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Abstract

We consider a broadcast channel in which the base station is equipped with
multiple antennas and each user has a single antenna, and we study the design
of transceivers based on Tomlinson-Harashima precoders with probabilistic
Quality of Service (QoS) requirements for each user, in scenarios with un-
certain channel state information (CSI) at the transmitter. Each user’s QoS
requirement is specified as a constraint on the maximum allowed outage prob-
ability of the receiver’s mean square error (MSE) with respect to a specified
target MSE, and we demonstrate that these outage constraints are associ-
ated with constraints on the outage of the received signal-to-interference-plus-
noise-ratio (SINR). We consider four different stochastic models for the chan-
nel uncertainty, and we design the downlink transceiver so as to minimize the
total transmitted power subject to the satisfaction of the probabilistic QoS
constraints. We present three conservative approaches to solving the result-
ing chance constrained optimization problems. These approaches are based
on efficiently-solvable deterministic convex design formulations that guaran-
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tee the satisfaction of the probabilistic QoS constraints. We also demonstrate
how to apply these approaches in order to obtain computationally-efficient
solutions to some related design problems. Our simulations indicate that the
proposed methods can significantly expand the range of QoS requirements
that can be satisfied in the presence of uncertainty in the CSI.

Keywords: downlink; robust optimization; chance constraints

1. Introduction

We consider the design of transceivers for the downlink of a narrowband
cellular system with multiple transmit antennas at the basestation and mul-
tiple single antenna receivers. Motivated by the increasing demand for a
variety of low-latency interactive services, we adopt a design framework in
which we seek to minimize the total transmitted power required to satisfy
(physical layer) quality of service (QoS) constraints specified by the users. In
static environments, the quality of the channel state information (CSI) that
can be provided to the transmitter is sometimes high enough to warrant de-
sign methodologies based on the assumption that the available CSI is perfect.
This assumption facilitates the design process, and several effective methods
for the design of linear precoders for instances of the QoS problem with per-
fect CSI are available [1–8]. The availability of perfect CSI at the transmit-
ter also offers the possibility of sequential interference pre-subtraction using
Tomlinson-Harashima precoding [9–15], and the application of the signifi-
cantly more complicated dirty-paper coding techniques, which can be used
to achieve points on the boundary of the capacity region [16].

In practical downlink systems, however, the CSI that is available at the
transmitter is subject to a variety of sources of imperfection, such as the
channel estimation errors that arise in systems with uplink-downlink reci-
procity, and the quantization errors that arise in systems with quantized
feedback [17, 18]. In dynamic environments, the delay between the (imper-
fect) estimation of the channel and the application of that estimate in trans-
mission can lead to errors due to the estimate becoming “out of date”. While
channel prediction can mitigate such errors to some degree, the prediction
errors may still be significant. Given the pervasive nature of uncertainties in
the CSI, one might consider operating the downlink without CSI, either via
isotropic signalling to one user at a time, or by feeding back receiver mea-
surements (rather than channel estimates) in order to retrospectively align
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interfering signals [19]. However, insight from an analysis of the sum-rate de-
grees of freedom suggests that in slowly-varying environments, systems based
on feeding back (imperfect) channel state estimates will be preferable [20].
Nevertheless, downlink precoder design methods that assume perfect CSI at
the transmitter are sensitive to channel uncertainties because knowledge of
the CSI is used to mitigate interference at the receivers, and this sensitivity is
hightened in the context of QoS-based designs. Furthermore, the interference
pre-subtraction in Tomlinson-Harashima precoding is inherently sensitive to
CSI mismatch; e.g., [21].

One approach to addressing the sensitivities of downlink precoder design
to uncertain CSI is to incorporate the channel uncertainty into the design
process. In the context of the QoS problem that we are addressing, there are
several ways that this can be done. One is to consider a bounded model for
the error in the transmitter’s estimate of the channels and to constrain the
design of the precoder so that the users’ QoS requirements are satisfied for
all channels admitted by this model. That “worst-case” robustness problem
has been considered for linear precoders [3, 22–25] and Tomlinson-Harashima
precoders [24]. In this paper, we consider a different approach in which the
uncertainty in the transmitter’s estimate of the users’ channel coefficients is
modelled stochastically, and we design downlink transceivers so as to min-
imize the total transmitted power subject to the QoS requirements being
satisfied with a given probability; that is, we minimize the power subject
to constraints on the probability of outage. Problems from this class have
been considered for linear downlink precoders with a stochastic uncertainty
model for the channel [26, 27], or a stochastic uncertainty model for the
channel covariance matrix [28]. Similar problems have also been considered
in related contexts; e.g., [29]. The main purpose of the present paper is
to develop design techniques for Tomlinson-Harashima precoders that sat-
isfy outage-based QoS constraints. The modulo operators inherent in the
precoders and receivers of Tomlinson-Harashima-based systems make direct
analysis quite intricate, and hence we formulate the QoS requirements as
constraints on the maximum allowed outage probability of a mean square
error (MSE) measure of each user’s received signal, and we show that these
outage constraints are related to corresponding constraints on the outage of
the received signal-to-interference-plus-noise-ratio (SINR). (This MSE mea-
sure [30] has been widely employed in the design of Tomlinson-Harashima
precoding systems; e.g., [12, 21, 24, 31, 32].) Using this MSE framework, we
provide a unified approach to the design of Tomlinson-Harashima and linear
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transceivers with probabilistic QoS constraints.
In the development of our design techniques, we consider four stochastic

models for the uncertainty in the channel coefficients of each user. Taken
together, these models cover a wide range of communication scenarios with
uncertain CSI. For each model, the design problem is formulated as a chance
constrained optimization problem in which each chance constraint involves a
randomly perturbed second order cone (SOC) constraint. Chance constraints
of this type are generically intractable [33], and (conservative) approaches
that guarantee that the chance constraints are satisfied are usually consid-
ered. We present three conservative design approaches that are based on
efficiently-solvable deterministic convex design formulations that guarantee
the satisfaction of the probabilistic QoS constraints. These formulations are
then extended to solve some related design problems, including minimizing
the largest MSE (over the users) at which a specified outage probability can
be attained, and maximizing the variance of the uncertainty that can be toler-
ated at a specified probabilistic QoS level. Our simulations indicate that the
proposed methods can significantly expand the range of QoS requirements
that can be satisfied in the presence of uncertainty in the CSI.

In closing this introduction, we emphasize that our focus is on systems
with individual QoS requirements and the goal is to minimize the power
required to satisfy the constraints. For systems in which the goal is to opti-
mize a performance metric subject to constraints on the transmitted power,
a variety of approaches to the design of robust downlink transceivers with
Tomlinson-Harashima precoding have been proposed; e.g., [31, 32, 34–37].

The rest of the paper is organized as follows: Section 2 will present the
system model and design formulations for transceivers with MSE-based QoS
constraints assuming perfect CSI. Section 3 will present different stochastic
models for channel uncertainty. Section 4 will present the problem of de-
signing transceivers with probabilistic constraints, while Sections 5, 6, and
7 will present different approaches to obtaining convex design formulations
that guarantee the satisfaction of these outage-based QoS constraints. Sec-
tion 8 will briefly demonstrate how these approaches can be applied to solve
other related design problems, and Section 9 will provide the results of some
comparative simulations.

