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3.1 Definition of A Strategic Form Game - 1

The difference between a traditional optimization and a game is that
a player’s decisions potentially affects the utility accrued by everyone
else in the game.
A game consists of:

◮ a principal, sets the rules of the game.

◮ and a finite set of players N = {1, 2, ...N}.

◮ each player i ∈ N selects a strategy si ∈ Si to maximize his
utility ui .

In this book qwe focus on noncooperative games, where players
select strategies without information exchanging.
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3.1 Definition of A Strategic Form Game - 2

1. The strategy profile s is defined as: s = (si )i∈N = (s1, s2, ...sN ).

2. s−i is the collective strategies of all players except player i .

3. Joint space is defined as the Cartesian Product of the individual
strategy spaces: S = ×i∈NSi.

4. Similarly, S−i = ×j∈N,j 6=iSj.

5. Utility function is a mapping from joint space to real number:
ui (s) : S → R.

Table: Example 3.1

s2 = 0 s2 = 1
s1 = 0 (0,0) (1,-1.5)
s1 = 1 (-1.5,1) (-0.5,-0.5)
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3.2 Dominated Strategies and Iterative Deletion of

Dominated Strategies - 1

Table: Example 3.2

s2 = L s2 = R

s1 = L (1,1) (0.5,1.5)
s1 = M (2,0) (1,0.5)
s1 = R (0,3) (0,2)

Definition 9. A pure strategy si is strictly dominated for player i if
there exists s ′i ∈ Si such that ui (s

′
i , s−i) > ui(si , s−i)∀s−i ∈ S−i.

Furthismore, we say that si is strictly dominated with respect to
A−i ⊆ S−i if there exists s ′i ∈ Si such that ui (s

′
i , s−i) > ui(si , s−i)∀s−i ∈

A−i.
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3.2 Dominated Strategies and Iterative Deletion of

Dominated Strategies - 2

Using these definitions, we define notation for the undominated
strategies with respect to A−i available to player i :

Di(A−i) = {si ∈ Si|si is not strictly dominated with respect to A−i}

We next define notation for the undominated strategy profiles with
respect to a set of strategy profiles A ⊆ S (the previous one is for player i ,

this is the set for all players ):

D(A) = ×i∈NDi(A−i)
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3.2 Dominated Strategies and Iterative Deletion of

Dominated Strategies - 3

The term D(S) represents the set of all strategy profiles in which no
player is playing a dominated strategy.

Likewise,D2(S) = D(D(S)) represents the set of all strategy pro-
files in which no player is playing a strategy that is dominated with
respect to the set of undominated strategy profiles D(S).

The sets D3(S),D4(S), . . . are similarly defined, and it can be
shown that D(k+1)(S) ⊆ Dk(S).

The set D∞(S) = limk→∞ Dk(S) is well defined and nonempty. It’s
the set of strategy profiles that survive the iterated deletion of dom-
inated strategies.

Notice by doing this we are deleting the obviously worst strategies, but that doesn’t

necessarily mean we’ll find the best. However, at least we know the best strategies, if

exist, are among those who have survived the deletion.
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3.2 Dominated Strategies and Iterative Deletion of

Dominated Strategies - 4

Unfortunately, for some very well known games D∞(S) may be
equal to S, yielding no predictive power whatsoever! (The paper-
scissorsrock game in the next section is an example of such a game.)

Hence, we need a stronger predictive notion. We therefore move to
the broader concept of Nash equilibria, while noting that every Nash
equilibrium (in pure strategies) is a member of the setD∞(S). First,
though, we introduce mixed strategies.
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3.3 Mixed Strategies - 1

Thus far, we have been assuming that each player picks a single
strategy in his strategy set.

However, an alternative is for player i to randomize over his strategy
set, adopting what is called a mixed strategy. For instance, a player
could decide to choose a strategy with some probability 0 < p < 1.

