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ABSTRACT

It has recently been determined (by others) that one can con-
struct full rate full diversity linear space-time block codes without
a reduction in the achievable information rate. In this paper, we
address two issues in those designs. One issue is whether the rota-
tion matrix and the Diophantine number can be systematically and
efficiently constructed for an arbitrary number of transmitter an-
tennas and receiver antennas and whether the signal constellation
is necessarily limited to PAM or QAM. The other issue is whether
the currently available square designs can be generalized to a rect-
angular design and in particular, to a linear dispersion code design.
This paper resolves these issues by proposing a trace-orthonormal
linear space-time block code and linear dispersion code, and giv-
ing a systematic method to design such a code family. By carefully
selecting V-structured matrices or conjugate V-structured matrices
in this family, we can systematically and efficiently design infor-
mation lossless full rate full diversity cyclotomic space-time codes.

1. INTRODUCTION

In this paper, we consider the discrete-time equivalent model of
a baseband communication system equipped with M antennas at
the transmitter and N antennas at the receiver, which can be rep-
resented in a compact matrix form as

r = Hx + ξ, (1)

where r is a N × 1 receive signal vector, H is an N ×M channel
matrix which is known at the receiver but not known at the trans-
mitter, x is an M × 1 transmitted signal vector and ξ is a N × 1
complex noise vector. Such multi-input and multi-output (MIMO)
channels have recently attracted significant interests because they
provide an important increase in capacity over single-input single-
output channels [1]. A typical example is the V-BLAST scheme
[2]. Recently, it has been shown how to construct linear space-
time block codes for MIMO channels that achieve full rate full
diversity without information loss [3], [4], [5]. In this paper, we
will address two design issues in , [4], [5]. One is how to system-
atically and efficiently design a rotation matrix, the Diophantine
number and the corresponding signal constellation for an arbitrary
number of transmitter antennas and receiver antennas. The other
issue is to generalize the square coding matrix designs [4], [5] to
a rectangular design and in particular, to a linear dispersion code
design. More specifically, motivated by [6], [7], [3], [4], [5], [8],
we propose a trace-orthonormal space-time block code and lin-
ear dispersion code, and give a systematic method to design such
code family. By carefully selecting so called V-structured matrices

or conjugate V-structured matrices in this family, we can design
information lossless full rate full diversity cyclotomic space-time
codes systematically and efficiently. Due to the space limitation,
we merely state our recent research results. Proofs will be pro-
vided elsewhere.

Notation: Throughout this paper we use the following no-
tation: Matrices are denoted by uppercase boldface characters
(e.g., A), while column vectors are denoted by lowercase bold-
face characters (e.g., b), The transpose of A is denoted by AT ,
and the conjugate and transpose of A by AH . The expression
φ(n) denotes the Euler function; Z denotes the ring of integers;
ζm = exp

(
j2π
m

)
; Z[ζm] denotes the cyclotomic ring generated by

Z and ζm; Q denotes the rational number field; Q(ζm) denotes the
cyclotomic field generated by Q and ζm; WP denotes the P × P
discrete Fourier transform matrix and CP denotes the P × P cir-
cular generator matrix,

CP =

(
01×(P−1) 1

IP−1 0(P−1)×1

)
,

where IP−1 denotes the (P − 1) × (P − 1) identity matrix.

2. CHANNEL MODEL WITH SPACE-TIME CODES

2.1. Linear space-time block codes

First, let us consider the MIMO channel model (1) with an M ×T
linear space-time block code

X(s) =
Q∑

k=1

Fksk. (2)

Here, Q denotes the number of information symbols, each Fk is
an M × T matrix, T is the number of channel uses, and s denotes
a Q×1 transmission symbol vector s = [s1, s2, · · · , sQ]T . At the
transmitter side, each column vector signal of X(s) is fed to the M
transmitter antennas in channel model (1) for simultaneous trans-
mission. At the receiver side, all these T received signal vectors
can be organized in the more compact matrix form

R = HX(s) + Ξ, (3)

where R = [r1, r2, · · · , rT ] and Ξ = [ξ1, ξ2, · · · , ξT ]. The
channel model (3) can be equivalently rewritten by vectoring both
side of (3) as [7], [3]

vec(R) = HFs + vec(Ξ),

where H = IT ⊗ H and F =[vec(F1), · · · , vec(FQ)].
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2.2. Linear dispersion codes

