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6.3 Spectral Estimation of Stationary
Random Signals

Definition of the power spectral density (PSD) for a finite-
power random signal:
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The Periodogram:

In the task of spectral estimation, we wish to obtain an
estimate of the PSD from a single sequence z|n],

i.e., without having to calculate an expected value E{-} as is
required for computing the PSD.

An obvious estimator of the PSD that can be obtained using
the DTFT of a windowed sequence x|n|w[n], where w|n| is a
rectangular window of length L, is the periodogram:
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Properties of the periodogram:

— it can be computed for equally-spaced frequencies using
the FFT with zero-padding

— its variance:
var| Py(w)| ~ PZ,(w) .

That Is, its variance is quite large and it does not reduce
with increasing L for a stationary random signal!

= this is our second case for which increasing the window
length does not improve spectral estimation



Example #1:

z[n] = A exp (j2n fon) + &[],

where f, = 0.3 and {|n] is a zero-mean, unit-variance
complex white Gaussian noise. Note that x|n| consists of a
deterministic (nonrandom) complex exponential and a white
(flat-spectrum) stationary noise.
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Example #1 (cont.):
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The contribution of the deterministic component of x|n| to the
periodogram increases with increasing L, but the contribution
of the stationary random component does not increase.

= spectral estimation of the deterministic component
Improves with increasing L




Example #2: Let x|n|, a zero-mean, unit-variance white
Gaussian noise, be filtered by a lowpass filter with the
magnitude-squared frequency response indicated by the red
line in the plots below to give the lowpass Gaussian noise
signal y[n]. The periodogram of one realization of y|n] is:
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Note that the PSD of y|n] is equal to the filter's magnitude-squared
frequency response (indicated by the red line), but the periodogram of y[n|
does not converge to the PSD with increasing L. 7



Periodogram Averaging:

Comparing the equations for the PSD and the periodogram,
we see that the problem with the variance of the periodogram
arises because it does not include the expectation operation

E{-}.
However, we can approximate this operation for a stationary
random signal by breaking it up into a set of shorter

segments, calculating the periodogram for each segment and
then averaging the results. The basis of this methodology is:

— the periodogram of a short segment of the sequence will have a
variance not much larger than the periodogram of the whole
sequence

— the signal is stationary, so its PSD is identical for the different
segments

— if the random signal is relatively uncorrelated, then the periodograms
are relatively independent random variables, so the averaging
process reduces the estimator’s variance




The Bartlett periodogram method:
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Based on dividing the original sequence into K = L/M
nonoverlapping segments of length M, computing
periodogram for each segment, and averaging the result:
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If the K periodograms in the Bartlett method are independent,
then the variance of the Bartlett average periodogram:

var[PB(w)] —P2 (W) .

That is, its variance decreases W|th iIncreasing K!

Example #3: The Bartlett periodogram with M = 20 for the
same signal as in Example #2, where the blue and green
lines represent the periodograms for two different realizations

of y[n]:
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The Welch periodogram method:
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Refines the Bartlett method by dividing the original sequence
into K overlapping segments of length M.

Welch showed that:

— if the segments overlap by 50%, then the variance is reduce by
almost of factor of 2 compared to the Bartlett method, because of the
doubling in the number of sections

— increasing the overlap by more than 50% does not further reduce the
variance, because the segments become less and less independent

— the variance still behaves the same if a nonrectangular window is
used — the modified periodogram
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Example #4: The Welch periodogram with M = 20 and 50%

overlap for the same signal as in Example #2, where the blue
and green lines represent the periodograms for two different

realizations of y[n|:
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Note that the variance has decreased only slightly from that
of the Bartlett method because the lowpass noise is
somewhat correlated.
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