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Abstract—Traditional approaches to constructing constellations Electrical Optical Intensity Elsfictriﬁal
for electrical channels cannot be applied directly to the optical in- Signal o(t) Signal y(®) ena
tensity channel. This work presents a structured signal space model
for optical intensity channels where the nonnegativity and average Transmitter # ERa AT # —  Receiver
amplitude constraints are represented geometrically. Lattice codes 1)

satisfying channel constraints are defined and coding and shaping electro-optical opto-electrical

gain relative to a baseline are computed. An effective signal space conversion conversion

dimension is defined to represent the precise impact of coding and

shaping on bandwidth. Average optical power minimizing shaping Fig. 1. A simplified block diagram of an optical intensity direct detection
regions are derived in some special cases. Example lattice codes aréommunications system.

constructed and their performance on an idealized point-to-point

wireless optical link is computed. Bandwidth-efficient schemes are probability of error for any transmission rate [2], [3]. Under a
St‘gggrtg\t‘;‘ée grgwi'(f‘:l fo{)\t‘\/’g:‘ data-rate applications, butrequire - oo ontical power constraint, the capacity is finite and achieved
g ge op P o o . with two-level modulation schemes [4], [5]. These schemes do
o 't?gjx ;?;wssifﬁigﬁggg ,?pt'sﬁa'n‘;?msmggfat'vﬁi?jfe'?g'ﬁf,ffgfeeds' not consider bandwidth efficiency; indeed, schemes based on
cﬁannel. y > 519 pace, photon counting in discrete intervals require an exponential in-
crease in bandwidth as a function of the rate to achieve reli-
able communication [3]. In the more practical case of pulse-am-

. INTRODUCTION plitude modulated (PAM) signals confined to discrete time in-

HE free-space, direct detection, optical intensity-moddervals of lengthl” and with a given peak and average optical

lated channel offers the modem designer interesting négWwer, Shamai showed that the capacity-achieving input dis-
challenges. Most practical wireless optical channels use ligffibution is discrete with a finite number of levels increasing
emitting diodes as transmitters and photodiodes as detect¥féh 7' [6]. For high-bandwidth casgd” — 0) the binary level
as shown in Fig. 1. These devices modulate and detect sol@ighniques found earlier are capacity achieving, however, lower
the intensity of the carrier, not its phase, which implies that gi_ndwidth schemes require a larger number of levels.
transmitted signal intensities are nonnegative. Furthermore, bi-There has been much work in the design of signal sets for
ological safety considerations constrain the average radiated Bp€ in optical intensity channels under a variety of optimality
tical power, thereby constraining the average signal amplitudéiteria; see, e.g., [7]-[11]. The most prominent modulation
Both multipath distortion in signal propagation and the limitefPrmats for wireless optical links are binary level PPM and
response times of the optoelectronics create sharp constraftftsOff keying (OOK). For example, low-cost point-to-point
on the channel bandwidth. Conventional signal-space mod#féeless infrared infrared data association (IrDA) modems
and coded modulation techniques for electrical channels canHBtze 4-PPM modulation [12]. Spectrally efficient variations
be applied directly to this channel, since they do not take th@ve been considered [13], [14], but these two-level schemes
signal amplitude constraints into consideration. Conventiorfifer relatively limited Improvement in baqu|dth efﬁmepcy..
transmission techniques optimized for broad-band optical char1€ results of Shamai [6] show that nonbinary modulation is
nels (e.g., optical fibers) are not generally bandwidth efficienf€quired to achieve capacity in bandwidth-limited channels.

Historically, optical intensity channels have been modeled &¢/Pcarrier modulation [15] has been suggested as one possible

Poisson counting channels. In the absence of background nofeltilevel scheme to achieve high bandwidth efficiency. Shiu
the capacity of such channels is infinite [1], [2], and-ary and Kahn developed lattice codes for free-space optical inten-

pulse-position modulation (PPM) can achieve arbitrarily smality channels by constructing higher dimensional modulation
schemes from a series of one-dimensional constituent OOK

, . _ constellations [16].
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the bandwidth of the scheme to be represented as an effectigelitive, signal-independent, white, Gaussian with zero mean
dimension parameter. We suggest techniques for achievimd variancer? [14].
coding and shaping gain using multidimensional lattices, andThe channel responggt) has low-pass frequency response
we compare the bandwidth efficiency of conventional PPMhich introduces intersymbol interference. The low-pass
schemes with a new raised-quadrature amplitude modulatichhannel response arises in two ways: i) front-end photodiode
(QAM) scheme, and suggest that such schemes may be adeapacitance and ii) multipath distortion. The use of large pho-
tageous for high-rate short-distance optical communication. todiodes with high capacitances in free-space optical channels
The remainder of this paper is organized as follows. Sectionithits the bandwidth of the link. The achievable bandwidth
gives background on the wireless optical channel and presentsnexpensive systems, such as the point-to-point IrDA fast
the communications model used in the remainder of the woikfrared (IR) standard [12] is on the order of 10-12 MHz which
Section Il presents a signal space model suited to the intém-approximately three orders of magnitude smaller than in
sity-modulated channel and presents theorems regarding theriegd fiber-optic systems. Multipath distortion gives rise to a
of signals satisfying the channel constraints. Lattice codes forear, low-pass response which limits the bandwidth of some
the optical intensity channel are defined in Section IV and tlexperimental links to approximately 10-50 MHz depending on
gain is presented versus a PAM baseline. New expressionsrmosm layout and link configuration [14], [18].
the shaping and coding gain of these schemes are presented. O this work, itis assumed that if a signaling scheme is “essen-
timal shaping regions that minimize the average optical powgally band limited” to the frequency rande Wi, W] hertz,
are derived subject to certain conditions. The peak transmittedhe sense defined in Section IV-D, that the channel is nondis-
optical amplitude is taken as a design constraint and represertteting. Consequently, the received electrical sigria) can be
in the signal space. Section V presents example schemes wamitten as
compares them versus a baseline. Design guidelines are given

for the design of modulation schemes for this channel. Finally, y(t) = z(t) + n(t).
in Section VI, the results of this work are summarized and gen-
eral conclusions drawn. The physical characteristics of the optical intensity channel

impose constraints on the amplitudeldt) which can equiva-
lently be viewed as constraints o). Since the physical quan-

IIl. COMMUNICATIONS SYSTEM MODEL ) . . . .
tity modulated is a normalized power, this constrains all trans-

A. Channel Model mitted amplitudes to be nonnegative
The optical intensityof a source is defined as the optical
power emitted per solid angle. Wireless optical links transmit (Vt € R) z(t) > 0. (2)

information by modulating the instantaneous optical intensity . ) ) o .
I(t) in response to an input electrical current sign@). This 1€ optical power transmitted is also limited by the biolog-
conversion can be modeled B§) = gz(t), whereg is the op- |ca_1l impact that this radlgtlpn has on eye safety and thermal
tical gain of the device in units of W/(Am?). The photodiode skin damage._ Although limits are pla_ced on both the average
detector is said to performirect-detectiorof the incident op- a_md peak optical power transmlt_te_d, in the case of '_“OSt prac-
tical intensity signal since it produces an output electrical phfica modulated optical sources, it is the average optical power
tocurrenty(t) proportional to the received optical intensity. Th&onstraint that dominates [17]. As a result, the average ampli-
channel response frod(#) to (t) in Fig. 1 is well approxi- tude (i-e., average optical power)
mated as T
P= lim - / (1) dt @)
y(t) = rI(t) ® h(t) + n(t) 1) 7= 2T Jr

must be bounded. This is in marked contrast to conventional
electrical channels in which the energy transmitted depends on
the squared amplitude of transmitted signal.