Our notation is as follows: We will use boldface capital letters to denote
matrices, boldface lower case letters to denote vectors and medium weight
lower case letters to denote individual elements; AT and AH denote the
transpose and the conjugate transpose of the matrix A, respectively. The
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notation ‖x‖ denotes the Euclidean norm of vector x, while ‖A‖ denotes the
spectral norm (maximum singular value) of the matrix A, and E{·} denotes
the expectation operator. The term tr(A) denotes the trace of matrix A,
and for symmetric matrices A and B, A ≥ B denotes the fact that A − B

is positive semidefinite. Some of our design formulations will be based on
a second-order cone program, and others will be based on a semidefinite
program [38]. These classes of optimization problems are convex and can be
solved efficiently.

2. System Model

We consider a narrowband downlink with Nt antennas at the transmitter
and K users, each with one receive antenna. We consider systems of the form
in Fig. 1, in which Tomlinson-Harashima precoding (THP) is used at the
transmitter for spatial multi-user interference pre-subtraction; e.g., [9, 30].
Linear transceivers are a special case of this model in which the feedback
matrix B = 0.

The elements of the vector s ∈ CK in Fig. 1 are the data symbols destined
for each user, and each symbol sk is chosen independently from a square
quadrature amplitude modulation (QAM) constellation S with cardinality M
and is normalized so that E{ssH} = I. The output symbols of the feedback
loop in Fig. 1, vk, are generated sequentially, and hence B is a strictly lower
triangular matrix. In the absence of the modululo operation, the output
symbols could be written as vk = [v]k = sk −

∑k−1
j=1 Bk,jvj . The modulo

operation in the transmitter controls the transmitted power by ensuring that
vk remains within the boundaries of the Voronoi region of the constellation.
For the case of square QAM, this region is a square of side length D. A
standard approach to mitigating the difficulties of analyzing the model in
Fig. 1 is to adopt the equivalent model in Fig. 2 [30]; see also [12, 21, 24, 31,
32]. In that model,

v = (I + B)−1u, (1)

where u = s + i is the modified data symbol and the elements of i, which
depend on s, take the form ik = ire

k D + j iimag
k D, where ire

k , iimag
k ∈ Z, and

j =
√
−1. The elements of v are almost uncorrelated and approximately

uniformly distributed over the Voronoi region [30, Th. 3.1], and hence they
have slightly higher average energy than the elements of s; an effect that is
termed precoding loss [30]. For square M-ary QAM we have σ2

v = E{|vk|2} =
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Figure 1: A broadcast channel with a Tomlinson-Harashima transceiver.7 89 :; <= >
Figure 2: Linear model for the Tolinson-Harashima transmitter.

M
M−1

E{|sk|2} for all k except the first one [30]. For moderate to large values of

M this precoding loss can be neglected and the approximation E{vvH} = I

is often used; e.g., [9, 12, 21, 24, 30–32]. Hence, the average transmitted
power constraint can be approximated by Ev{xHx} = tr(PHP).

The signal received by user k can be written as

yk = hkx + nk = hkP(I + B)−1u + nk, (2)

where the row vector hk ∈ C1×Nt contains the channel gains from the trans-
mitting antennas to the kth receiver, and nk represents additive circular white
noise with zero mean and variance σ2

nk
. At each receiver, the equalizing gain

gk is used to obtain an estimate ûk = gkhkP(I+B)−1u+gknk of the modified
data symbol uk, upon which the modulo operation is performed to obtain ŝk.

The actions of the modulo operators at the transmitter and receiver have,
over time, been somewhat resistant to insightful analysis. Therefore, we will
adopt the conventional approach (e.g., [12, 21, 24, 30–32]) and define an error
signal in terms of the modified data symbols,

ûk − uk = (gkhkP −mk − bk)v + gknk, (3)
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where mk and bk are the kth rows of the matrices I and B, respectively.
When the integer ik is eliminated by the modulo operation at the receiver,
this error signal is equivalent to the error in the receiver’s estimate of the
transmitted symbol, ŝk − sk. Using the error signal in (3), the corresponding
Mean Square Error (MSE) for the kth user is

MSEk = E{|ûk − uk|2} = ‖gkhkP− mk − bk‖2 + |gk|2σ2
nk

=
∥

∥

∥

[

gkhkP − mk − bk gkσnk

]
∥

∥

∥

2

. (4)

2.1. Transceiver design with QoS: Perfect CSI

The quality of service constraints that we will consider in this paper
take the form of upper bounds on the mean square errors, MSEk. This
approach has several advantages: it enables a unified treatment of linear
and Tomlinson-Harashima transceivers with QoS constraints; it overcomes
the difficulty of formulating SINR-based QoS constraints for Tomlinson-
Harashima transceivers; and, as stated formally below, guaranteeing an up-
per bound on MSEk is closely related to guaranteeing a lower bound on the
signal-to-interference-plus-noise-ratio, SINRk. In particular, as shown in [39],

Lemma 1. For any given set of user’s channels {hk}K
k=1, if there exists a

transceiver design P,B, gk that guarantees that MSEk ≤ ζk, then that design
also guarantees that when the modulo operator at the receiver removes ik,
SINRk ≥ (1/ζk) − 1.

In the case in which accurate CSI is available at the transmitter, the goal
of minimizing the total transmitted power subject to satisfying the users’
MSE requirements can be formulated as

min
P,B,gk

‖ vec(P)‖2 (5a)

s. t. bkj = 0, j = k, . . . , K, (5b)
∥

∥

∥

[

gkhkP − mk − bk, gkσk

]
∥

∥

∥

2

≤ ζk, 1 ≤ k ≤ K. (5c)
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Using the definitions

hk =
[

Re{hk} Im{hk}
]

, (6)

P =

[

Re{P} Im{P}
− Im{P} Re{P}

]

, (7)

bk =
[

Re{bk}/gk Im{bk}/gk

]

, (8)

mk =
[

Re{mk} Im{mk}
]

, (9)

fk = 1/gk, (10)

where, by definition, Im{mk} = 0, the problem in (5) can be formulated as
a convex Second Order Cone Program (SOCP) [39]:1

min
P, B,
fk, t

t (11a)

s. t.
∥

∥vec
(

P
)
∥

∥ ≤ t, (11b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (11c)
∥

∥[hkP − fkmk − bk, σnk
]
∥

∥ ≤
√

ζkfk, 1 ≤ k ≤ K. (11d)

This problem can be efficiently solved using general purpose implementations
of interior point methods (e.g., SeDuMi [40]), and can be easily modified to
incorporate a variety of different power constraints; e.g., [41]. More impor-
tantly, the convex formulation in (11) enables us to derive probabilistically-
constrained counterparts of the original design problem in (5) for the uncer-
tainty models presented in the following section.