For a linear dispersion code [6], a signal matrix is

X̃(s) =
Q∑

k=1

Aksk +
Q∑

k=1

Bks"
k, (4)

where each of Ak and Bk denotes an M × T matrix. Similar
to (3), the relationship between T input vector signals and T output
vector signals can be described by

R̃ = HX̃(s) + Ξ. (5)

It is desirable to express the channel model (5) as

(
vec(R̃)
vec(R̃")

)
= H̃F̃

(
s
s"

)
+

(
vec(Ξ)
vec(Ξ)"

)
,

where

H̃ =

(
H 0
0 H"

)
, F̃ =

(
A B
B" A"

)

with A=[vec(A1), vec(A2), · · · , vec(AQ)],B=[vec(B1),
vec(B2), · · · , vec(BQ)].

2.3. Design criterion

In order to obtain a good space-time code, one can use the pairwise
error probability as a design criterion. For a quasi-static fading
and perfect channel information at the receiver, minimizing the
Chernoff bound of the average pairwise error probability of the
maximum likelihood detector is equivalent to satisfying [9],

• The Rank Criterion: The minimum rank of X(e) = X(s)−
X(s′) (or X̃(e) = X̃(s) − X̃(s′)) taken over all distinct
pairs {s, s′} is the diversity gain and should be maximized.
Here, e = s − s′. The maximum diversity or full diversity
is MN if T ≥ M .

• The Determinant Criterion: The minimum of(∏r
j=1 λj

)1/r
, taken over all distinct symbol vector

pairs {s, s′}, is the coding gain and should be maximized.
Here, the λi are the nonzero eigenvalues of X(e)XH(e)

(or X̃(e)X̃H(e)).

3. TRACE-ORTHONORMAL SPACE-TIME CODES

3.1. Trace-orthonormal linear space-time block codes

We first introduce the following definition.

Definition 1 Let T ≥ M . A sequence of M × T matrices Ak

for k = 1, · · · , Q with Q ≤ MT is said to constitute a trace-
orthonormal linear space-time block code if the following condi-
tions are satisfied,

FkF
H
k = IM/M (6a)

tr
(
FkF

H
k′

)
= δ(k − k′) (6b)

for k, k′ = 1, · · · , Q. If Q = TM , it is said to constitute a trace-
orthonormal full rate linear space-time block code.

In order to construct the codes, we further introduce the fol-
lowing definition.

Definition 2 Let T = KM . An T ×T unitary matrix V is said to
be of V-structure if the entries of V satisfy

∑K−1
n=0 |vk,Mn+r|2 =

1
M for k = 1, · · · , T, r = 1, · · · , M .

Theorem 1 Let T = KM and let V1, · · · ,VM be the T × T
V-structured matrices. Define the M × T matrices ETm+n as

ETm+n = [diag(v(m+1)
n (1 : M)), · · · ,

diag(v(m+1)
n ((K − 1)M + 1 : KM))]

for m = 0, · · · , M − 1, n = 1, · · · , T , where v(m+1)
n (kM + 1 :

(k +1)M) denotes the M × 1 column vector consisting of entries
from kM + 1 to (k + 1)M of the nth column of matrix Vm+1. If
the matrices Fk in (2) are defined by

FmT+n = Cm
M ETm+n,

then, the matrix family {Fk}MT
k=1 constitutes a trace-orthonormal

full rate linear space-time block code.

3.2. Trace-orthonormal linear dispersion codes

Definition 3 Let T ≥ M . A sequence of M ×T matrices Ak and
Bk for k = 1, · · · , Q with Q ≤ MT is said to constitute a trace-
orthonormal linear dispersion code if the following conditions are
satisfied for k, k′ = 1, · · · , Q,

AkA
H
k + BkB

H
k = IM/M (7a)

tr
(
AkA

H
k′ + Bk′BH

k

)
= δ(k − k′) (7b)

tr
(
BkA

H
k′ + Bk′AH

k

)
= 0. (7c)

In particular, when Q = MT , it is said to constitute a trace-
orthonormal full rate linear dispersion code.

We would like to make the following remarks.