Note that this channel model applies not only to free-space
optical channels but also to fiber-optic links with negligible dis-
persion and signal independent, additive, white, Gaussian noise.

where® denotes convolution andis the detector sensitivity in
units of A - m?/W, n(t) is the noise process, aridt) is the
channel response [14], [18]-[20]. Substitutingt) = gz(t)
into (1) gives

y(t) =rg-z(t) ® h(t) + n(t)

) ) ) ) B. Time-Disjoint Signaling
where the productg is unitless. Without loss of generality, set LetM — 1.2 M be a finite ind d 16t —
r =1, g = 1to simplify analysis. In this manner, the free-spac et o {I\/i b T }f €a |r|1|'te Index sgt ar|1 .
optical channel is represented by a baseband electrical mo%h”(t)' m € M} be a set of optical intensity signals satisfying

Throughout the remainder of this paper, unless explicitly stated,”” € M) 2 (t) = Ofor ¢ ¢ [0, T). for some positive symbol
period?’. In the case where such time-disjoint symbols are sent

all signals are electrical. ; L Lo
g {ndependently, the optical intensity signal can be formed as

The additive noise:(t) arises due to the high-intensity sho
noise created as a result of ambient illumination. By the central +oo
limit theorem, this high-intensity shot noise is closely approx- z(t) = Z z A (t — kT) (4)
imated as being Gaussian distributed. The noise is modeled as

k=—o0
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whereA[k] is an independent and identically distributed (i.i.d.power of an intensity signaling set can then be computed from
process ovel. Since the symbols do not overlap in time, (2) i$6) as
equivalent to 1

P(Q,T) = —= P(Q) ©)
(Vm €M, t €0, T)) zm(t) > 0. ) VT

Grom & i
The average optical power calculation in (3) can also simplifievéherep () is defined as

in the time-disjoint case as Pe(Q) = > Pr(m)zp,1.
. meM
1 J T G . .
P= lim — Z / gy () dt The termP*® can be interpreted as the componenfoivhich
i—oo 2(5+ 1)T =)o depends solely on the constellation geometry.

- Note that unlike the case of the electrical channel where the
which, by the strong law of large numbers, gives energy cost of a scheme is completely contained in the geometry
of the constellation, the average optical power of an intensity
1 [T signaling scheme depends on the symbol period as well. This

p= X%A Pr(m) (T/O (1) dt) ®) s due to the fact thap, (¢) in (7) is set to have uni¢lectrical

me

energy since detection is done in the electrical domain. As a
with probability one, wheré@r(m) is the probability of trans- result, the average amplitude and hence average optical power
mitting ,,, (¢). Thus, the average optical powBrof a scheme Mmust depend off".
is the expected value of the average amplitude,pft) € X. o )
B. Admissible Region
1. SIGNAL SPACE OFOPTICAL INTENSITY SIGNALS Not all linear combinations of the elements dfsatisfy the
nonnegativity constraint (5). Define tlaglmissible regiort’ of

This section presents a signal space model which, unike cak optical intensity-modulation scheme as the set of all points

ventional mode_ls, represents the nonnegatlyny constraint & aﬂisfying the nonnegativity criterion. In terms of the signal
the average optical power cost of schemes directly. The Proper-. o

ties of the signal space are then explored and related to the é)e
of fcrf;lnsmittable points and to the peak optical power of signal T = {1, € RY: Min(v) > 0} (10)

oints.
P where forv = (v1, va, ..., vy), Min: RN — R is defined as
A. Signal Space Model Min(v) = min Ondn(d).

LetN = {1,2,..., N} be a finite index setN < M, te0, ) “=

and let® = {¢n(t): n € N} be a set of real or- The setis closed, contains the origin, and is convex. This claim
thonormal functions time-limited té € [0, T') such that can pe justified since for arly, b, € Y and anya € [0, 1],
X C span(®). Eachz.,(t) € X is represented by the vector,p, 1 (1 — a)b, € T since it describes a nonnegative signal.
T = (Tm, 1, Tm, 2, -, Tm, N) With respect to the basis st ¢ js instructive to characterizé in terms of its cross section

and the signal constellation is defined@s= {z,,: m € M}.  for a giveng, value or, equivalently, in terms of points of equal
The nonnegativity constraint in (5) implies that the averaggerage optical power. Define the set

amplitude value of the signals transmitted is nonnegative. It is
possible to set the function r=A{(v1; vz,
1 as the set of all signal points with a fixed average optical power
P1(t) = JT rect(t) (7) ofr/\/T. EachY, forms an equivalence classsirellof trans-
T mittable symbols. This is analogous to spherical shells of equal
where energy in the conventional case [21]. As a result, the admissible
1 0<t<T region can be written in terms of this partition as

rect(t) = {0, otherwise T={J 7. (11)
>0
Ofﬁe set of signals represented in edglcan further be analyzed

%h the absence of their comma@n component by defining the
projectionmapProj: RN — RY that maps(zy, =2, ..., zn)

Lun)ET:ivy =7, 7 €R, r>0}

as a basis function for every intensity modulation scheme. N
that by assigning+ (¢), the upper bound on the dimensionalit
of the signal space is increased by a single dimension 16 ke

M + 1. Due to the orthogonality of the other basis functions

to (0, z2, x3, ..., ). Theimportant properties af are sum-
/T ho(t)dt = { JT. n=1 ®) marized in Theorem 1.
o 0, L<n<N. Theorem 1: Let Y denote the admissible region of points de-

The: (t) basis function contains the average amplitude of eaifed in (10).

symbol, and, as a result, represents the average optical power of) Foru, v > 0, Y, = (u/v)Y,.

each symbol. In this manner, the average optical power require-2) ¥ = (J,.~,(rY1).

ment is represented in a single dimension. The average opticaB) T is closed, convex and bounded.
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4) LetdY; denote the set of boundary pointsBf. Then (;51
i) 0 ¢ Proj(9Y;) and A
||) oYy = {’U e Ty I\/Im(v) = 0} i
5) T is the convex hull of a generalized-cone with vertex
at the origin, opening about thg -axis and limited to
¢$1 > 0.
Proof:

Property 1. The set(v/u)Y,, is a set of pulses with average
optical powerv//T. Therefore,(v/u)Y, C Y,. Similarly, N\
(u/v)Y, C Y, which implies thatl', C (v/u)Y,. ,

Property 2 Follows directly from (11) and Property 1. ANy

Property 3 The setY; is closed by definition off in (10). :
The convexity ofY'; arises since for any,, v» € Y; and any
a € [0, 1] the average optical amplitude value of the signal
represented by = av; + (1 — a)vs is 1/\/T. Hencezx € T,
implies Ty is convex.

Recall that a setiR” is said to béboundedf it is contained
in an N-ball of finite radius. The regioRroj(Y;) is

Proj(Tl) = {'U = (’Ul, V2, ...y ’UN) e RN; ¢2 ¢3

1 Fig. 2. Three-dimensional (3-D) admissible regi@nfor the raised-QAM
v1 =0, Min(v) > ——} example in Section V.

VT

Everyv € Proj(Tl) represents a signa| with zero average Fig. 2 illustrates a portion of the three-dimensional (3-D) ad-

amplitude in[0, 7') andMin(v) € [—1/y/T, 0]. Furthermore, Missible region for the raised-QAM basis functions described in

Proj(Y;) is closed and contains the origin. Take some poifection V. Notice that the region forms a 3-D cone with circular

v € Proj(Ty) such that|ju|| = ¢ for someq > 0. If no Cross sections ip, satisfying the properties of Theorem 1.

such point exists, theRroj(Y;) is contained in a ball of ra- ) ) )

dius ¢ sinceY; convex. Otherwisekv € Proj(Y;) for k ¢ C. Peak Optical Power Bounding Region

[0, |1/(~/TMin(v))|] is contained in atV-ball of radius greater ~ Although the communications model of Section Il does not

than |¢/(vT'Min(v))|. The union of all suchV-balls for all constrain the peak amplitude oft), in any practical system

v € Proj(T;) containsProj(Y;) implying that Proj(YT;1) is device limitations limit the peak optical power transmitted.

bounded. Since thg, coordinate of all pointsiff; isthe same,  The peak optical power bounding regidi(p) is defined as

Proj(Y1) bounded implied; is bounded. the set of points in the signal space which correspond to sig-
Property 4 Since Y; is closed, letdY; be the set of nalswhich have amplitudes bounded from abovebyT. For-

boundary points off;. Note that an(N — 1)-ball of some mally, for somep > 0

radiuse > 0 of points inProj(T;) exists about the origin.