3. Channel Uncertainty Model

We consider an additive model for the uncertainty of each user’s channel,

hk = ĥk + ek, (12)

where ĥk is the transmitter’s knowledge of the kth user’s actual channel, hk,
and ek is the corresponding mismatch, which is assumed to be independent
of ĥk. We will consider four statistical models for ek:

1For simpliciy, in (11) and the subsequent formulations we have left the structural
constraint on P in (7) implicit.
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• Model-G: In this model, the elements of ek, ek,ℓ, are modeled as in-
dependent Gaussian distributed random variables with zero-mean and
variance σ2

ek,ℓ
. This model is appropriate for communication schemes

with uplink-downlink reciprocity, which allows transmitter to estimate
the users’ channels on the uplink, and uncorrelated channel coefficients.

• Model-U: In this model, the elements ek,ℓ are modeled as independent
uniform distributed random variables on the interval [−ρk,ℓ, ρk,ℓ]. This
model is suitable for communication schemes in which the users employ
a scalar quantizer to quantize their channel state information and feed
it back to the transmitter.

• Model-VG: In this model, the elements ek,ℓ are modeled as jointly
Gaussian random variables with zero-mean and covariance matrix Σek

.
This model is suitable for communication schemes in which the trans-
mitter estimates the users’ channels on the uplink, and the coefficients
of each user’s channel are correlated.

• Model-VU: In this model, the vector ek,ℓ is uniformly distributed
over the volume of a given ellipsoidal region. This model is suitable for
communication schemes in which the users employ a vector quantizer
to quantize their CSI, because the quantization cells in the interior of
the quantization region can often be approximated by ellipsoids. This
model includes the case in which ek is uniformly distributed over a
spherical volume, which is often appropriate when the channel coeffi-
cients are uncorrelated and of equal variance.

4. Transceiver Design with Probabilistic QoS

In this paper, we consider probabilistic quality of service constraints that
are expressed in the form of an upper bound on the outage probability of
each user’s MSEk constraint; cf. (11d). This is motivated by the relationship
between the MSEk and SINRk in the case of perfect CSI; cf. Lemma 1. In
particular, based on that lemma we have the following result for the case of
imperfect CSI:

Lemma 2. Given a probability distribution for the users’ channels, if there
exists a transceiver design P,B, gk that guarantees that Pr{MSEk ≤ ζk} ≥
1 − ǫk, then that design guarantees that when the modulo operator at the
receiver removes ik, Pr{SINRk ≥ γk} ≥ 1 − ǫk, where γk = (1/ζk) − 1.
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Our goal now is to design a robust transceiver that minimizes the trans-
mitted power necessary to ensure that the QoS constraint of the kth user is
satisfied with a probability of outage that is less than ǫk. Using the SOCP
formulation in (11), this goal can be formulated as the following optimization
problem:

min
P, B,
fk, t

t (13a)

s. t.
∥

∥vec
(

P
)
∥

∥ ≤ t, (13b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (13c)

Pr
{

∥

∥

∥
[hkP − fkmk − bk, σnk

]
∥

∥

∥
≤

√

ζkfk

}

≥ 1 − ǫk, 1 ≤ k ≤ K.

(13d)

The problem in (13) is a chance constrained optimization problem (e.g., [42])
in which the chance constraints are on the probability that randomly per-
turbed second order cone constraints hold; cf. (13d). In general, chance con-
strained optimization problems are challenging; to develop a computationally-
tractable algorithm one must obtain an efficiently-computable representa-
tion of the chance constraints. In some problems, that is straightforward
(e.g., [29]), but when the chance constraints involve more general conic con-
straints, such as second order cone constraints or semidefinite constraints,
they are generically intractable [33, 43]. To overcome this intractability, we
will construct deterministic convex design formulations that guarantee the
satisfaction of the chance constraints. These (conservative) formulations are
efficiently-solvable, and their size is independent of the outage probability of
each chance constraint.

In the implementation of downlink transceiver designs that are based
on CSI (both perfect and uncertain) the receivers must obtain information
regarding the design decisions that the transmitter has made. In some lin-
ear transceiver systems that is done by performing a secondary “dedicated
training” phase in which the receiver estimates the projection of the design
precoding matrix onto its channel [18]. In other systems, a Bayesian approach
is taken and the statistics receiver’s estimates are taken into account in the
design [32]. In the systems considered herein, the receiver gains are com-
puted jointly with the transmitter matrices, via fk = 1/gk, and the receivers
are informed of the gains that they are to use.
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5. Design Approach 1

In this section, we will develop a computationally-efficient conservative
approach to the outage-based robust transceiver design problem in (13) for
uncertainty models G and U in Section 3. To simplify the development we
will first define the following set of arrow-structured matrices:

Ck,0(ζk) =

[ √
ζkfk [ĥkP− fkmk − bk, σnk

]

[ĥkP − fkmk − bk, σnk
]
T

(
√

ζkfk)I

]

,

(14)

Ck,ℓ(θk,ℓ) =

[

0 θk,ℓ [mkP, 0]

θk,ℓ [mkP, 0]T 0

]

, (15)

where

θk,ℓ =

{

σek,ℓ
for Model-G;

ρk,ℓ for Model-U.
(16)

We will also define the following function of the outage probability for each
of the uncertainty models

λ(ǫ) =







































min
0<z<0.5

min
(

2
√

2/z, 10
√
− ln z

)

min
(

1, 1−φ(z)
√
−2 ln 2ǫ

) for Model-G;

min
0<z<0.5

min
(

2
√

2/z, 4 + 4
√

ln(2/z)
)

+4
√

− ln 2ǫ − ln(1 − z) for Model-U.

(17)

where φ(·) is the inverse of cumulative probability distribution (CDF) of the
standard Gaussian random variable. Using these definitions, we can state
the following result.

Theorem 1. Consider the robust transceiver design problem with probabilis-
tic QoS guarantees in (13) under either Model-G or Model-U, and consider
the definitions in (14), (15), and (17). For ǫk ∈ (0, 0.5), the optimal solution
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of the following semidefinite program (SDP)

min
P, B,
fk, t

t (18a)

s.t.
∥

∥vec
(

P
)
∥

∥ ≤ t, (18b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (18c)

Ck(ζk, θk,ℓ, λk) =











1
λk

Ck,0(ζk) Ck,1(θk,1) . . . Ck,2Nt
(θk,2Nt

)

Ck,1(θk,1)
1
λk

Ck,0(ζk)
...

. . .

Ck,2Nt
(θk,2Nt

) 1
λk

Ck,0(ζk)











≥ 0,

1 ≤ k ≤ K, (18d)

where λk = λ(ǫk), is a conservative solution of (13) that guarantees that the
probability of outage of the QoS constraint of each user is at most ǫk. �

Proof. See Appendix A.

The optimization problem in (18) can be efficiently solved using general
purpose implementations of interior point methods, e.g., [40]. These imple-
mentations can exploit the block-arrow structure of the matrices in (18d)
and the arrow structure of the constituent blocks. We also point out that it
can be shown using (17) that λ(ǫ) is a decreasing function of ǫ. Therefore,
as the desired outage probability of user k decreases, λk increases and hence
the size of the feasible set described by the constraint in (18d) decreases.
Consequently, as one might have intuitively expected, the transmitted power
of the precoder design increases with decreasing outage probabilities.