We denote a mixed strategy available to player i as σi(a random
variable) .We denote by σi(si ) the probability that σi assigns to si .

Clearly,
∑

si∈Si
σi(si ) = 1.

The space of player i ’s mixed strategies is Σi (similar as si).
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3.3 Mixed Strategies - 2

We note that the expected utility of player i under joint mixed strat-
egy σ is given by

ui (σ) =
∑

s∈S





N
∏

j=1

σj(sj )



 ui(s)

It is convenient to define the support of mixed strategy σi as the set of pure strategies

to which it assigns positive probability: supp σi = {si ∈ Si : σi (si ) > 0} (excluded the

one with probability 0).

There are numerous games where no pure strategy can be justified
(or, no equilibria in pure strategies), and where the logical course
of action is to randomize over pure strategies. An example is the
well-known paper-scissors-rock game, whose logical strategy is to
randomize among the three pure strategies, each with probability
1/3.
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3.4 Nash Equilibrium - 1

The Nash equilibrium is a joint strategy where no player can increase
his utility by unilaterally deviating. In pure strategies, that means:

Definition 10. Strategy s ∈ S is a Nash equilibrium if ui (s) ≥
ui (ŝi , s−i ) ∀ŝi ∈ Si,∀i ∈ N.

Zhongliang Liang ECE@Mcmaster Univ Game Theory for Wireless Engineers Chapter 3, 4



3.4 Nash Equilibrium - 2

An alternate interpretation of the definition is that it is a mutual
best response from each player to other players strategies.

Let us first define the best-reply correspondence for player i as a
point-to-set mapping that associates each strategy profile s ∈ S with
a subset of Si:

Mi(s) = {arg maxŝi∈Si
ui (ŝi , s−i)}

The best-reply-correspondence for the game is then defined as

M(s) = ×i∈NMi(s)

We can now say that strategy s is a Nash equilibrium if and only if

s ∈ M(s). Note that this definition is equivalent to (and, indeed, a
corollary of ) Definition 10.
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3.4 Nash Equilibrium - 3*

Let us generalize the previous discussion by taking into consideration
mixed strategies. We begin by revisiting the concept of best reply:

Definition 11. The best reply correspondence in pure strategies for
player i ∈ N is a correspondence ri : Σ ⇉ Si defined as ri(σ) =
{arg maxsi∈Si

ui(si , σ−i)} .

This definition describes a player’s pure strategy best response(s)
to opponents’ mixed strategies. However, it is possible that some
of a players best responses would themselves be mixed strategies,
leading us to define:

Definition 12. The best reply correspondence in mixed strategies
for player i ∈ N is a correspondence ri : Σ ⇉ Σi defined as mri(σ) =
{arg maxσi∈Σi

ui (σi , σ−i)} .
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3.4 Nash Equilibrium - 4*

We can now expand on our previous definition of Nash equilibrium
to allow for mixed strategy equilibria:

Definition 13. A mixed strategy profile σ ∈ Σ is a Nash equilibrium
if ui (σ) ≥ ui(si , σ−i) ∀i ∈ N,∀si ∈ Si.
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3.4 Nash Equilibrium - 5

The Nash equilibrium is a consistent prediction of the outcome of the
game in the sense that if all players predict that a Nash equilibrium
will occur, then no player has an incentive to choose a different
strategy.

Furthismore, if players start from a strategy profile that is a Nash
equilibrium, no player will deviate, and the system will be in equilib-
rium.

But what happens if players start from a nonequilibrium strategy
profile? Will it converge to equilibrium? And what will happen if
there are multiple Nash Equilibria?

In addition, a Nash equilibrium, even if it is not vulnerable to uni-
lateral deviation by a single player, may be vulnerable to deviations
by a coalition of players.
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3.5 Existence of Nash Equilibria - 1*

As fixed point theorems are key to establishing the existence of a Nash equilibrium, we
start by reviewing the concept of a fixed point:

Definition 14. Consider a function with identical domain and range: f : X → X. We
say that fixed point of function f if f (x) = x .