If this were not the case, it would imply that a signal point (p) = {7r € RYN: Max(m) < L} (12)
z € Proj(T1), z # 0, were either nonnegative or nonpositive, VT
which is impossible due to the construction of the signal spaagere, forr = (1, 72, ..., Tn), Max: RV — R is defined as
in (8). Thereforep ¢ Proj(07Y1).
From Property 3, fow € Proj(Y;), v # 0, kv € Proj(Yy) Max(mr) = te[o ) . Tnn(t).
ne

for k € [0, |1/(v/TMin(v))|]. The boundary points of the set
arise whenk is maximized. The se®roj(97Y;) is then the set Not surprisingly,Y andIl(p) are closely related and their ex-
of these extremal points with minimum amplitude equal tplicit relation is illustrated in the following.
—1/V/T. Applying the inverse map)Y; is then the set of
points inT; with minimum amplitude equal to zero.

Property 5 Recall that a generalized-cone is a surface in
RY that can be parameterized@6u, v) = e+vC’ (u), wheree
is a fixed vector called the vertex of the cone &du) is a curve
in RY [22]. Using Properties 1 and 2 can be parameterized
in terms of thep, coordinate value a8Y, = r9Yy, forr > 0.
Thus,0Y is a generalized cone with vertex at the origin openi
about thep, -axis. Sincel’,. is the convex hull 0dY . (by trivial
extension of [23, Theorem 8.1.3]) and using Propertif'ds
then the convex hull of a generalized cone limited to the ha
spacep; > 0. O MM(p) = =T + po,. O

Theorem 2: The peak optical power bounding regidi{p)
can be written a$l(p) = — T + p¢,, whereg, is a unit vector
in the ¢, direction.

Proof: According to the definition in (10)Y contains the
set of all transmittable points, that is, the set of signals with
nonnegative amplitudes. The sefl" is the set of signals for
which the maximum possible amplitude is zero. Singé&) is
Nnstant in a symbol period, the additionzaf; (¢), p > 0, to
each signal in-7T yields the set of signals with maximum at
|rfr_1ostp/\/T. The regiorlI(p) is then given as
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Sincell(p) differs fromY by an affine transform, by Property ?3
5 of Theorem 1]I(p) is the convex hull of anV-dimensional
generalized cone with vertex &b, 0, 0, ..., 0) and opening
about the negativé -axis.

PI’Oj(aT1)
D. Peak Optical Power per Symbol r/
The regionlI(p) is a set of points which satisfy the peak con- T2 x

straint, however, it does not reveal the maximum amplitudes =

of the signals within. Indeed, it would be useful to have some

knowledge of which points have high optical peak values in the 1

construction of modulation schemes. This section demonstrates

how the peak value of every signal in the constellation can be

determined from the geometry of. 4 3
As justified in Property 2 of Theorem 1, the regidincan be

completely characterized by looking at a single cross section. o _ L

Therefore, determining the peak values of signals repres_enteé%g'AMDg:;ng”at'O” of peak amplitude value of elements fj(971, ) for

T, will give the peak values of all points ii,. through scaling.

Additionally, the peak of only those pointsdi('; need be con-

sidered since, as shown in the proof of Property 4 ii) of Thauith & as defined in (13). Again, maximization is done over

orem 1,07, arises by maximizing: > 0 so thatkv € T, for points inProj(9Y) since the signal with the largest peak value

somewv € Y. This maximization ovet: implies thatdY, rep- Mmust be contained in this set.

resents signal points of maximum amplitudeYin. The peak optical power of all other transmittable point¥'in
Take somer € Proj(dY;). As shown in Property 4 i) of can then be found by scaling the peak values founafarY;.

Theorem 1Min(z) = —1/v/T. Note that the signal-z has The PAR of points ifil’,. will be the same as (17) since both the

Min(—z) = Max(z) andMax(—z) = 1/y/T. Form the vector average and peak optical power scale by a facter of

z € Proj(07Y;) such that

Sl
§>
3

. IV. OPTICAL INTENSITY LATTICE CODES
= —kx (13)
The use of lattice codes over bandwidth-limited electrical
for some uniqué: > 0. Now, sincez € Proj(d7Y ;) implies that channels has been explored extensively in the literature [21],
Min(#) = —1/VT, howeverMin(z) = —kMax(z). There- [24]-[30]. Typically, optical channels are considered as being
fore, power limited rather than bandwidth limited. The case of sig-
naling over bandwidth-limited optical channels, such as some

(14) wireless optical links, has not received much attention.

Early work in the development of signaling schemes for the
optical intensity channel noted that unlike the conventional
channel, where the electrical energy of the signals determines

Max(z) = =] 1 (15) performance, the_shape of the puls_es used in transmission as
\z|l T well as the electrical energy determine the performance of an
, ) . R . optical intensity scheme [8].
which exists sincd|z|| > 0 by Property 4 i) of Theorem 1. " yhjg section employs the signal space model of Section Il to
Note that (14) implies thabax(z) = k/VT. Fig. 3 graphi- gefine lattice codes suited to the optical intensity channel. Fig-
cally illustrates the scenario in (15) for the 3-D PAM basis CORye5 of merit are defined and optical power gain with respect to a
sidered in Section V. In the figure it is possmlfa to deduce thghsaline are computed. Optimal shaping regions in the sense of
Max(z;) > Max(z) and thatMax(z>) = Max(#2) = 1/VT  inimum average optical power are derived and optical power

by observing the relative magnitudes of the illustrated VeCtoE?ain is derived. The impact of a peak optical power constraint
Since the regiorProj(Y;) is convex, the peak optical powerig investigated and gains computed.

values for all signals ifroj(Y;) differ from those represented

in (15) by a scaling facFor in the intervd, 1]. . A, Definition of Lattice Codes
Finally, the peak optical power of the constellation points in

5
X

Max(z) =

g

Using (13) the preceding formula can be simplified to

v € T, can be represented as Lattice codes satisfying the constraints of the optical intensity
channel can be defined for a givénusing the regions defined
Max(v) = Max(Proj(v)) + L. (16) inSection lll-A. Theshaping regionl is defined as a closed set
vT so thatY N ¥ is bounded.

The peak-to-aveage optical power ratio (PAR), can be com- A finite J_V-dimen_sional Iattic_e cor_lstellatio_n is formed
puted for allv € T; using (15) and (16) is through the intersection of. aN—d|mens_|onaI lattice translate
e A + t and the bounded regidfin ¥ to give

xr

PAR(Y;) = Lt
(1) zeProj(1,) |||

+1 17) QA, T, T)=(A+£)NTNT. (18)
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It is assumed in this work that the modulator selects symbdts L. dimensions, the constellaticmﬁ) is formed through the
z € Q independently and equiprobably from symbol period ta-fold Cartesian product of)g, with itself and can be real-
symbol period. A modulation scheme is then described by tieed by transmitting a series @f symbols ofQ2., each of fixed
pair (2, ®), which defines the se¢ of signals transmitted. symbol periodly,. In this case, since

In what follows, the performance of lattice codes so defined CFM(QL, LTy) = CFM(Qs, )

is related to the properties of, Y and . . ) ] .
and there is no asymptotic optical power gain.

