractive tradeoff be-
tween BER performance and computational cost.

The work presented here leads to a few interesting future di-
rections. First, this work has focussed on the application of SD
relaxation to synchronous CDMA systems. It will be interesting
to see how the SDR-ML detection technique may be applied to
other scenarios, such as CDMA over frequency-selective fading
channels and asynchronous CDMA systems. Second, we have
implemented the SDR-ML detector using a standard algorithm
[17], [18]. It remains to be seen whether fast implementations
of this algorithm can be developed for SDR-ML detection ap-
plications.
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