This definition can be generalized to apply to point-to-set functions (i.e., correspon-
dences):

Definition 15. Consider a correspondence that maps each point x ∈ X to a set φ(x) ⊂
X . Denote this correspondence by φ : X ⇉ X. We say x is a fixed point of φ if x ∈ φ(x).

Then, by the definition of the Nash equilibrium as a mutual best response, we see that
any fixed point of mr is a Nash equilibrium. Even more, any Nash equilibrium is a fixed
point of mr.
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3.5 Existence of Nash Equilibria - 2*

Definition 16. A correspondence φ from a subset T of Euclidean space to a compact
subset V of Euclidean space is upper hemicontinuous at point x ∈ T if xr → x , yr → y ,
where yr ∈ φ(xr )∀r , implies y ∈ φ(x). The correspondence is upper hemicontinuous if
it is upper hemicontinuous at every x ∈ T.

Theorem 10 (Kakutani)*. Let X ⊂ R
m be compact and convex. Let the correspondence

φ : X ⇉ X be upper hemicontinuous with nonempty convex values. Then φ has a fixed
point.

Lemma 3*. Σ is compact and convex.

Lemma 4*. Let mr(σ) = ×i∈Nmri(σ). The correspondence mr(σ) is nonempty and
convex.

Lemma 5*. The correspondence mr is upper hemicontinuous.
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3.5 Existence of Nash Equilibria - 3

The three lemmas above, combined with Kakutanis fixed point the-
orem, establish the following theorem:

Theorem 11 (Nash). Every finite game in strategic form has a
Nash equilibrium in either mixed or pure strategies.

Theorem 12*. Consider a strategic-form game with strategy spaces Si that are nonempty
compact convex subsets of an Euclidean space. If the payoff functions ui are continu-
ous in s and quasi-concave in si , there exists a Nash equilibrium of the game in pure
strategies.

Recall that, a strategic-form game is the kind of game that can be represented by a

matrix which shows the players, strategies, and payoffs (see the example to the right).

More generally it can be represented by any function that associates a payoff for each

player with every possible combination of actions.
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3.6 Applications - 1

Pricing of Network Resources.

In networks offering different levels of QoS, both network performance and user
satisfaction will be directly influenced by the users choices as to what level of
service to request. Since each users choice of service may be influenced by both
the pricing policy and other users behavior, the problem can naturally be treated
under a game-theoretic framework, in which the operating point of the network
is predicted by the Nash equilibrium.

For instance, in priority-based networks, a strategy may be the priority level a user

requests for his traffic; in networks that support delay or data rate guarantees,

a strategy may be the minimum bandwidth to which a user requests guaranteed

access. The tradeoff, of course, is that the higher the level of service requested

the higher the price to be paid by the user. The network service provider archi-

tects the Nash equilibria by setting the rules of the game: the pricing structure

and the dimensioning of network resources.
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3.6 Applications - 2

Flow Control.

Flow control, each user determines the traffic load he will offer to the network in
order to satisfy some performance objective, is another network mechanism that
has been modeled using game theory.

One of the earliest such models was developed in 1. In that model, a finite
number of users share a network of queues. Each users strategy is the rate at
which he offers traffic to the network at each available service class, constrained
by a fixed maximum rate and maximum number of outstanding packets in the
network. The performance objective is to select an admissible flow control strat-
egy that maximizes average throughput subject to an upper bound on average
delay. The authors were able to determine the existence of an equilibrium for
such a system.
1

1 Y. A. Korilis and A. A. Lazar, ”On the existence of equilibria in noncooperative
optimal flow control”, J. ACM, 1995.
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Chapter 4 Repeated and Markov Games

This chapter considers the concepts of repeated games and Markov games and takes a

brief dip into the waters of extensive form games.
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4.1 Repeated Games

In a repeated game formulation, players participate in repeated in-
teractions within a potentially infinite time horizon. Players must,
therefore, consider the effects that their chosen strategy in any round
of the game will have on opponents strategies in subsequent rounds.
Each player tries to maximize his expected payoff over multiple
rounds.