By choosing the value of λk in (18) to be λ(ǫk), we guarantee that when
the SDP is feasible, its optimal solution satisfies the corresponding QoS target
at or below the specified outage probability, ǫk. This choice of λk has the
advantage that it depends only on the uncertainty model, and not on the set

of channel estimates
{

ĥk

}K

k=1
, and hence the values of λk in (18d) can be pre-

computed and stored offline for different possible values of ǫk. However, this
choice of λk is a conservative choice. We now develop an iterative algorithm
that, for a given set of channel estimates, seeks values of λk that are smaller
than λ(ǫk), and hence are less conservative.

For simplicity, we will consider the case in which the users may have
different QoS requirements, ζk, but they have the same outage probability,
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ǫk = ǫ. (The principles of our approach can be extended to the general
case.) For ǫk = ǫ all values of λk are the same, and for convenience we will
denote this value by λmax; i.e., λmax = λ(ǫ). We now consider whether there
exists a value of λ ∈ (0, λmax) such that the precoder design in (18) satisfies
the constraints in (13d). Guided by the monotonicity of λ(ǫ), we propose
to search for such values of λ via a bisection search algorithm on (0, λmax).
In each iteration, we solve (18) for the given λ and then use a statistical
validation procedure to determine whether that solution meets or exceeds
the required outage probability. The outcome of the validation procedure
determines the interval of λ that is to be bisected in the next iteration. The
iterative algorithm finds the smallest such value of λ within an accuracy of
µλ, or declares that there is no such λ, in at most log2(λmax/µλ) iterations.
Using the importance sampling technique described in [33], the statistical
validation procedure can be constructed in an efficient and reliable manner.
Furthermore, in the case of uncorrelated Gaussian uncertainties (Model-G)
one can square both sides of the inequality inside the braces in (13d) and
obtain a closed-form validation procedure in terms the noncentral chi-square
distribution.

6. Design Approach 2

The approach in the previous section was based on a semidefinite program
that is applicable to both uncertainty model G and uncertainty model U in
Section 3. In the following theorem we provide an alternative approach that
is tailored to the Gaussian uncertainty model (Model-G) and is based on the
following second order cone program.

Theorem 2. If λk is chosen such that ǫk =
√

e λk exp(−λ2
k/2), then the

optimal solution of the second order cone program (SOCP)

min
P,B,fk,t,

β,α1,...,αK

t (19a)

s. t.
∥

∥vec
(

P
)
∥

∥ ≤ t, (19b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (19c)
∥

∥[ĥkP − fkmk − bk, σnk
]
∥

∥ ≤
√

ζkfk − λkβk, 1 ≤ k ≤ K,
(19d)

∥

∥[σek,ℓ
mlP]

∥

∥≤ αk,ℓ 1 ≤ k ≤ K, 1 ≤ ℓ ≤ 2Nt, (19e)
∥

∥

αk

∥

∥ ≤ βk, 1 ≤ k ≤ K, (19f)
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is a conservative solution of (13) under the assumptions of the Model-G. �

Proof. See Appendix B.

Similar to the previous section, the values of λk in Theorem 2 are indepen-
dent of the channel estimates and can be pre-computed and stored offline, but
they are conservative. When all the outage probabilities are equal, ǫk = ǫ,
we will use an iterative algorithm analogous to that in the previous section
to obtain less conservative values of λ for a given set of channel estimates.

7. Design Approach 3

The design approaches presented in Sections 5 and 6 are applicable to
cases in which the coefficients of CSI uncertainty of each user are independent,
as in the uncertainty models G and U. These approaches rely on conservative
representations of chance constraints involving randomly perturbed second
order cones when the random parameters are independent. While the exis-
tence of counterpart formulations when the random parameters are jointly
distributed is still an open problem [33], we will adopt a different approach
in order to obtain efficient design algorithms for the correlated uncertainty
models, Model-VG and Model-VU. The proposed approach relies on char-
acterizing a bounded region Rk that contains 1 − ǫk of the probability of
each user’s channel hk, and designing a robust transceiver that guarantees
the satisfaction of the requested QoS level for each channel realization in this
region. Such a design is guaranteed to satisfy the QoS constraints with a
probability that is at least 1 − ǫk; e.g., [44].

Consider the CSI uncertainty model Model-VG, in which the uncertainty
coefficients ek are jointly Gaussian with probability density function

f(ek) =
1

(2π)Nt det(Σek
)
exp

(

− 1

2
eT

k Σ−1
ek

ek

)

. (20)

The region Rk(ǫk) that contains 1 − ǫk of the probability density of ek is
given by (see [45])

Rk(ǫk) = {ek| eT
k Σ−1

ek
ek ≤ λ2

k(ǫk)} = {ek| ek = Φku, uTu ≤ λ2
k(ǫk)},

(21)
where λ2

k(ǫk) = CDF−1
χ2Nt

(1− ǫk) is the value of the inverse cumulative distri-

bution function (CDF) of a Chi-square random with 2Nt degrees of freedom

evaluated at 1 − ǫk, and Φk = Σ
1

2

ek
.
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Now, consider the CSI uncertainty model Model-VU, in which the CSI
error vector of the kth user is uniformly distributed over the volume of the
2Nt−dimensional ellipsoid

Ek = {ek|eT
k Ψ−1

k ek ≤ 1} = {ek|ek = Φku, uT u ≤ 1}, (22)

where Φk = Ψ
1

2

k . The region Rk(ǫk) that contains 1 − ǫk of the probability
density of ek is another ellipsoid that is aligned with Ek, but with 1 − ǫk of
its volume. It is given by

Rk(ǫk) = {ek|ek = Φku, uTu ≤ λ2
k(ǫk)}, (23)

where λ2
k(ǫk) = Nt

√
1 − ǫk. From (21) and (23), it is clear that the regions

Rk(ǫk) that contain 1 − ǫk of the probability density for both CSI uncer-
tainty models Model-VG and Model-VU have the same geometry, and are
parameterized by

λ(ǫ) =











√

CDF−1
χ2Nt

(1 − ǫ) for Model-VG;

2Nt
√

1 − ǫ for Model-VU.

(24)

Our next step is to guarantee that each user’s MSE constraint, cf. (11d),
is satisfied for all ek ∈ Rk(ǫk), that is

∥

∥[(ĥk + ek)P− fkmk − bk, σnk
]
∥

∥ ≤
√

ζk fk ∀ek ∈ Rk(ǫk). (25)

The constraint in (25) represents an infinite number of second order cone
constraints, one for each ek ∈ R(ǫk). However, using an approach similar to
that in [46] (see also [39]) one can show that this infinite set of constraints
is satisfied if and only if there exists µk such that following Linear Matrix
Inequality holds







√
ζk fk − µk 0 [ĥkP − fkmk − bk, σnk

]
0 µkI λk[ΦkP, 0]

[ĥkP− fkmk − bk, σnk
]
T

λk[ΦkP, 0]T
√

ζk fkI






≥ 0.