1. We note that orthogonality conditions for the complex or-
thogonal space-time block codes AkA

H
k′ + Bk′BH

k =
δ(k−k′)IM/M and BkA

H
k′ +Bk′AH

k = 0 imply Condi-
tions (7a), (7b) and (7c). Therefore, the trace-orthonormal
linear dispersion codes are a generalization of complex or-
thogonal space-time block codes [10], [11], [12], [13], [14].

2. Conditions (7b) and (7c) result in F̃ being unitary. There-
fore, a trace-orthonormal linear dispersion code is informa-
tion lossless [6], [7].

We need the following definition to design a trace-orthonormal lin-
ear dispersion code.

Definition 4 Let T = KM . A 2T × 2T unitary matrix Ṽ is
said to be of conjugate V-structure if it satisfies the following two
conditions for k = 1, · · · , T, r = 1, · · · , M ;

1) The matrix Ṽ has the structure

Ṽ =

(
X Y
Y" X"

)

2)
∑K−1

n=0

(
|xk,Mn+r|2 + |yk,Mn+r|2

)
= 1/M , where xm,n

and ym,n denote the entries of T × T matrices X and Y, respec-
tively.
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Theorem 2 Let T = MK and Ṽn for n = 1, · · · , T denote
2T × 2T conjugate V-structured matrices. Let matrices DTm+n

and ∆Tm+n be determined by

DTm+n = [diag(x(m+1)
n (1 : M)), · · · ,

diag(x(m+1)
n (K − 1)M + 1 : KM))]

∆Tm+n = [diag(y(m+1)
n (1 : M)), · · · ,

diag(y(m+1)
n (K − 1)M + 1 : KM))]

for m = 0, · · · , M − 1, n = 1, · · · , T , where x(m+1)
n (kM + 1 :

(k + 1)M) and y(m+1)
n (kM + 1 : (k + 1)M) denote the M × 1

column vector consisting of entries from kM + 1 to (k + 1)M
of the nth column of matrices Xm+1 and Ym+1 in the conjugate
V-structured matrix Vm, respectively. If the matrices Ak and Bk

for k = 1, · · · , MT are defined by

AmT+n = CmDTm+n,

BmT+n = Cm∆Tm+n,

then, the matrix family {Ak,Bk}MT
k=1 forms a trace-orthonormal

full rate linear dispersion code.

4. DESIGN OF INFORMATION LOSSLESS FULL RATE
FULL DIVERSITY SPACE-TIME CODES

In this section, we carefully select the V-structured matrices in the
trace-orthonormal linear space-time code family and the conjugate
V-structured matrices in the trace-orthonormal linear dispersion
code family so that the resulting space-time codes provide full rate
and full diversity without information loss.

4.1. Cyclotomic rotation matrix

Recently, Wang et al. [8] have obtained the following profound re-
sult on a cyclotomic linear diagonal space-time block code design.

Lemma 1 Let P = LJ and Lt = φ(P )
φ(L) . Then, all the Lt auto-

morphisms of the cyclotomic field Q(ζP ), σi, 1 ≤ i ≤ Lt, that
fix the cyclotomic subfield Q(ζL) can be represented by σi(ζP ) =
ζ1+PiL

P for 1 ≤ i ≤ Lt, where 1 ≤ i ≤ Lt are integers that
satisfy 0 = P1 < P2 < · · · < PLt ≤ J − 1, and 1 + PiL and P
are coprime for 1 ≤ i ≤ Lt.

Using this lemma, we can prove the following theorem.

Theorem 3 Let M =
∏r

k=1 pαk
k , L = L

∏r
k=1 pβk

k , where
each pk is a prime, αk, βk ≥ 1 and L is prime to M . The
matrix R(LM, M) = WH

Mdiag(1, ζLM , · · · , ζM−1
LM ) is unitary

and is of full diversity over the cyclotomic ring Z[ζL]; i.e., if
x = [x1, x2, · · · , xM ]T = R(LM, M) s, s ∈ ZM [ζL], then∏M

k=1 xk '= 0 for any nonzero symbol vector s belonging to
ZM [ζL].

Theorem 3 generalizes the result in [15], [16], which plays a
core role in our design.