Before we go any further, let us discuss the extensive form represen-
tation of a game,
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4.1.1 Extensive Form Representation-1

A game in extensive form is represented as a tree, where each
node of the tree represents a decision point for one of the
players, and the branches coming out of that node represent
possible actions available to that player.

An information set is a collection of decision nodes that are under the control of the
same player and which the player is unable to distinguish from one another. In other
words, if the player reaches any of those nodes, he will not know which node he has
reached.

Note that any game in strategic form can also be represented in extensive form (and vice
versa). So, the extensive form representation does not necessarily imply that players
actions are taken sequentially.
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4.1.1 Extensive Form Representation - 2

Let us now construct an example of a sequential game where players actions are taken
sequentially: when player 2 selects his actions, he is aware of what action player 1 has
taken. Player 1 chooses between two directions (North and South) and, once he made
his choice, player 2 then chooses between two directions (East and West). This is shown
as extensive form in the figure above.

In our last example, player 1’s strategies can be simply stated as North or South. Player
2s strategies are more complex. One possible strategy is ”move East if player 1 moves
North but move West if player 1 moves South”: this is denoted as strategy EW. While
there are two possible strategies for player 1, there are four strategies available to player
2. What strategies are likely outcomes of this game?
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4.1.2 Equilibria in Repeated Games - 1*

In addition to the basic notion of Nash equilibria, which can be applied to repeated
games virtually unmodified, this section introduces the ”subgame perfect equilibrium”
– a stronger equilibrium concept that is extremely important in the literature on extensive
form games.

Take a node x in an extensive form game(EFG). Let F (x) be the set of nodes and
branches that follow x , including x . A subgame is a subset of the entire game such that
the following properties hold:

1. the subgame is rooted in a node x , which is the only node of that information set;

2. the subgame contains all nodes y ∈ F (x); and

3. if a node in a particular information set is contained in the subgame, then all nodes
in that information set are also contained.

A proper subgame of an EFG is a subgame whose root is not the root of this EFG. Now,
we are ready to define subgame perfect equilibrium:

Definition 17. A subgame perfect equilibrium σ̂ of an EFG is a Nash equilibrium of this

EFG that is also a Nash equilibrium for every proper subgame of this EFG .
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4.1.2 Equilibria in Repeated Games - 2*

Again, let us go back to the example. There are two proper sub-
games for this game: the subgames are rooted in each of the nodes
belonging to player 2. There are three Nash equilibria, but the only
subgame perfect equilibrium is (N,EW).

Let us now introduce some notation for the modeling of repeated
games in strategic form.
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4.1.3 Repeated Games in Strategic Form -1

Let us now express a repeated game in strategic form. As before, N denotes the set of
players. And Ai the set of actions available to player i in each round of the game. We
use the word action to emphasize that these refer to decisions the player makes in a
given round; this is to differentiate from strategy , which refers to rules that map every
possible information state the player can be in into an action.

Similarly, A = ×i∈NAi and the action profile a = (ai )i∈N. Since a player can also
randomize his actions, it is convenient to define mixed action αi as a randomization of
actions ai . Define the payoff at a stage of a game gi , and g(a) = (g1(a), ...gN(a)).
This game is referred to as the stage game. We index the actions that players adopt in
each round k, as ak = (ak

1 , ak
2 , ..., ak

N).