(26)
Using this result we can state the following theorem.
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Theorem 3. Consider the robust transceiver design problem with probabilis-
tic QoS guarantees in (13) under CSI uncertainty models VG and VU, and
consider the definition in (24). The optimal solution of the following semidef-
inite program

min
P, B,

fk, µk, t

t (27a)

s.t.
∥

∥vec
(

P
)
∥

∥ ≤ t, (27b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (27c)






√
ζkfk − µk 0 [ĥkP − fkmk − bk, σnk

]
0 µkI λk[ΦkP, 0]

[ĥkP− fkmk − bk, σnk
]
T

λk[ΦkP, 0]T
√

ζkfkI






≥ 0,

1 ≤ k ≤ K, (27d)

where λk = λ(ǫk), is a conservative solution of (13). �

By choosing the value of λk in (27d) to be λ(ǫk) in (24), we guarantee
that when the SDP in (27) is feasible, its optimal solution satisfies the corre-
sponding QoS target at or below the specified outage probability, ǫk. As in
the previous two approaches, this choice has the advantage that it depends
only on the uncertainty model, and not on the channel estimates, but it is
conservative. When the outage probabilities are equal, we will use an itera-
tive algorithm that is similar to the one proposed in Section 5 to obtain less
conservative values of λ for a given set of channel estimates.

8. Related Design Problems

In previous sections, we presented three deterministic approaches for the
design of robust transceivers that minimize the total transmitted power sub-
ject to an outage-based QoS requirement of each user that involves its target
MSE. In this section, we will briefly demonstrate how these approaches can
be also applied to obtain efficiently-solvable design formulations to some re-
lated design problems.

8.1. Minimax Transceiver Design with Outage Constraints

The first problem is the design of a robust transceiver that minimizes
the maximum MSE target among all users subject to each of the K users

16



achieving the MSE target with an outage probability of at most ǫk, 1 ≤ k ≤
K, and a total power constraint on the transmitter, tr(PPH) ≤ Ptotal. By
denoting the maximum allowable MSE for any user by ζ0, this design problem
can be formulated as:

min
P, B,

fk,
√

ζ0

√

ζ0 (28a)

s. t.
∥

∥vec
(

P
)
∥

∥ ≤
√

2Ptotal, (28b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (28c)

Pr
{
∥

∥

∥
[hkP− fkmk − bk, σnk

]
∥

∥

∥
≤

√

ζ0fk

}

≥ 1 − ǫk, 1 ≤ k ≤ K.

(28d)

Similar to the design problem in (13), the constraints in (28d) represent
chance constraints that involve randomly perturbed second order cone (SOC)
constraints. However, each SOC in (28d) contains a bilinear term, since

√
ζ0

is now an optimization variable. Nevertheless, the design approaches that
were presented in the previous sections can still be used to obtain efficiently-
solvable conservative formulations. For example, using the first design ap-
proach in Section 5, the core optimization problem is: Given appropriate
values for λk,

min
P, B,

fk,
√

ζ0

√

ζ0 (29a)

s. t.
∥

∥vec
(

P
)
∥

∥ ≤
√

2Ptotal, (29b)

bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (29c)










1
λk

Ck,0(ζ0) Ck,1(θk,1) . . . Ck,2Nt
(θk,2Nt

)

Ck,1(θk,1)
1
λk

Ck,0(ζ0)
...

. . .

Ck,2Nt
(θk,2Nt

) 1
λk

Ck,0(ζ0)











≥ 0, 1 ≤ k ≤ K.

(29d)

The problem in (29) is quasi-convex (cf. [38]), and can be efficiently solved us-
ing standard techniques. Similarly, the core optimization problems obtained
by applying the approaches in Sections 6 and 7 are also quasi-convex.

An alternative formulation of the core problem in (29) can be obtained
by observing that the constraint in (29d) can be written as

√
ζ0

fk

λk
I+Dk ≥ 0,
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where

Dk =











Ck,0 Ck,1 . . . Ck,2Nt

Ck,1 Ck,0
...

. . .

Ck,2Nt
Ck,0











, (30)

Ck,0 =

[

0 [ĥkP − fkmk − bk, σnk
]

[ĥkP − fkmk − bk, σnk
]
T

0

]

. (31)

Using this observation, the design problem in (29) can be formulated as the
minimization of the maximum generalized eigenvalue of a pair of symmet-
ric matrices that depend affinely on the decision variables subject to linear
matrix inequality (LMI) constraints—a class of problems for which some
specialized algorithms are available; see [47, 48]. In our case the maximum
generalized eigenvalue is

√
ζ0, and the LMI constraints can be used to ex-

press the power constraint in (29b) or any other power shaping constraint.
Using similar observations, the core optimization problem in the third design
approach can also be written as the minimization of a maximum generalized
eigenvalue subject to LMI constraints.

8.2. Finding Maximum Possible Estimation Variance

In this section, we are interested in finding parameters that are related
to the estimation methods and quantization schemes used to provide the
transmitter with the users’ CSI. In particular, we are interested in finding
the maximum possible variance of the uncertainty in the users’ channel co-
efficients for which there exists a feasible transceiver design that satisfies the
outage-based QoS requirements. In the uncorrelated Gaussian uncertainty
model (Model-G), this corresponds to finding the largest σ2

ek,ℓ
for which such

a transceiver exists. In a reciprocal channel with channel estimation on the
uplink, knowledge of this maximum variance is particularly useful in the se-
lection of the estimation algorithm used by the transmitter, and the param-
eters of that algorithm. The estimation algorithm and its parameters should
be chosen so that the variance of the channel estimates lies well below the
computed maximum variance, because for uncertainties larger than that a
feasible transceiver cannot be found using the method of interest. In the un-
correlated uniform uncertainty model (Model-U), the problem corresponds

to finding the largest value of
ρ2

k,ℓ

3
. This is useful in order to determine the
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quality of the quantization scheme (and consequently the number of code-
words) to be employed by the users in the quantization of their CSI prior to
feed back to the transmitter.

If we denote by θ0 the maximum allowable value of θk,ℓ (cf. (16)), then by
using the design approach proposed in Section 5, we can obtain the following
quasi-concave design formulation:

max
P, B,
fk, θ0

θ0 (32a)

s. t. bkj = 0, j = k, . . . , K, k + K, . . . , 2K, (32b)

Ck(ζk, θ0, λk) ≥ 0, 1 ≤ k ≤ K. (32c)

Similarly, the design approaches in Sections 6 and 7 can be used to obtain
alternative quasi-concave design formulations for the problem of finding the
maximum allowable variance for the uncertainty in the channel coefficients.