B. Constellation Figure of Merit, Gain The asymptotic optical power gain (2, ) over this base-

. . ) .. line can then be computed as

In conventional channels, theonstellation figure of merit
(CFM) is a popular measure of the energy efficiency of a sig- G, T, Ty) = _CRM(Q, T)
naling scheme [26]. An analogous measure for optical intensity 7 CFM(Qg, 1)
chﬁnnels which quantifies theptical power efficiency of the _ Q0] =1 [T duin(®) 20)
scheme is [11], [16] o o 5 T PS(Q)
inin (Q Aimin (2
CFM(Q, T) = —m" " _ /7. 2 19 _ ,
( ) P(Q,T) P&(Q) (19) D. Spectral Considerations

where d,in () is the minimum Euclidean distance between In order to have a fair comparison between two signaling
constellation points and (2, T') is average optical power (9). schemes, the spectral properties of each must be taken into ac-
The CFM in (19) is invariant to scaling of the constellatiomount. Two schemes are compared on the basis of having equal
as in the case of the CFM for electrical channels [26]. THeandwidth efficiencies = R/W, whereR = log,(M)/T is
optical CFM is unaffected byl-fold Cartesian product of the bit rate of the data source in bits per secondi&nid a mea-
 so long as the symbol period also increadefold, that sure of the bandwidth support required by the scheme.

is, CFM(QL, LT) = CFM(Q, T). In conventional channels In systems employing time-disjoint symbols, the definition of
the CFM is invariant under orthogonal transformations ahe bandwidth ofQ2, ®) is nontrivial. In previous work, the first

Q [31], whereas CFNK, T) is invariant under a subset ofspectral null of the power spectral density was used as a band-
orthogonal transformations which leave tlgg coordinate width measure [13], [14], [16]. In this work, the bandwidth of
unaffected. Additionally, the CFM in (19) is not unitless, sincechemes is measured using 1@ K%-fractional power band-

the average symbol amplitude dependdowia (9) whiled,,;, width W, defined as

is independent of the symbol interval. fWK SS(f) df

The optical power gain of one scheme versus another can be _Wog = (21)
computed via the CFM. The probability of a symbol error can J2 Sx(f) df
be approximated for a given by the relation where S5(f) is the continuous portion of the power spectral

cally 0.99 or 0.999. This is a superior measure of signal band-
o _ B width since it is defined as the extent of frequencies where the
where N(Q) is the error coefficient related to the number ofajority of the signal power is contained as opposed to arbi-

~ CFM(Q, T)- P(Q, T density of(Q, ®) andK € (0, 1) is fixed to some value, typi-
Pe(P(QT)/Un)%N(Q)Q< ( . ) ( ’ )>

20,

nearest neighbors to each constellation point and trarily denoting the position of a particular spectral feature as
A oo ) the bandwidth.
Qz) = (1/v 27f)/ exp(—u”/2) du. The channel model of Section 1I-A assumes that the fre-

uency response of the channel is flat and that signals are

Using the same analysis as in the case of electrical channels, Sted to a bandwidth of— Wi, Wi]. To a first approxima-

asymptotic optical power gain ¢f2, ®) over(Qe, @), inthe o, it 1 is chosen large enough, the energy outside of this
limit as P.(P(€, T)/o,) — 0, can be shown to be band lies below the noise floor of the channel and neglecting
G(Q, T, Ts)) = CFM(Q, T)/CFM(Q,, T) it introduces little error. In this sens&, @) is considered as
o . . . being “essentially” band limited to the channel bandwidth. Sub-
which is independent of the error coefficients and noise varianggtion B of the Appendix contains the expressionssig(f)
[21]. under the conditions of independent and equiprobable signaling
and further justifies the use of this bandwidth measure.
As in the conventional case, to compaf®, ®) versus
A rectangular pulse)M-PAM constellation 2, is taken as (), @) their bandwidth efficiencies must be equal. How-
the baseline. This constellation can be formed as in (18) wheser, in the case of optical intensity schemes, the average
A =dninZ,t =0,T = [0, 00), andV¥ = [0, (M — 1)dmin]. optical power depends directly on the choicelbfas shown in
The resulting modulation scheme can be writterfas, ®5) (9). Changes in the symbol period will leave the constellation
where the single basis function & has symbol period;. geometry unaffected because the basis functions are scaled to
Since all constellation points are chosen equiprobably the bakave unit electrical energy independent®f Therefore, for
line CFM is the optical intensity-modulation schert@, ®), the geometry
2 of the constellation doesot completely represent the average
CFM(Q, Te) = Q] -1 VTs. optical power of the scheme. Thus, to make a fair comparison it

C. Baseline Constellation
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is necessary to fix both the bandwidth and the bit ratgf®)  Specifically, for a functionf: RV — R which is Riemann-inte-

and(Qg, ®4). Equating the rate of two schemes gives grable overy N ¥
Ty, ~ 1 / 2
logy Q0| = = log, 2. 22) z;z 1@~ gy [, f@dV @ (26)

Define s = 2WxT for (Q, @) and definese, = 2WkaTs,  whereV(A) is the fundamental volume of the lattice [21].
vyhere Wke is thg fractional power bandwidth of the basethis approximation is good wheW(T N ¥) > V(A), where
line scheme. WritingVx andWx, in terms ofx andre, and  the notationV/(-) evaluates to the volume of the region. In prac-

equating them defines tical terms, this condition occurs when the scheme in question
P T is operating at a high effective normalized rate.
v= (23) Applying the continuous approximatioft® () (9) is a func-

vy To
o o ® ] tion of the regionY N ¥ and takes the form
Combining the results of (22) and (23) gives

PG'I‘O\P%/ B aV(z). (27
log || = L logs ] (24) ( ) Joexow V(TN D) ). N
, v . , ) Similarly, || can be approximated as

The termx can be viewed as the “essential” dimension of the
set of signals time-limited in the range, 7') with fractional 10| ~ v(rnv)
power bandwidtiV . This definition is analogous to the use V(A)

of the orthonormal family of prolate spheroidal wave functionSince the conditions of the continuous approximation assume
as a basis for essentially band-limited functions [33]-[35{hat|| is large, in (25) the ternil — |Q|*1/”) ~ 1.

These functions have the maximum energy in bandwidth Substituting these approximations, along with the fact that
[-W, W] of all time-limited, unit energy functions if0, T')  duin(Q) = dumia(A), into (25) yields

[33], [34]. The set of functions time-limited {0, 7') and with

(1 — €)%-fractional energy bandwidth/ arg app)roximately G(Q, v) = 7e(A, v)n(T, T, v) (28)
spanned by2W1' prolate spheroidal wave functions with anwhere thecoding gainis given as

error which tends to zero as— 0. dinin (A)
Interpretingx the effective dimension a, the parametew Ye(A, v) = V?X)l/v (29)
in (23) can then be thought of as the effective number of dimen-
sions of(2, ®) with respect to the baselin@,,, ®). Equa- and theshaping gainis
tion (24) can then be interpreted as #ifective normalized rate Vv V(T Ny
in units of bits per effective baseline dimension. This is anal- vs(T, ¥, v) = PRGN (30)
ogous to the conventional expression of normalized bit rate in
[26]. Since, in general, constellation shaping hgs an impact an Coding Gain
the power spectrum of a schemeanust be determined for each
choice ofQ and ®. In the electrical case, the coding gain is a hormalized lattice-
packing density known ddermite’s parameter,, (A) [36], and
E. Gain Versus a Baseline Constellation is given as
The optical power gain in (20) can be simplified by substi- d2.
tuting the effective dimension (23) and the effective normal- Tu(A) = W
ized rate (24) to yield

" This electrical coding gain is a purely geometric property of the
G(Q, v) = < N dunin () (1 - |Q|—1/”) . (25) lattice selected. The coding gain for the optical intensity channel
2 Pe(Q) (29) can be written in terms of, (A) as

Note that by specifying the spectral constraints as in Sec- N/v
tion IV-D, the gain is independent of the value Bfand 1, Ye(As V) = dnin - (V ”V"(A)/dmin) : (31)

as in the conventional case. However, in this case, the 9gifrough the effective dimension the optical coding gain de-
depends on the effective dimension of the signal spaces thro%ds ond, Y N U, andA. Thus, the densest lattice ¥ di-

v as opposed to the dimension of the Euclidean spa@s in  mensions, as measured4y(A), may not maximize the optical
the conventional case. _ coding gain in (29).