Players strive to maximize their expected payoff over multiple rounds of the game. The
resulting payoff is often expressed as a sum of single-round payoffs, discounted by a
value 0 ≤ δ < 1. In this manner, players place more weight on the payoff in the current
round than on future payoffs. The average discounted payoff can be expressed as:

ui = (1 − δ)
∞

X

k=0

(δ)kgi (a
k)
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4.1.4 Node Cooperation: A Repeated Game Example - 1

Consider a repeated game played K times, where K is a geometrically distributed random
variable with parameter 0 < p < 1. We can write pk = Prob[K = k] = p(1 − p)k, k =
0, 1, 2, . . . and therefore a E [K ] = (1 − p)/p . Note that as p → 1 the probability
that there will be a next round for the game approaches 0.

We consider homogeneous action spaces for all players Ai = 0, 1, where 1 represents a
node decides to share its files, while 0 represents refraining from sharing.

we consider a user’s payoff in round k to be the sum of two components:gi (a
k) =

αi (a
k) + βi (a

k). The 1st term represents the benefit accrued by a player from his

opponents sharing their resources. On the other hand, there are costs to sharing ones

own resources, and those costs are represented by the latter term and βi (0) = 0.
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4.1.4 Node Cooperation: A Repeated Game Example - 2

Consider a grim-trigger strategy adopted by each node: cooperate as long as all other
nodes share their resources; defect if any of the others have deviated in the previous
round.

Let us consider any round of the game. If a player cooperates, the payoff he should
expect from that point forward is

[αi (N − 1) + βi (1)][1 +
∞

X

k=0

kp(1 − p)k ] =
αi (N − 1) + βi (1)

p

If, on the other hand, a player deviates, his expected payoff from that round on is simply
αi (N −1). So, the grim trigger strategy is a Nash equilibrium if the following inequality
holds for all players i :

αi (N − 1) > −
βi (1)

1 − p

(Why?)
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4.1.5 The ”Folk Theorems” - 1*

Before introducing the folk theorems, we need to go through a series of definitions. We
start with the concept of feasible payoffs.

Definition 18. The stage game payoff vector v = (v1, v2, ..., vN) is feasible if it is an
element of the convex hull V of pure strategy payoffs for the game:

V = convexhull{u|∀a ∈ Asuchthatg(a) = u}.

Definition 19. The min-max payoff for player i is defined as

vi = min−αi∈∆(A
−i)

max
αi∈∆(Ai)

gi (αi , α−i)

Definition 20. The set of feasible strictly individually rational payoffs is

{v ∈ V|vi > vi ∀i ∈ N}
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4.1.5 The ”Folk Theorems” - 2*

We can now state one of the folk theorems:

Theorem 13. For every feasible strictly individually rational payoff vector v , ∃δ < 1
such that ∀δ ∈ (δ, 1) there is a Nash equilibrium of the game Γr (δ) with payoffs v .

Theorem 14. Let there be an equilibrium of the stage game that yields payoffs e =
(ei )i∈N . Then for every v ∈ V with vi > ei for all players i , ∃δ such that for all
δ ∈ (δ, 1) there is a subgame-perfect equilibrium of Γr (δ) with payoffs v .
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4.2 Markov Games: Generalizing The Repeated Game Idea

There is a very natural relationship between the notion of a repeated game and that of
a Markov game. This section introduces Markov game setting, Markov strategies, and
Markov equilibrium.

Let us formalize the definition of the game. The game is characterized by state variables
m ∈ M.We must also define a transition probability q(mk+1|mk , ak), denoting the
probability that the state at the next round is mk+1 conditional on being in state mk

during round k and on the playing of action profile ak.

The history at stage k is hk = (m0, a0,m1, a1, ..., ak−1, mk). At stage k, each player is
aware of the history hk before deciding on his action for that stage. Markov strategies
are often denoted δi : M → ∆(Ai), even though this is a slight abuse of notation.

A Markov perfect equilibrium is a profile of Markov strategies, which yields a Nash
equilibrium in every proper subgame. It can be shown that Markov perfect equilibria are
guaranteed to exist when the stochastic game has a finite number of states and actions.