9. Simulation Studies

In this section, we demonstrate the performance of the proposed design
approaches for outage-based linear and Tomlinson-Harashima transceivers,
and we will provide performance comparisons with the robust power loading
approach (Robust PL) in [49], which provides a robust linear transmitter for
bounded channel uncertainties that match the additive uncertainty model
that we have considered; cf. (12).2 The robust power loading approach
has additional constraints on the structure of the precoder that require the
specification of normalized columns of P. We will use the zero-forcing beam-
forming vectors for the transmitter’s knowledge of the channels, {ĥk}K

k=1; i.e.,

the columns of the pseudo-inverse of Ĥ.
In the following simulation studies, we will consider a broadcast channel

with Nt = 3 transmit antennas and K = 3 users. We assume standard
Rayleigh fading channels, in which the coefficients of the fading channel are
modeled as being independent proper complex Gaussian random variables
with zero mean and unit variance, and we set the noise variance of each

2As in the third approach proposed herein, by choosing the size of the bounded uncer-
tainty region of each channel so that it contains 1 − ǫk of the probability of a stochastic
uncertainty model, one can use that method to guarantee the satisfaction of the proba-
bilistic QoS constraints that we have considered.
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user to one. In order to facilitate the comparisons between all the proposed
approaches, the uncertainty in the transmitter’s estimates of the channel is
modelled using the Gaussian i.i.d. model (Model-G) in Section 3. The QoS
constraints are expressed in terms of SINR requirements and are translated
into the related constraints on the MSE using the result of Lemma 2.

In contrast to linear precoding, Tomlinson-Harashima precoding inher-
ently requires ordering of the symbols to be transmitted to the users, prior to
precoding. Finding the optimal ordering requires an exhaustive search over
all possible orderings, and instead of that we have implemented a suboptimal
ordering method that is a generalization of the method in [50]. That method
orders the users in a way that minimizes the sum of the reciprocals of the
received SINRs when the precoder matrix P is an identity matrix. In our
generalization, the ordering selection criterion is minimizing the sum of the
ratios of each user’s SINR requirement to its received SINR when P = I, a
quantity that is proportional to the power necessary for each user to achieve
its SINR requirement. (To estimate the received SINR for this ordering pro-
cess, the transmitter uses its channel estimates, {ĥk}K

k=1, as if they were
precise.)

9.1. Power Minimization Problem with Outage Constraints

In the first experiment, we randomly generated 1000 realizations of the set
of channel estimates {ĥk}K

k=1 and examined the performance of each design
approach for both linear and Tomlinson-Harashima (TH) transceivers in a
scenario in which the variance of each element of ek is σ2

ek,ℓ
= 0.003 and the

QoS requirements are specified in terms of the 10%-outage SINR, and are all
the same; i.e., γk = γ and ǫk = ǫ = 0.1.

For each set of channel estimates and for each value of γ we determined
whether each design approach is able to generate a transceiver (of finite
power) that guarantees that the probabilistic QoS constraints are satisfied. In
Fig. 3 we plot the percentage of channel realizations for which each approach
generated such a transceiver against the users’ equal SINR requirement γ.

It can be seen from Fig. 3 that for both linear and TH transceivers the first
design approach provides the probabilistic QoS guarantee to the largest per-
centage of the channel estimates and for largest range of SINR requirements
γ. The second and third approaches follow, in that order, but the perfor-
mance of all three approaches is quite similar. Although the first approach
has the additional advantage that it is applicable to systems with uniformly
distributed uncertainties, as well as those with Gaussian uncertainties, and
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Figure 3: Percentage of channel realizations for which the probabilistic QoS requirement
of an SINR of at least γ at an outage probability of at most 10% can be satisfied. The
variance of each element of the channel uncertainty ek is σ

2

ek,ℓ
= 0.003.
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although the third approach enables us to handle correlated uncertainties,
the second approach is based on a second order cone program (SOCP) that is
inherenty easier to solve than semidefinite programs (SDPs) in the first and
third approaches. Fig. 3 also shows that the proposed approaches to linear
transceiver design extract a significant fraction of the performance gain of
the proposed TH transceivers over the robust power loading approach.

In the second experiment, we selected all the channel estimates from
the set of 1000 for which the proposed approaches generate TH transceivers
that are able to provide the probabilistic SINR guarantee at γ = 8 dB with
10% outage. We calculated the average, over the 479 such channels, of the
transmitted power required to achieve the probabilistic QoS guarantees and
we have plotted the results for different values of γ in Fig. 4. The average
transmitted power approaches infinity for a given value of γ when for one
(or more) of the channel estimates the method under consideration cannot
provide the probabilistic SINR guarantee with finite power. From Fig. 4 it
can be observed that for both linear and TH transceivers, the first approach
provides the slowest growth of the required transmission power with growth
in the QoS requirement, followed by the second and third approaches, re-
spectively. These approaches provide significant gains over the robust power
loading approach to linear transceiver design.

9.2. Maximum Variance Problem

In this section, we compare the performance of the different approaches
to finding the maximum tolerable variance of the uncertainty; cf. Section 8.2.
We consider a scenario in which the variance of the elements of the channel
uncertainty of each user’s are equal, σek,ℓ

= σ2
e , and the outage-based QoS re-

quirement of each user is γk = 10 dB at a maximum outage of 10%, ǫk = 0.1.
In Fig. 5, we have plotted the percentage of the 1000 random channels from
the first experiment for which each approach yielded a feasible transceiver
with finite power against the equal variance σ2

e . From Fig. 5, we observe
that for the case of TH transceivers the first of the proposed approaches pro-
vides significantly better performance than the second and third approaches,
whereas for the case of linear transceivers the relative performance advantage
of the first approach is smaller. All three of the proposed approaches yield
linear transceivers that provide a significant gain over that designed using
the robust power loading approach. An interesting observation from Fig. 5
is that the proposed TH transceivers are significantly more robust to small
uncertainties than the linear transceivers.
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Figure 5: Percentage of channel realizations for which the probabilistic QoS requirement
of an SINR of at least γ at an outage probability of at most 10% can be satisfied versus
the variance of the entries of channel uncertainty ek, σ

2

ek,ℓ
.

In the fourth experiment, we selected from the 1000 channels realizations
those realizations for which all proposed approaches satisfied the outage-
based QoS requirements for an uncertainty variance of up to 0.0025. We
calculated the average transmitted power over these 405 channel realizations,
and in Fig. 6 we have plotted this power against the variance of the channel
uncertainty. It can be observed proposed approaches can significantly extend
the range of variance of the stochastic channel uncertainty model for which
the outage-based QoS requirements can be satisfied.

10. Conclusion

We have considered the design of Tomlinson-Harashima and linear transceivers
for broadcast channels with probabilistically-constrained QoS requirements
in the presence of uncertain channel state information (CSI) at the trans-
mitter. The probabilistic QoS requirement of each user is formulated as a
constraint on the maximum allowed outage probability of a mean square er-
ror measure of its received signal, and we demonstrated that these outage
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uncertainty ek, σ
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outage probability of at most 10%. The average is performed over 405 of the 1000 channel
realizations used in the first experiment.
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constraints are related to constraints on the outage in the received SINR
sense. We considered four stochastic models for the uncertainty in the CSI,
and we studied the design of robust transceivers so as to minimize the total
transmitted power subject to the satisfaction of the QoS constraints with
a maximum allowed outage probability. To overcome the intractability of
this type of chance constrained problem, we presented three conservative
design approaches based on efficiently-solvable deterministic convex design
formulations that guarantee satisfaction of the probabilistic QoS constraints.
Using these design approaches, we also presented computationally-efficient
solutions to other related design problems. As demonstrated by the numer-
ical studies, the proposed approaches can significantly expand the range of
QoS requirements that can be satisfied in the presence of uncertainty in the
CSI.