_ For large constellations, or more precisely, for a large effec- | the case of transmission at high effective normalized rates,
tive normalized rates, the terf — |Q~'/*) ~ 1 and can be nowever, Subsection C of the Appendix demonstrates that the
neglected. continuous approximation can be used to yield an estimate of
the effective dimension®, independent of. For a giveril N W
and®, substituting’ = v in (31) leavesy,, (A) as the only term

The continuous approximatiof26] allows for the replace- dependent on the lattice chosen. As a result, the densest lattice
ment of a discrete sum of a function evaluated at exesy Q2 in N dimensions which maximizeg,(A) also maximizes the
by a normalized integral of the function over the regibm ¥. optical coding gainy.(A, v) at high effective normalized rates.

F. Continuous Approximation to Optical Power Gain
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H. Optimal Shaping Regions o1

Shaping is done to reduce the average optical power require-
ment of a scheme at a given rate. In the conventional case, the
shaping gain depends solely on the geometry of the constella- P e
tion. As is the case with.(A, v), the shaping gain for the op- § 777777 7 TN
tical intensity channel (30) is a function of the regitm ¥ as ey
well as the effective dimension of the scheme. In general, the
selection ofl’ which maximizesy,(Y, U, v) is difficult to find
since it depends on the specific basis functions selected.

In certain cases, can be assumed to be independenf ofl.

If the z(t) € X have K %-fractional energy bandwidths which
are all approximately the same aAd— 1, then every symbol
occupies essentially the same bandwidth. In this dage,and
hencev, will be independent off N V. Section V illustrates
some practical situations when this approximation holds.

Under the assumption thatis independent of NV, the rate
of a scheme is then dependent on the volini& N¥). The op-
timal choice of?, in the sense of average optical power, is one
which for a given volume, or rate, minimizes the average op-

tical powerP®. The optimum shaping region which maximizes b b3
shaping gain is the half-space

N Fig. 4. The regioll’ N ¥*(rmax, p) in the case of raised-QAM fory, .. =
l]:J,k("nmax) = {(’l/Jh ¢27 R} l/}N) eR™: (3/4)}’-

Tmax Z 07 '1/11 S [07 rmax]} (32) .
The volume off N ¥*(r,.x) can then be computed simply as

for some fixedr,... > 0 so that the desired volume is achievedly " V (Y dr, which evaluates to

This assertion can be justified by noting that all points with . 1 N
equal components in thg dimension, have the same average V(IO T (rmax)) = N V(1) s (34)
optical power. For a given volume and, the optimal shaping  Exploiting the symmetry of the region in thig dimension,
region can be formed by successively adjoining points of thiee average optical power expression in (27) can be computed
smallest possible average optical power until the volume as an integral with respect to tige only. Noting thatdV (Y N
achieved. Clearly, the region in (32) will result. This is muclv*(r,,..)) = V(T,.) dr and substituting (33) and (34) into (27)
different than the case of the conventional channel where tiees

N-sphere is the optimal shaping region in an average enerlgy(r AU ()
sense. o
In practice, the set of signals transmitted are peak limited as = / r VTN \1;1*( ) (V(Tl)erl) dr
0 Tmax

well as average optical power limited. For a givEnpeak op- ) S
tical powerp/+/T and volume, the optimum region which max-Which simplifies to

imizes shaping gain is PO(Y. p _ N
( 5 (Tmax)) N+1 Tmax- (35)
V™ (rmax, p) = H(p) N ¥ (rmax) The expression for the shaping gain is computed fiém

] ) _ defined in Subsection C of the Appendix, and by substituting
for U (rmax) (32) andll(p) as defined in (12). The form of this (34) and (35) into (30) to yield

region can be justified in an identical manner as (32), except . 1y
that here the points selected to form the given volume are taken v gt oy VvC [(N+1)” VT N=
from the sefl’ N TI(p) which satisfy both the nonnegativity and s (1 V" (rmax), ) = 2 N (Y1)7 ma :

the peak optical power constraints. Fig. 4 presents an examﬁllecontrast to the conventional electrical case, where shapin
of such a region for raised-QAM defined in Section V. ’ pIng

gain is invariant to scaling of the regiof, (Y, ¥* (ryax), v°)
, ) depends on,,. Since the dimension of the defined signal space
. Shaping Gain is not equal to the effective dimension @t, ®).

Suppose th& = ANTNT*(ryayx ). The shaping gainin (30)
can be simplified in this case by exploiting the symmetries
Y. By Property 1 of Theorem 1, tHg, are directly similar and A modulation schemég(2, ®) is termedpeak symmetridf
scale linearly in-. As a result, the volume of each of tife must  Proj(Y) is closed under inversion. From the point of view of
scale agV~! for an N-dimensional signal space. Formally ~ signal amplitudes, using (13) and (15) of Section IlI-D, this

condition implies that foe, & € Proj(0Y,), 2 = —2 and
V(Y,) =V (r)rN-1 (33) Max(z) = Max(—z) = 1/V/T and, hence, the term peak sym-

8f Peak-Symmetric Signaling Schemes
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metric. Furthermore, for a peak-symmetric scheme using (1&n be exploited without a cost in average optical power. Using

forv e T, the shaping regiol N ¥*(rnax), the T, max shell is gener-
9 ally unfilled. All lattice points inY, . are equivalent from
Max(v) = I (36) an average optical power cost and the additional points in this

shell can be selected without impact on the optical power of

As discussed in Section IlI-D, this maximum amplitude ishe scheme. This degree of freedom in selecting constellation
achieved fow € 97;. Note that the 3-D PAM scheme in Fig. 3points can be used to transmit additional data, introduce spec-
is not peak symmetric. Section V-B presents examples of ttral shaping, or add a tone to the transmit spectrum for timing
Proj(T1) of 3-D peak-symmetric schemes. recovery purposes.

Peak-symmetric schemes are desirable in the sense that the
maximum amplitude value iff'; is achieved by all points in V. EXAMPLES
d7Y1. Maximization over all points ifProj(9Y1) is not required . . .
in the calculation of the PApR an sinc(e it is) satisfiedqat ever, This section presents examples of the signal space model de-

point. Thus, peak-symmetric signaling schemes minimize thEdelsno?eSCe“cot'T)::ll-o '?'?]2 d:f'nnegrls""tgiﬁgzizzlféng :E:ntig?];_
variation in the PAR oved ;, which may be beneficial in the ™! ' ' gain versu ine |

design of transmit and receive electronics puted. Design guidelines are presented based on the observed
' results.

K. Shaping Gain: Peak-Symmetric Schemes

] ) ) ) A. Definition of Example Schemes
Theorem 2 demonstrates tHéfp) is the inversion of(" with

some constant shiftin thi -axis. In the case of peak-symmetric. S noted in Section IV and in [8], the performance of op-
schemes, sinc@roj(971) is closed under inversiorf(p) is tical intensity modulation techniques depends not only on the

a ¢, -shiftedreflectionof Y in the hyperplane); = 0. As a electrical energy of the pulses (i.e., the geometry of the signal

result of this additional degree of symmetry, the cross sectiopfk2c€), but also on the pulse shapes chosen to define the space.
of T andTI(p) in the ¢ -axis coincide for; = p/2. In other This section defines the basis functions used to form signals in

words, the cross sections &f N U (r p) for a givene, the example schemes considered. Note that all symbols are lim-
value are all directly similar ta;. Fig. 4 presents the regionit€d o the intervat € [0, T) and¢: (?) is specified as in (7).

Y N U* (max, p) for a peak-symmetric, raised-QAM example QAM is a familiar modulation scheme in wireless commu-
defined in Section V. nications. In the case of optical intensity channels, to satisfy

Note that in the peak-symmetric case, fQr, < p/2 th_e nonnegati_vity requirement, we defineésed-QAMscheme
with ¢, (¢) defined as before and
TN U* (rmaxs 2) = L N U*(rmax).