4.2. Design of linear space-time block codes

Theorem 4 Let T = KM and L be as defined in Theorem 3.
Let the V-structured matrices in Theorem 1 be chosen as Vk =
ζk−1

LM3 (U ⊗R(LM, M)) for k = 1, · · · , M , where U is an ar-
bitrary K × K unitary matrix. Then, the resulting signal matrix
X(s) provides full rate and enables full diversity without informa-
tion loss over any constellation set carved from ZTM [ζL].

Theorem 4 can be proved by using Theorem 1, Theorem 3 and
following similar steps in [4], [5]. Theorem 4 not only general-
izes the square design in [4], [5] to a rectangular design, but also
provides a much simpler way to design such codes.

4.3. Design of linear dispersion codes

The design of information lossless full rate full diversity linear dis-
persion codes is different from that of the analogous space-time
block codes in that for linear dispersion codes, the Diophantine
number [4], [5] and its conjugate are “hidden” in each rotation
matrix.

Theorem 5 Let the number of channel uses T and the conjugate
V-structured matrices in Theorem 2 are chosen as follows:

1. For an even number of transmitter antennas, choose T =
M and

Ṽ1 =

(
Xe Ye

Y"
e X"

e

)
diag(ζ2LMIM , ζ−1

2LMIM )

Ṽm =

(
Xe Ye

Y"
e X"

e

)
diag(ζm−1

4LM3IM , ζ−m+1
4LM3 IM )

for m = 2, · · · , M , where the matrices Xe and Ye are
determined by

Xe =

(
R(LM

2 , M
2 ) R(LM

2 , M
2 )

R(LM
2 , M

2 ) R(LM
2 , M

2 )

)

Ye =

(
R"(LM

2 , M
2 ) −R"(LM

2 , M
2 )

−R"(LM
2 , M

2 ) R"(LM
2 , M

2 )

)
.

2. For an odd number of transmit antennas, choose T = 2M
and, for m = 2, · · · , M ,

Ṽ1 =

(
Xo Yo

Y"
o X"

o

)
diag(ζ2LMIM , ζ−1

2LMIM )

Ṽm =

(
Xo Yo

Y"
o X"

o

)
diag(ζm+1

4LM3IM , ζ−m+1
4LM3 IM ),

where the matrices Xo and Yo are defined by

Xo =

(
R(LM, M) R(LM, M)
R(LM, M) R(LM, M)

)

Yo =

(
R"(LM, M) −R"(LM, M)
−R"(LM, M) R"(LM, M)

)
.

Then, the resulting signal matrix X̃(s) in (4) extracts full rate
full diversity without information loss over any constellation set
carved from ZTM [ζL].

Theorem 5 gives us a systematic, but simple, method to de-
sign an information lossless full rate full diversity linear dispersion
code.
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4.4. Design example and simulation

Example 1: For two transmitter antennas and two receiver anten-
nas, using Theorem 2 and following steps similar to those in [17]
we design an information lossless full rate full diversity linear dis-
persion code

X̃(s) =
1
2

(
X11 X12

X21 X22

)
,

where

X11 = s1e
jθ + s"

1e
−jθ + s4e

jθ − s"
4e

−jθ

X12 = s2e
jϕ + s"

2e
−jϕ + s3e

jϕ − s"
3e

−jϕ

X21 = s2e
jϕ − s"

2e
−jϕ + s3e

jϕ + s"
3e

−jϕ

X22 = s1e
jθ − s"

1e
−jθ + s4e

jθ + s"
4e

−jθ

with θ = 2π
3 and ϕ = 5π

12 . It can be verified that

det(X̃(e)) = 1
4 ((e1 + e4)

2 + j(e2 + e3)
2)ej2θ

− 1
4 ((e"

1 − e"
4)

2 − j(e"
2 − e"

3)
2)e−j2θ,

and hence, det(X̃(e)) '= 0 for any constellation set carved from
Z[j] \ 0. A comparison of the error performance for QPSK signals
of our code with that of the code in [17] (see Fig 1) shows that our
code obtains a significant SNR gain (3 dB) at average bit error rate
10−6

5. CONCLUSION

In this paper we have proposed a family of trace-orthonormal
space-time code having a structure from which we can system-
atically and efficiently design information lossless full rate full
diversity cyclotomic codes for the coherent receiver by carefully
building cyclotomic rotation matrices.
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