Appendix A. Proof of Theorem 1

Consider the MSE constraint of the kth user,
∥

∥[hkP−fkmk−bk, σnk
]
∥

∥ ≤√
ζkfk. Using Schur Complement Theorem [51], we can write this SOC con-

straint as an equivalent linear matrix inequality (LMI)

Ck =

[ √
ζkfk [hkP − fkmk − bk, σnk

]

[hkP − fkmk − bk, σnk
]T (

√
ζkfk) I

]

≥ 0,

(A.1)
Using the channel uncertainty model in (12), the LMI constraint in (A.1)
can be written as

Ck =

[ √
ζkfk [hkP− fkmk − bk, σnk

]

[hkP − fkmk − bk, σnk
]T (

√
ζkfk) I

]

(A.2)

+
2Nt
∑

ℓ=1

ek,ℓ

[

0 [mkP, 0]

[mkP, 0]T 0

]

,

= Ck,0 +
2Nt
∑

ℓ=1

ωk,ℓ Ck,ℓ, (A.3)

where Ck,0 and Ck,ℓ were defined in (14) and (15), respectively, and ωk,ℓ

are normalized uncertainty parameters. Under the assumptions of Model-G,
ωk,ℓ = ek,ℓ/σek,ℓ

are i.i.d. standard Gaussian random variables, while under
the assumptions of Model-U, ωk,ℓ = ek,ℓ/ρk,ℓ are i.i.d. random variables that
are uniformly distributed on [−1, 1].
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Now, the probabilistic constraint of the kth user in (13d) can be written
as

Pr
{

Ck,0 +

2Nt
∑

ℓ=1

ωk,ℓ Ck,ℓ ≥ 0
}

≥ 1 − ǫk. (A.4)

Since the considered probability distributions for ωk,ℓ are symmetric, (A.4)
is equivalent to

Pr
{

−Ck,0 ≤
2Nt
∑

ℓ=1

ωk,ℓ Ck,ℓ ≤ Ck,0

}

≥ 1 − 2ǫk. (A.5)

The advantage of the formulation in (A.5) is that we can obtain a determin-
istic (and efficiently-computable) linear matrix inequality that implies (A.5)
using the following lemma from [33].

Lemma 3. Let C0,C1, . . . ,CN be a set of symmetric matrices such that
Cℓ = Xℓ + yℓa

T
ℓ + aℓy

T
ℓ for arbitrary vectors yℓ and aℓ and a symmetric

matrix Xℓ. If ωℓ are i.i.d. standard Gaussian random variables, and λ =

min
(

2
√

2/z, 10
√
− ln z

)

/min
(

1, 1−φ(z)
√
−2 ln ε

)

, then the LMI











1
λ
C0 C1 . . . Ck,N

C1
1
λ
Ck,0

...
. . .

CN
1
λk

C0











≥ 0,

implies Pr
{

−C0 ≤
∑N

ℓ=1 ωkCk ≤ C0

}

≥ 1 − ε. If ωℓ are i.i.d. uni-

form random variables on [−1, 1], the same implication holds, but for λ =

min
(

2
√

2/z, 4 + 4
√
− ln z

)

+ 4
√

− ln ε − ln(1 − z). �

By observing that all the matrices Ck,0 and Ck,ℓ in (14) and (15), respec-
tively, satisfy the structural condition of Lemma 3, the proof of Theorem 1
can be completed by applying Lemma 3 to (A.5) and setting ε = 2ǫk.

Appendix B. Proof of Theorem 2

Consider a constraint of the form f(x,y) ≤ 0 in which f(x,y) is con-
vex in x for a given y, convex in y for a given x, and satisfies f(x, ky) =
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|k|f(x,y). Let the vector y be randomly perturbed according to the model
y = y0 +

∑N

ℓ=1 ωℓyℓ, where ωℓ are i.i.d. standard Gaussian random variables.
Under these assumptions, we can obtain a conservative representation of the
probabilistic constraint Pr{f(x,y) ≤ 0} ≥ 1 − ε using the following lemma
from [52].

Lemma 4. Under the above conditions on f(x,y) and y, the following set
of constraints

f(x,y0) + λθ ≤ 0, (B.1)

f(x,yℓ) − αℓ ≤ 0, (B.2)

f(x,−yℓ) − αℓ ≤ 0, (B.3)

‖α‖c0 ≤ θ (B.4)

implies Pr{f(x,y) ≤ 0} ≥ 1 − ε, where ε =
√

e/c1 λ exp(−λ2/2c2
2). The

nature of the norm, c0, and the constants c1 and c2 are dependent on the
function f(x,y). For a second order cone constraint with uncertainty pa-
rameters on the left hand side of the cone only, c0 = 2 and c1 = c2 = 1.
�

By choosing f(x,y) =
∥

∥[hkP − fkmk − bk, σnk
]
∥

∥ −
√

ζk fk ≤ 0, and

rewriting the uncertainty model as y = [hk σnk
] = [ĥk σnk

]+
∑2Nt

ℓ=1 ωℓ [σek,ℓ
mℓ 0],

Theorem 2 follows from an application of Lemma 4.

References

[1] F. Rashid-Farrokhi, K. J. R. Liu, and L. Tassiulas, “Transmit beam-
forming and power control for cellular wireless systems,” IEEE J. Sel.
Areas Commun., vol. 16, no. 8, pp. 1437–1450, Oct. 1998.

[2] F. Rashid-Farrokhi, L. Tassiulas, and K. J. R. Liu, “Joint optimal power
control and beamforming in wireless networks using antenna arrays,”
IEEE Trans. Commun., vol. 46, no. 10, pp. 1313–1324, Oct. 1998.

[3] M. Bengtsson and B. Ottersten, “Optimal and suboptimal transmit
beamforming,” in Handbook of Antenna in Wireless Communications,
L. C. Godara, Ed. Boca Raton, FL: CRC Press, August 2001, ch. 18.

[4] M. Schubert and H. Boche, “Solution of the multiuser downlink beam-
forming problem with individual SINR constraints,” IEEE Trans. Veh.
Technol., vol. 53, pp. 18–28, Jan. 2004.

28



[5] A. Wiesel, Y. Eldar, and S. Shamai, “Linear precoding via conic op-
timization for fixed MIMO receivers,” IEEE Trans. Signal Process.,
vol. 54, no. 1, pp. 161–176, Jan. 2006.

[6] M. Schubert and H. Boche, “A generic approach to QoS-based
transceiver optimization,” IEEE Trans. Commun., vol. 55, no. 8, pp.
1557–1566, Aug. 2007.