The peak symmetry of the scheme requires that all points in Pa(t) =4/ % cos(2nt/T)
Y, max have a maximum amplitude Qfrp,../v/T by (36).
Thus, forrma.x < p/2, all points inY N ¥*(r,.5) have a peak b3(t) = /2 sin(2rt/T).
less tharp. T
The volume and’® of the resulting region can be computed Adaptively biased QAM (AB-QAM) [11], [37] is a 3-D mod-
for rmax € [p/2, p] @s ulation scheme which is defined using the basis functions
V(T N II’ (TmaX"/ p)) - N V(Tl) <2(§) - (p - Tmax) > ¢2(t) = ﬁ rect(t) — ﬁ rect(?t — T/2)
(37) 1 2
¢3(t) = — rect(t) — —= rect(2t = T).
and 3( ) \/T ( ) \/T ( )
PG(T AU (P, D)) More generally, these functions analsh functionsThis char-
N ’ (p/2)N acterization is especially useful in light of the signal space def-
= N1 3N p ~ inition in Section llI-A, since the basis functions of AB-QAM
+ (#/2)Y = (P = Tinax) are scaled and shifted versions of the first three Walsh functions

S ON+1 (p—rma\ (L Y @ 138
PN p/2 NPT Tmax ] - A 3-D PAM scheme can be constructed by transmitting three
Substituting these expressions into (30) yields the shaping ggpnnsutuent one-dimensional symbols froffte, o). This

for these peak-constrained regions. Note also that peak optﬁ%rI]StrUCt'on is analogous to the techniques used in conven-

. - . : tional lattice coding literature [26] and is the case considered in
power in the case of these regiongjs/T a;nd gives a PAR of earlier optical lattice coding work [16]. The basis functions for

PAR(Y N U™ (T paxs P)) = =5 this 3-D scheme, according to the signal space model defined

P&(Q) . ;
L . in Section IlI-A, are
which is independent of the symbol interval.

NE 3 3t—T
L. Opportunistic Secondary Channels $2(t) = | 75 rect(t) — Nona rect | —,

In the case of optical intensity lattice codes defined in Sec- 3 3
tion 1V, an opportunistic secondary channgg6] exists which ¢3(t) = 9T rect(3t —T) — 9T rect (3t — 2T).
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Fig. 5. Example cross sections of 3-D admissible regibhrej(Y+), for (a) raised-QAM, b) AB-QAM, (c) 3-D PAM scheme.

Note that the results derived for this case will differ from thosein ~ 2° : T 0 Discorete uncoded Raised _QAM
[16] due to the definition of bandwidth and the fact that unlike - v o Discrete PPM
previous work, the precise impact of shaping on bandwidth is ~ 2°] A AR i
considered here. o  Coded 2

A popular signaling scheme in optical communications is@ '°[ . ~ Raised-QAM
PPM. ForL-PPM, the symbol interval is divided into a series g : R v
of L subintervals. A symbol is formed by transmitting an op- ¢ [~ : - Uncoded 1
tical intensity in only one of thé& subintervals while the optical £ o | | ‘Raised-QAM
intensity is set to zero in the other subintervals. These schemt% T epm < |
were originally conceived for the photon-counting channel ancg - WL
achieve high power efficiency at the expense of bandwidth effi: or - N |
ciency [3]. Note that a PPM modulation scheme can be thougt o200
of as a coded version of the 3-D PAM scheme discussed earlie ~ ~ - 3§—D: PAM |

_1100'2 ié“ | 10°

B. Geometric Properties Bandwidth Efficiency (bits/s/Hz)

Fig. 5 cqntams plOtS_Of the reglomq(’rl) O_f the example Fig. 6. Gain over baseline versus bandwidth efficiency. Note that points
bases defined in Section V-A. Consistent with Property 3 @fdicated withx ando represent discrete PPM and raised-QAM constellations,

Theorem 1, the regions are all closed, convex, and bounded!espectively, while the solid lines represent results using the continuous
In the case of raised-QAM, every point Rroj(T,) is a si- approximation.

nusoid time limited td0, 7") with amplitude determined by the

squared distance from the origin. Since sinusoids of the safde Gain of Example Lattice Codes

energy have the same amplitude, regardless of phase, all points

equidistant from the origin have the same amplitude. As a re-The optical power gain over the baseline versus the bandwidth

sult, a two—dimensional (2-D) disc naturally results as the regiéfficiency is plotted for a variety of PPM and raised-QAM mod-

Proj(Y1). In the case of 3-D PAMProj(Y;) is an equilateral ulation schemes in Fig. 6.

triangle with sides of lengtly/6. It is easy to show that the sig-  Ten discrete raised-QAM constellations were formetas

nals corresponding to a 3-PPM scheme are represented byZher Y N U*(r,,.x) by selecting the appropriatg,., to have

vertices of the triangle. In this manner, PPM can be seen aeach carrying from 1 to 10 bits per symbol. The power spec-

special case of the 3-D PAM scheme. tral density of each scheme was computed symbolically via
Note that the raised-QAM and AB-QAM schema) @nd (40) using a symbolic mathematics software package [39] and

(b) in Fig. 5, both represent peak-symmetric signaling scheméastegrated numerically to determin&y o9 and Wy g99 for a

While theProj(Y';) regions for these two modulation schemegiven T'. These results were then combined to find théor

are different, the peak-to-average amplitude value of the signatch(Q2, ®). The power spectral density of the baseline scheme

represented i8 in both cases as given in (36). The 3-D PAMSs trivial to compute, and was integrated numerically to give

scheme is not peak symmetric. The largest peak values oceur= 20.572 for Wy g9 andrg = 202.217 for Wy g99. The ef-

for the points at the vertices of the trianglg (in Fig. 3) to give fective dimension of the constellations considered are presented

a PAR of3 for 1. in Table I. The same procedure was repeated for discrete PPM
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TABLE | (28), the parameter“ was computed for the raised-QAM exam-
EFFECTIVE DIMENSION FOR OPTIMALLY SHAPED, DISCRETE ples. The continuous approximation to the power spectral den-
RAISED-QAM CONSTELLATIONS . . . .
sity was computed symbolically using (41) and integrated nu-

BaanD‘;fiZth Baﬁ;ﬁth merically to get an estimate of , which is presented in Table I.
1€2] v v The results are plotted in Fig. 6 and show that the continuous ap-
cont. approx. vt ;oBgOG vt foég’oo proximation to the optical power gain approaches the discrete
4 1.004 1.000 case for large constellations.
8 1.107 1.108 The continuous approximation of gain for the 3-D PAM case
16 1.335 1.365 was computed in an identical fashion to givea= 3.629 and
g’i iéfg ;gg is also plotted in Fig. 6. The baseline scheme is more power ef-
128 1.114 1.119 ficient than the 3-D PAM scheme in spite of the fact that the
256 1.224 1.245 3-D PAM constellation arises as a shaped version of the base-
15012%1 }-égi i'égg line using¥* (rmax ). This is a consequence of the fact that the
- - v depends ol N ¥. The effective dimension for the shaped
case is larger than the baseline valug e@fhich eliminates any
TABLE Il shaping gain. In the case of 3-D PAM, the approximation that the
EFFECTIVE DIMENSION FORDISCRETEPPM GONSTELLATIONS bandwidth of each symbol is approximately constant no longer
Wo.99 Wo.999 holds, and as a result, the interpretatiorld¢{r,.x ) as optimal
Bandwidth Bandwidth in average optical power at a given rate is not true.
|2 v v A 24-dimensional example was constructed by specifying
2 2.990 2.994 symbols consisting of blocks of eight consecutive symbols of
3 3.939 4.002 the raised-QAM scheme. The resultitigwas intersected with
4 4.893 4.993 the Leech latticeAoy, to form the constellation. The optical
5 5.985 5.993 power gain was calculated using the continuous approximation.
6 6.810 7.002 As in the 3-D case, the effective dimension was approximated
7 7.855 7.984 by integrating over the 24-dimensional region symbolically to
8 8.907 8.082 give v = 8.268. The optical gain was then plotted in Fig. 6

