
Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) 

Solutions to Final Exam 

1. The step response of a causal, stable LTI system is: 
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where [ ]u n  is the unit step function. 

a. Find the z-domain transfer function  of this system. ( )H z

b. Find the impulse response [ ]h n  of this system. 

c. Find the linear constant coefficient difference (LCCD) equation that describes this system. 

a. Taking the z-transform of [ ]y n  gives: 
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The z-transform ( )X z  of the input unit step function is: 
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The transfer function  is then: ( )H z
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b. The impulse response of this system is found by computing the inverse z-transform of : ( )H z
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c. The LCCD equation that describes this system is: 
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2. Consider the causal stable LTI system with the transfer function: 
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Draw the block diagram for this system implemented in parallel form with 1st-order 
subsystems. 

To obtain the parallel form, we compute the partial fraction expansion of : ( )H z
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The block diagram is then: 

 

3. A causal LTI system has the transfer function: 
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a. Find transfer functions for a minimum-phase system  and an all-pass system 

 such that: 
( )1H z
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b. Sketch the pole-zero plots of ,  and , clearly show their ROCs by 
shading them on the pole-zero plots. 

( )H z ( )1H z ( )apH z



a. The system is nonminimum-phase because of the pair of zeros at .  To form the 
minimum-phase system , these zeros must be reflected to their (conjugate) reciprocal 
locations at 

3z = ±
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In order for  to equal , the all-pass system  must have the pair of 

nonminimum-phase zeros at  from  and a pair of poles at the reciprocal locations 
( ) ( )1 apH z H z ( )H z ( )apH z

3z = ± ( )H z
1
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b. The pole-zero plots of ,  and , with their ROCs, are given below. ( )H z ( )1H z ( )apH z
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4. The spectrogram of a speech signal is shown below. 

a. Is this a narrowband spectrogram or a wideband spectrogram?  Explain your reasoning. 

b. This signal is a single word, either “shop” or “posh”.  From the spectrogram, which of 
these two words does it appear to be?  Explain your reasoning. 
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a. This is a wideband spectrogram because the temporal resolution is good and the frequency 
resolution is poor, such that vertical striations are seen in the voiced segment of speech and the 
harmonics are unresolved (i.e., no horizontal striations are observed). 

b. The word is shop, which is evident in the spectrogram because of the long noise-like spectrum 
at the beginning, produced by the unvoiced fricative “sh”. 

5. Two alternative methods of digital IIR filter design make use of the: 

i. impulse invariance transformation and 

ii. bilinear transformation. 

Explain: 

a. which of these two methods is applicable to a wider range of filter frequency response 
types (i.e., lowpass, highpass, bandpass, bandstop, multiband) and why, and 

b. which of these two methods is simpler and why. 

a. The bilinear transform is applicable to a wider range of filter frequency responses because it 
maps the entire analog frequency axis into the digital frequency range ( , such that 
frequency aliasing is avoided.  The impulse invariance method does not warp the frequency 
axis, so aliasing is produced except in cases of strictly bandlimited frequency responses. 

),π π−

b. The impulse invariance method is somewhat simpler because it just requires sampling and 
scaling the impulse response of the desired analog filter.  However, there is no simple mapping 
of the s-domain transfer function to the z-domain.  In constrast, the bilinear transform requires 
prewarping of the desired digital filter properties before design of the analog filter, application 
of the bilinear transformation and simplification of the z-domain transfer function, but there is a 
direct mapping of the s-domain transfer function to the z-domain. 



6. Four values of a stationary random process x[n] have been observed, giving the discrete-time 
sequence v[n] = {0.38, 0.66, 1.17, 0.86}. 

a. Use the autocorrelation-based method of spectral estimation to estimate the PSD of x[n], 
using a triangular correlation window wc[m] = {0.5, 1, 0.5}. 

b. Does x[n] appear to be lowpass, bandpass or highpass? 

a. First we compute the estimate of autocorrelation function of the random process.  Note that we 
will be applying a correlation window with nonzero values only at lags of m = −1, 0 and 1, so 
we only need to evaluate the autocorrelation estimator at those lags: 
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Applying the triangular correlation window gives: 
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Taking the Fourier transform of the windowed autocorrelation estimate gives the PSD estimator: 
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b. From the final expression for  we would estimate that ( )S ω [ ]x n  is a lowpass signal. 



7. Let [ ]lph n  denote the impulse response of an ideal lowpass filter with unity passband gain 
and cutoff frequency .  The figure below shows an ideal LTI frequency-selective 

filter [ ]h n  that incorporates  as a subsystem.  Sketch jH e ω , the magnitude 

frequency response of [ ]h n , indicating explicitly the band-edge frequencies in terms of  
and specify whether the system is a lowpass, highpass, bandpass, bandstop or multiband 
filter. 

4cω π=

[ ]lph n ( )
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y[n]x[n]
× hlp[n] ×

(−1)n (−1)n

h[n]  

Consider a lowpass discrete-time signal [ ]x n  bandlimited to ( , shown by the blue line in 

panel A of the figure below.  Multiplication of 

),π π−

x n )1 n−
π

0ω π=

 by the sequence (  in the time domain 
corresponds to a frequency shift of  radians in the frequency domain, from Property 3 of Table 
2.2, where  in this case.  This frequency shift turns the lowpass signal x n

π

 into a highpass 
signal, shown in panel B.  After lowpass filtering (shown by the red dashed line in panel B), the 
signal (shown in panel C) is again frequency shifted by  radians to give the blue line in panel D.  
The net filtering effect of these operations is a highpass filter with cutoff frequency 

4 3 4ω π π π′ = − =c cω π= − , as illustrated by the magenta line in panel D. 
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8. Consider the finite sequence [ ] { }1, 0.75, 0.09, 0.06, 1, 0.85= − −x n .  The DFT of this 
sequence 

−

[ ]X k  has been calculated for 0  and lossy compression has been applied to 
the sequence of DFT coefficients 

5k≤ ≤
[ ]X k  by ignoring (i.e., setting to zero) the coefficients for k 

= 2, 3 and 4, to obtain the sequence of compressed DFT coefficients: 

[ ] { }0.07, 1.465 2.3296, 0, 0, 0, 1.465 2.3296X k j j= − − + . 

a. Compute the reconstructed sequence [ ]x n  by taking the inverse DFT of [ ]X k . 

b. Calculate the root mean squared (RMS) error between [ ]x n  and [ ]x n .  Express this 
RMS error as a percentage of the RMS of [ ]x n . 

a. The inverse DFT of [ ]X k  is: 
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giving the sequence [ ] { }0.4767, 0.9050, 0.4167, 0.5000, 0.9283, 0.4400x n = − − − . 



b. The RMS error is: 
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The RMS of [ ]x n  is:  
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giving a percentage RMS error of: 

RMSE 0.3586100 100 48%
RMS 0.7412

× = × ≈  