[7] R. Hunger and M. Joham, “A complete description of the QoS feasibility
region in the vector broadcast channel,” IEEE Trans. Signal Process.,
vol. 58, no. 7, pp. 3870–3878, Jul. 2010.

[8] Y. Huang and D. P. Palomar, “Rank-constrained separable semidefinite
programming with applications to optimal beamforming,” IEEE Trans.
Signal Process., vol. 58, no. 2, pp. 664–678, Feb. 2010.

[9] C. Windpassinger, R. F. H. Fischer, T. Vencel, and J. B. Huber, “Pre-
coding in multiantenna and multiuser communications,” IEEE Trans.
Wireless Commun., vol. 3, no. 4, pp. 1305–1316, Jul. 2004.

[10] F. C.-H. Fung, W. Yu, and T. J. Lim, “Non-linear multi-user pre-
coding for multi-antenna downlink channels using independent MSE
constraints,” in Proc. 22nd Biennial Symposium on Communications,
Kingston, Ontario, May 2004.

[11] R. Doostnejad, T. Lim, and E. Sousa, “Joint precoding and beamform-
ing design for the downlink in a multiuser MIMO system,” in Wireless
Mobile Computing, Networking, Commun., vol. 1, Montreal, Aug. 2005,
pp. 153– 159.

[12] M. Joham and W. Utschick, “Ordered spatial Tomlinson-Harashima
precoding,” in Smart Antennas. State of the Art, T. Kaiser, A. Bour-
doux, H. Boche, J. R. Fonollosa, J. B. Andersen, and W. Utschick, Eds.
Hindawi, 2005.

[13] M. Schubert and H. Boche, “Iterative multiuser uplink and downlink
beamforming under SINR constraints,” IEEE Trans. Signal Process.,
vol. 53, no. 7, pp. 2324– 2334, July 2005.

29



[14] S. Shi, M. Schubert, and H. Boche, “Downlink MMSE transceiver op-
timization for multiuser MIMO systems: Duality and Sum-MSE mini-
mization,” IEEE Trans. Signal Process., vol. 55, no. 11, pp. 5436–5446,
Nov. 2007.

[15] L. Sanguinetti and M. Morelli, “Non-linear pre-coding for multiple-
antenna multi-user downlink transmissions with different QoS require-
ments,” IEEE Trans. Commun., vol. 6, no. 3, pp. 852 – 856, March
2007.

[16] H. Weingarten, Y. Steinberg, and S. Shamai, “The capacity region of
the gaussian multiple-input multiple-output broadcast channel,” IEEE
Trans. Inf. Theory, vol. 52, no. 9, pp. 3936–3964, Sep. 2006.

[17] N. Jindal, “MIMO broadcast channels with finite rate feedback,” IEEE
Trans. Inf. Theory, vol. 52, no. 11, pp. 5045–5059, Nov. 2006.

[18] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO
achievable rates with downlink training and channel state feedback,”
IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845–2866, Jun. 2010.

[19] M. A. Maddah-Ali and D. Tse, “Completely stale transmitter channel
state information is still very useful,” IEEE Trans. Inf. Theory, vol. 58,
no. 7, pp. 4418–4431, Jul. 2012.

[20] J. Xu, J. G. Andrews, and S. A. Jafar, “MISO broadcast channels with
delayed finite-rate feedback: Predict or observe,” IEEE Trans. Wireless
Commun., vol. 11, no. 4, pp. 1456–1467, Apr. 2012.

[21] D. Tsipouridou and A. P. Liavas, “On the sensitivity of the MIMO
Tomlinson-Harashima precoder with respect to channel uncertainties,”
IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2261–2272, Apr. 2010.

[22] M. Botros Shenouda and T. N. Davidson, “Convex conic formulations
of robust downlink precoder design with quality of service constraints,”
IEEE J. Sel. Topics Signal Process., vol. 1, no. 4, pp. 714–724, Dec.
2007.

[23] G. Zheng, K.-K. Wong, and T.-S. Ng, “Robust linear MIMO in the
downlink: A worst-case optimization with ellipsoidal uncertainty re-
gions,” EURASIP J. Adv. Signal Process., vol. 2008, no. 609018, Jul.
2008.

30



[24] M. Botros Shenouda and T. N. Davidson, “Non-linear and linear broad-
casting with QoS requirements: Tractable approaches for bounded chan-
nel uncertainties,” IEEE Trans. Signal Process., vol. 57, no. 5, pp. 1936–
1947, May 2009.

[25] N. Vucic and H. Boche, “Robust QoS-constrained optimization of
dowlink multiuser MISO systems,” IEEE Trans. Signal Process., vol. 57,
no. 2, pp. 714–725, Feb. 2009.

[26] M. Botros Shenouda and T. N. Davidson, “Probabilistically-constrained
approaches to the design of the multiple antenna downlink,” in Conf.
Rec. 42nd Ann. Asilomar Conf. Signals, Systems, Computers, Pacific
Grove, CA, Oct. 2008, pp. 1120–1124.

[27] K.-Y. Wang, T.-H. Chang, W.-K. Ma, A. M.-C. So, and C.-Y. Chi,
“Probabilistic SINR constrained robust transmit beamforming: A
Bernstein-type inequality based conservative approach,” in Proc. Int.
Conf. Acoust., Speech, Signal Processing, Prague, May 2011, pp. 3080–
3083.

[28] B. Chalise, S. Shahbazpanahi, A. Czylwik, and A. B. Gershman, “Ro-
bust downlink beamforming based on outage probability specifications,”
IEEE Trans. Wireless Commun., vol. 6, no. 10, pp. 3498–3503, 2007.

[29] Y. Rong, S. A. Vorobyov, and A. B. Gershman, “Robust linear receivers
for multi-access space-time block coded MIMO systems: A probabilis-
tically constrained approach,” IEEE J. Sel. Areas Commun., vol. 24,
no. 8, pp. 1560–1570, 2006.

[30] R. F. H. Fischer, Precoding and Signal Shaping for Digital Transmission.
New York: Wiley, 2002.

[31] M. Botros Shenouda and T. N. Davidson, “Tomlinson-Harashima pre-
coding for broadcast channels with uncertainty,” IEEE J. Sel. Areas
Commun., vol. 25, no. 7, pp. 1380–1389, Sep. 2007.

[32] F. A. Dietrich, P. Breun, and W. Utschick, “Robust Tomlinson-
Harashima precoding for the wireless broadcast channel,” IEEE Trans.
Signal Process., vol. 55, no. 2, pp. 631–644, Feb. 2007.

31



[33] A. Ben-Tal and A. Nemirovski, “On safe tractable approximations of
chance constrained linear matrix inequalities,” Math Oper. Res., vol. 34,
no. 1, pp. 1–25, Feb. 2009.

[34] A. P. Liavas, “Tomlinson-Harashima precoding with partial channel
knowledge,” IEEE Trans. Commun., vol. 53, no. 1, pp. 5–9, Jan. 2005.
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