for comparison. The use ofy, over Z>* gives a coding gain
of approximately 3 dB in optical power. This is less than the
constellations of size through8. Table Il presents the values 6-dB electrical coding gain that arises in conventional channels,
computed for these constellations. since, as alluded to in (31), the optical coding gain depends on
In both the raised-QAM and PPM examples, the effective die square root of Hermite’s parameter. Qualitatively, an elec-
mension in Tables | and Il are essentially independent of tkécal coding gain corresponds to a reduction in the mean square
value of K in Wx. This suggests that is not sensitive to the value of the signal while an optical coding gain corresponds to
choice of fraction of total power used to compute bandwidfie reduction in the mean value of the signal.
for values of K nearl. Note also thats for the PPM constel- ) ) ) )
lations increases 4€| since each signal point is orthogonal td- !dealized Point-to-Point Link
all others. In the case of raised-QAM, the effective dimension The gain over a baseline is highly dependent on the base-
remains approximately constant@sncreases. line scheme that is chosen. In order to have a more concrete
The gain of the raised-QAM and PPM examples was cornemparison between PPM and raised-QAM schemes, the op-
puted via (25) using the derived from thé¥, o9 and plotted in tical power efficiency was measured by the distance that each
Fig. 6. Note that the raised-QAM schemes provide large opticetheme could transmit over an eye-safe, point-to-point wireless
power gain over the baseline scheme while operating at hightical channel operating at a given symbol error rate and data
bandwidth efficiencies, while the PPM schemes provide smadlte. The receiver and transmitter are assumed to be aligned and
gain at low bandwidth efficiencies. a distanceD centimeters apart. The average transmitter inten-
Care must be taken when using the optical power gain asity is limited tol = 104 mW/sr, which is the eye-safety limit
figure of merit since it depends on the baseline scheme choseiha commercially available wireless infrared transceiver [40].
Since the raised-QAM and PPM examples operate at differéfitte detector sensitivity is taken to be= 25 A - m?/mW over
bandwidth efficiencies, a direct comparison of their perfoan active area of 1 chrand the channel noise standard deviation
mance is not possible using this measure. Indeed, this piot = 11.5x 10~ **/W/Hz, both of which have been reported
suggests that PPM and raised-QAM are suited for operatifor a similar experimental link [41]. The symbol error rate in all
under highly different channel conditions. Section V-D presentsises was set to 18, which corresponds to the IrDA fast IR
a comparison technique based on an idealized point-to-paspiecification [12]. Assuming operation in the far-field case, the
link which illustrates the conditions under which PPM otransmission distance under these constraints is
raised-QAM are appropriate. =
Direct computation of the power spectral density to firid a D= LM(Q’V)
time-consuming process. In order to verify the asymptotic accu- 2kan
racy of the continuous approximation to the optical power gaimherek ~ 5.6120, which is set by the symbol error rate.
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350 T TABLE I
6 EFFECTIVE DIMENSION FOR RAISED-QAM CONSTELLATIONS
3001 ' Mops 8 PPM i SHAPED BY U™ (rmax, p)
8 Wo.99 Wo.999
2501 . . . . i Bandwidth Bandwidth
=S 2 Mbps ' Tmax /P ve v
%200‘ : ] 0.50 1.006 1.000
g 2 Mo 6 Mo 055 |  1.006 1.000
3 ps
2 150l 2 | 0.60 1.005 1.000
£ 4 Mbps 2 2 0.65 1.005 1.000
- 8 Mbps 2 0.70 1.005 1.000
100y 16 Mbps 2 1 0.75 1.005 1.000
32 Mbps it 0.80 1.005 1.000
50 W 0.85 1.004 1.000
1024 1024 Raised-QAM 0.90 1.004 1.000
0y 5‘0 o 5 200 0.95 1.004 1.000
Bandwidth (MHz) 1.00 1.004 1.000
Fig. 7. Idealized point-to-point link length versus bandwidth for the discre

“Sy the proper selection of modulation scheme. Power-efficient

schemes operate at low data rates over long-range links and
bandwidth-efficient schemes offer high data rates over shorter
distances.

Fig. 7 presents the link distance versus bandwidth for theNote thatin Fig. 6 the gain of raised-QAM schemes increases
discrete uncoded examples presented in Section V-C wittagl2| while in Fig. 7 the link distance decreases with. This is
fixed symbol error rate and for a variety of data rates. Fordue to the fact that the optical power requirement of the baseline
given con-stellation, the data rate is varied by varyingin ~Scheme increases more rapidly than raised-QAM at high band-
both schemes, an increase in the rate for the same consté’"&ﬁh efficiencies. The use of link distance is a more practical
tion causes a reduction in transmission distance. This is becauigeasure of optical power and permits the direct comparison of
through (9),P is inversely proportional to/T. An increase Schemes.
in the symbol rate for a given constellation then increases the _
optical power required to achieve the given symbol error rafe Peak Optical Power
and, hence, reduces transmission range. As discussed in Sefn the preceding examples, the peak optical power of the
tion 1I-A, this is due to the unit energy normalization of basischemes in question was not discussed. In this subsection, the
functions in the signal space. impact of shaping withl™* (r,.x, p) on fractional power band-
PPM schemes provide long-range transmission at the pricemtith and on average optical power are investigated.
bandwidth while raised-QAM schemes provide high data ratesTable Ill presents the® values for raised-QAM constella-
at the expense of short link range. Longer range links are limitédns shaped witll*(r,,.x, p). For a givenr,. andp, scaling
by the amount of power which can be collected at the receivef.&* (..., p) does not alter® and so the set of regions can be
As aresult, the power-efficient PPM scheme must be employpdrameterized by = r,.x/p. In this case, since the symbols
at the cost of bandwidth expansion or equivalently rate loss. Age all nearly band limited in the sense of Section IV-H, the ef-
the link distance becomes smaller, the amount of power cééctive dimension is approximated as being nearly independent
lected increases. In this case, bandwidth-efficient raised-QAd T N . Thus, for the raised-QAM exampl@* (r,.x) and
techniques can be employed to increase the link data rate. Thérfé¢r,,.., p) are optimal in the average optical power sense.
is, thus, a rate versus link distance tradeoff in the design ofAt a given rate, the shaping regioh* (r,,.x, p) provides
point-to-point wireless optical links. a reduction in the peak optical power of a scheme at the
Fig. 7 provides a design guide for the construction of modost of increasing the average optical power over the case
ulation schemes for a point-to-point link. Suppose that an insing U*(r,.x). Using the raised-QAM bases, consider
dustry standard IrDA fast IR link using 4-PPM and operating &rming two constellation€2; = A N T N U*(rn.x) and
at 4 Mb/s is taken as the operating point. In the bandwidthmed, = A N T n ¥*(r/ .., p), for some fixedr,.x and
sure defined, the optoelectronics of this link limit the bandwidth = . ... /p for & € [0.5, 1]. Under the assumption thatis
to 100 MHz. This link is able to support a 4-Mb/s data rate amaffected byl, fixing
the specified 108 symbol error rate. If the same physical link X _ w1
is required to transmit at 125 cm2araised-QAM scheme can V(TN (rmax)) = V(T 0P (1, )
be used to achieve rates of 8 Mb/s. If the distance is reducedi&fined in (34) and (37), fixes the rates of the schemes to be
75 cm, rates of up to 16 Mb/s are possible usimgised-QAM. equal. The peak constraint causes an excess average optical
Data rates of 32 Mb/s over 60 cm and 64 Mb/s over 40 cm gpewer penaltyP(Y N ¥*(kp, p))/P(T N ¥*(rmax)), Which
also possible using2-raised-QAM and256-raised-QAM con- can be computed via (35) and (38). The normalized peak optical
stellations, respectively. Thus, for a given set of optoelectroniggwer of(2, with respect td?, is defined a®/(2rmax ), Where
which set the channel bandwidth, the data rate can be optimizkbd peak optical power @2, is defined in (36).

uncoded PPMI() and raised-QAM ¢) constellations of Fig. 6 with SERs
1078,
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the design of modems for such a channel, physical improve-
ments to improve the optical power efficiency should first be
exploited before complex coding schemes are considered.
8 There exist a variety of physical techniques which can be
employed to improve the optical power efficiency of the free-
space optical channel. Optical concentrators, such as mirrors
and lenses, can be used to increase the receive power at the price
of higher implementation cost [42], [43]. Multiple spatially sep-
arated light emitters can be used to form a distributed source,
thereby increasing the amount of optical power transmitted. At
. longer wavelengths (in the 1.3- and Iu& range) the human
eye is nearly opaque. As a result, an order of magnitude increase
i in the optical power transmitted can be realized at the price of
‘ , ‘ K , . costlier optoelectronics [14].

