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Modern window types (have been derived based on 
optimality criteria):

Kaiser window and Dolph-Chebyshev window:

minimize the width of the mainlobe under the constraints that:

1. the window length be fixed and
2. the sidelobe levels not exceed a given value.

These windows provide more flexibility than the classical 
windows because a desired tradeoff between mainlobe width 
and sidelobe levels can be achieved!
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Kaiser window compared to the rectangular window in the 
frequency domain: (M = 40)

The Kaiser window has two parameters: the length M+1 and a shape 
parameter β.  The value of β required to achieve a particular maximal 
sidelobe level can be obtained from an empirically-derived formula—see 
Oppenheim and Schafer pp. 474–485 for more details.
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Dolph-Chebyshev window with –30 dB of ripple compared to 
the rectangular window in the frequency domain: (M = 40)

The Dolph-Chebyshev window has two parameters: the 
length M+1 and the desired sidelobe level.  Note the equal 
levels of the sidelobes.
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Dolph-Chebyshev window with –100 dB of ripple compared to 
the rectangular window in the frequency domain: (M = 40)
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Now, let us take the Dolph-Chebyshev window and design 
our example lowpass filter using the window method with
M = 10, M = 40, and M = 160.

Remember that:

We apply a Dolph-Chebyshev window of length M+1.
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Truncated and windowed impulse response and 
corresponding approximation of lowpass frequency response:
(window ripple –30 dB; M = 10)
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Truncated and windowed impulse response and 
corresponding approximation of lowpass frequency response:
(window ripple –30 dB; M = 40)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
A

G
N

IT
U

D
E

NORMALIZED FREQUENCY (ω/2π)

0 5 10 15 20 25 30 35 40

–0.25

–0.20

–0.15

–0.10

–0.05

0

0.05

0.10

0.15

0.20

0.25

TIME INDEX

T
R

U
N

C
A

T
E

D
 A

N
D

 W
IN

D
O

W
E

D
 IM

P
U

LS
E

 R
E

S
P

O
N

S
E



9

Truncated and windowed impulse response and 
corresponding approximation of lowpass frequency response:
(window ripple –60 dB; M = 160)

There is no Gibbs phenomenon with
the Dolph-Chebyshev window!
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Optimization-based methods: the idea is to find the best 
approximation to the ideal frequency response for a given 
fixed M.

Question: What should be our criterion for the “best” 
approximation?

Answer #1: How about minimizing the mean-square error?

Unfortunately, the solution to this minimization problem is:

the truncation method, which we know suffers from the Gibbs 
phenomenon!
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Answer #2: How about minimizing the maximum error?

This is referred to as the minimax strategy, and several 
algorithms have been developed to solve this problem.

The most widely used of these is the Parks-McClellan
algorithm, often referred to (mistakenly) as the remez
algorithm, which determines the optimal (in the minimax
sense) equiripple FIR filter for a given desired frequency 
response.
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Parks-McClellan optimal (minimax) equiripple FIR filter 
lowpass frequency response: (M = 160)

If some nonzero passband ripple and stopband attenuation is permissible, 
then a very sharp transition region matching that of the truncation method 
can be obtained.
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Parks-McClellan optimal (minimax) equiripple FIR filter 
lowpass frequency response: (M = 160)

With just a slight relaxation of the slope of the transition region, the 
passband ripple and stopband attenuation can be dramatically reduced.
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