Markov chains are used to model a number of communications and networking phe-
nomena, such as channel conditions, slot occupancy in random channel access schemes,
queue state in switches, etc. It is natural that Markov games would find particular
applications in this field. In particular, the Markov game results imply that if we can
summarize the state of a network or a communications link with one or more ”state
variables”, then we lose nothing by considering only strategies that consider only these
state variables without regard to past history or other information.
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4.3 Application - 1

Power Control in Cellular Networks

The problem of power control in a cellular system has often been modeled as a game.
Let us take a CDMA system to illustrate what makes game theory appealing to the
treatment of power control.

In a CDMA system, we can model users utilities as an increasing function of signal to
interference and noise ratio (SINR) and a decreasing function of power.

This would be a local optimization problem, with each user determining his own optimal
response to the tradeoff, if increasing power did not have any effect on others.

The elements of a game are all here: clear tradeoffs that can be expressed in a utility
function (what the exact utility function should be is another issue) and clear interde-
pendencies among users decisions.
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4.3 Application - 2

Let pi be the power level selected by user i and γi the resulting SINR, itself a function
of the action profile: γi = f (p). We can express the utility function as a function of
these two factors. One possible utility function is from:

ui (p) = ui (pi , γi ) =
R

pi
(1 − 2BER(γi ))

L

where R is the rate at which the user transmits, BER(γi ) is the bit error rate achieved
given an SINR of γi , and L is the packet size in bits.

It has been shown that this problem modeled as a one-stage game has a unique Nash
equilibrium. Like the resource sharing game described earlier, this Nash equilibrium
happens to be inefficient.

Now consider the same game played repeatedly. It is now possible to devise strategies
wherein a user is punished by others if he selects a selfish action (such as increasing
power to a level that significantly impairs others SINR). If the users objective is to
maximize his utility over many stages of the game, and if the game has an infinite time
horizon, the threat of retaliation leads to a Pareto efficient equilibrium.
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4.3 Application - 3 (Pareto Efficiency)

Informally, Pareto efficient situations are those in which any change to make any person
better off is impossible without making someone else worse off.

Given a set of alternative allocations of, say, goods or income for a set of individuals,
a change from one allocation to another that can make at least one individual bet-
ter off without making any other individual worse off is called a Pareto improvement.
An allocation is defined as Pareto efficient or Pareto optimal when no further Pareto
improvements can be made.

*Maskin, ”Nash Equilibrium and Welfare Optimality”, Review of Economic Studies,
1999, 66, 23-38.
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4.3 Application - 4

Medium Access Control

In this section, we describe a repeated game of perfect information applied to charac-
terizing the performance of slotted Aloha in the presence of selfish users.

In this model, users compete for access to a common wireless channel. During each slot,
the actions available to each user are to transmit or to wait. The channel is characterized
by a matrix R = [ρnk ], with ρnk defined as the probability that k frames are received
during a slot where there have been n transmission attempts. The expected number of
successfully received frames in a transmission of size n is therefore rn =

Pn
k=0 kρnk . If

we further assume that all users who transmit in a given slot have equal probability of
success, then the probability that a given users transmission is successful is given by rn

n
.

This is a repeated game, as for each slot, each user has the option to attempt trans-
mission or to wait. The cost of a transmission is assumed to be c ∈ (0, 1), with a
successful transmission accruing utility of 1− c, an unsuccessful transmission utility −c
and the decision to wait giving a utility of 0. Payoffs are subject to a per-slot discount
factor of 0 ≤ δ < 1.

This characterization of medium access control provides insight into the price of dis-
tributed decisions (vs. those controlled by a base station or access point) as well as
the impact of different channel models on aggregate throughput expected for random
access.
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End of Chapter 3 and 4, thank you!

Zhongliang Liang ECE@Mcmaster Univ Game Theory for Wireless Engineers Chapter 3, 4