-0.05 0 0.05 01 0.15 0.2 0.25 03 Through the use of such techniques it is possible to engineer

Normalized excess average optical power (d) an optical channel which for a given distance offers a signifi-

Fig. 8. Peak optical power versus excess average optical power (at same rctantly |mproved optical power aft the receiver. Bandwldth_eﬁl--
Solid iine represents a case wheris assumed independentf and points> %%m ra'SEd'QAM'type .mOdUIat'on can then be appllgd in this
indicate values for whicC, in Table Ill, was explicitly computed. new channel to provide improved data rates over the given trans-
mission distance. Thus, these physical techniques increase the

Fig. 8 ts the tradeoff betw th K and range of transmission distances in which high-rate, bandwidth-
ig. 8 presents the tradeoff between the peak an averageéméiem modulation is appropriate.

tical power at a given rate for the uncoded raised-QAM example.
The figure illustrates the independencerodnd ¥ and shows

that the peak value of the constellation can be reduced by ap- APPENDIX
proximately 1 dB over the case @*(r,.x) at a cost of less

) . . : . This appendix will briefly outline how the power spectral
f[han 0.25-dB increase in average optlcal_ POWET. Th|s_tradeoff nsity is calculated for the examples in Section V and present
important to note since a scheme with high peak optical amp]j-

tudes is more vulnerable to channel nonlinearities and re uiren approximation of the power spectral density based on the
AUShtinuous approximation (26).

. i co
more complex modulation circuitry.

| | |
4 < o
) > [N

Normalized peak optical power (dB)
1)
©

A. Definitions

VI. CONCLUDING REMARKS The power spectral density R, @), Sx(f), can be written
Modem design for the free-space optical intensity chann@} the sum of two terzns., the dlscret_e spectiifftif) and the
L . . .__continuous spectrunsg(f). The fractional power bandwidth
is significantly different than for the conventional electrical

channel. Whereas in electrical channels the constraint rrlleasure in (21) is defined using only the continuous portion

typically on the mean-square value of the transmitted signo the power spectral density. Discrete spectral components are

the optical-intensity channel imposes the constraint that gxplcally undesirable since they do not carry any information but

signals are nonnegative and that the average signal amplitﬁ%%u're electrical energy to be transmitted. In the optical channel

R : . : model, the discrete spectral componenf at 0 represents the
is limited. In this work, we impose a further constraint on the . . ;

; . : . average optical power df2, ®) while all other discrete com-
bandwidth of the channel since wireless optical channels are

typically bandwidth constrained due to the multipath distortio onents.of the spectrum represent zero average qpt!cal POwer.
. . . . ese discrete components, excepf at 0, can be eliminated
and optoelectronic capacitance. The practical constraint of pe t?(

. ) : . ough the prudent construction Qf Thus, the frequency ex-
optical power is also addressed in this work and the trade(t)ent of (, ) can then be considered as being sesbyf)
between average and peak optical power is quantified. ! 9 RYf).

) . It should be noted that = ffooo Sx(f) df is notequal to the
mJ:Ii \tlgotr:;gsso ;Zovgzglhaéﬁgfgﬁgigfy ficrh;;?](e;vi%ﬁv'eiﬁggtical power cost of the scheme. The power spectrum is the dis-
. . pucal p . y tribution of electrical energy in the received photocurreft
ciency. In point-to-point links, this translates to a tradeoff b(?ﬁ Fig. 1, while the average optical power is the average pho-
tween transmission distance and data rate. Bandwidth-efﬁci?nt -

. . Do current amplitude. As discussed in Section II-A, the optical
schemes, such as raised-QAM introduced in this paper, provide . .
. .~ channel can be modeled as a baseband electrical system with
much higher data rates at the expense of a greater required

0D ctrai i ) :
. - A o constraints on the amplitude of signals transmitted. As a result
tical power. In comparison to PPM point-to-point links, mode P g '

based on raised-OAM provide far higher data rates at Iovmvtz]re use of the bandwidth of the electrical photocurrent signal is

transmission distances. appropriate.
This paper has further demonstrated that coding alone, al- . ,
though necessary to approach capacity, provides relatively liFf- Calculation of Power Spectral Density
ited optical power gain. The optical coding gain is shown to be For digital modulation schemes, where the signal transmitted
proportional to the square root of the electrical coding gain. ban be described as in (4) and the correlation from symbol to
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symbol can be described by a Markovian model, the power spet " gisoreto constellation
tral density can be shown to be [44] - - _continuous approximation
Sx(f) = SK(f) + SKf) “f
where i Al
1 = n n
d _ FAV LN N
sn- 3 [Sewd () o(-5) <, |
n=—oo |ieM @
c 1 *
Sx(f) =7 Y > Pr(k)zi(Ha (f) 4 ]
keM 1M
- { Z (a;;ln) - Pr(l)) exp(—ijfmT)} . 2t
=F(f) is the Fourier transform of signal (¢) € X, Pr(i) is the % ; 5 e 5
steady-state probability of transmitting symbo(t), andagl”) Frequency (Hz)

s the m-step conditional prol_aablllty of transmitting SymbOIFig. 9. Plot of power spectral density of uncoded, discrete raised-QAM
xll(t) given the current symbol is; (¢). The power spectral den- constellations versus the continuous approximation for the power spectral
sity depends on two factors: the pulse shapes, througtfthfe,  density in those case®'(= 1 in all cases).

and on the correlation between symbols. Consider the case when

all of the z;(¢) are strictly band limited td3 hertz. It is clear 1

that the resultingg( f) must necessarily be band limited B Ko = V(Y nv) /Tmp wna1 dV (z)

hertz, independent of coding or shaping. This is the condition 1

under which classical lattice coding results are derived for the BEEAI)) /Tmp zn dV () /rmp z dV (z).

electrical channel [26]. . . .
Under the conditions of independent and equally likely sigthus, to calculate the continuous approximation for the power

naling, as in Section 1V, the term; can be simplified as spectral density, the first- and all second-order moments of the
N-dimensional random vector uniformly distributed oYen ¥
a{™ = { /M, m#0 must be determined.

! 8ij, m=0 Fig. 9 showsSg(f)¢ plotted on the same axis as the power
whereé;; is the Kronecker delta function. The power spectralpectral density calculated via (40) for various sizes of discrete,
density in (39) can be simplified to yield optimally shaped, uncoded, raised-QAM examples presented in

- 2 Section V. Notice thaby (f)¢ approaches the true power spec-

_ 1 F(m n tral density (40) for high rates.
Sx(f) = M?2717? n;w %x’ (T) 6(f T) The effective dimensiow in (23) can be approximated by
Y 9 estimating the fractional power bandwidth of a scheme via nu-
1 1, 2 I ok merical integration of (41) to yield. As verified in Fig. 9,
tT LGZM M (N~ LGZM i) (40)  ihe accuracy of this approximation improves as the rate of the

scheme increases.
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