ECE 796:
Models of the Neuron

Slides for Lecture #6
Tuesday, February 15, 2011
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Fig. 7.1 RepucinG THE HoDGKIN-HUXLEY MODEL TO THE FITZHUGH-NAGUMO SYSTEM
Evolution of the space-clamped Hodgkin—Huxley and the FitzHugh-Nagumo equations in response to
a current step of amplitude 0.18 nA in A and B and of amplitude I = 0.35 in C and D. (A) Membrane
potential V(¢) and sodium activation m(z) (see also Fig. 6.8). Sodium activation closely follows
the dynamics of the membrane potential. (B) Sodium inactivation 1 — /2 and potassium activation n
of the Hodgkin—Huxley system. (C) “Excitability” V () of the two-dimensional FitzZHugh—Nagumo
equations (Eqs. 7.1) with constant parameters has a very similar time course to V and m of the squid
axon (notice the different scaling). (D) The “accommodation” variable W shows modulations similar
to I — & and n of the Hodgkin—Huxley equations.
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Fig. 7.2 PHASE PLANE PORTRAIT OF THE FITZHUGH-NAGUMO MODEL Phase plane associated
with the FitzHugh-Nagumo Egs. 7.1 for I = 0. The fast variable V corresponds to membrane
excitability while the slower variable W can be visualized as the state of membrane accommodation.
The nullcline for the V variable, that is, all points with V' = 0, is a cubic polynomial, and the W
nullcline (all points with W = 0) is a straight line. The system can only exist in equilibrium at the
intersection of these curves. For our choice of parameters and for I = 0, a single equilibrium point
exists: (V, W) = (—1.20, —0.625). The arrows are proportional to (V, W) and indicate the direction
and rate of change of the system: V usually changes much more rapidly than W.
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Fig. 7.3 BEHAVIOR AROUND THE EQUILIBRIUM
PoiNT The behavior of the FitzHugh—Nagumo equa-
tions in a small neighborhood around the fixed point is
determined by linearizing these equations around their
fixed point and computing the associated pair of eigen-
values. (A) Evolutionof (§V, § W) in acoordinate system
centered at the equilibrium point r* for / = 0. Because
the real part of both eigenvalues is negative, a small
perturbation away from the fixed point will decay to zero,
rendering this point asymptotically stable. Any point in
this plane will ultimately converge to the fixed point at
the origin. (B) Similar analysis for the equilibrium point
r*’ for a sustained input with I = 1 (Fig. 7.5A). The
fixed point is unstable.
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Fig. 7.4 RespONSE OF THE FITzZHUGH-NAGUMO MODEL TO CURRENT PULSES (A) The qui-
escent system is excited by a current pulse of different amplitudes I = Q&(r), displacing the system
from its resting state r* along the dashed horizontal line. Following Egs. 7.1, this briefly increases
V', in agreement with physical intuition, since a brief current pulse will cause a transient capacitive
current C dV /d1 to flow. The evolution of the voltage V and of the adaptation variable W is plotted in
(B) and (C). Changing V from its initial value of —1.2 to —0.8 or —0.65 only causes quick excursions
of the voltage around the equilibrium point with the system rapidly returning to rest (the oscillatory
manner in which the system does so is not readily apparent at the scale of these panels). If the current
pulse is large enough so that V exceeds —0.64, a stereotyped “all-or-none” sequence is triggered: V
rapidly increases to positive values but then dives below its resting value V before finally coming to
rest again at r*. Notice that the trajectory in this case consists of “fast” segments, where V changes
rapidly but W remains essentially constant (upper and lower segments), interconnected by “slow™

segments, where the system changes so slowly that V is always in equilibrium (the “slow” segments
closely coincide with the V nullcline).
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Fig. 7.5 RESPONSE OF THE Firz-
HugH-NaAGuMo MobpeL 1O CUR-
RENT STEPS (A) The quiescent sys-
tem is subject to a current step of am-
plitude 7. For I < 0.32, the new equi-
librium r* is stable: the system depolar-
izes but remains subthreshold. For larger
steps (here I = 1), the new equilibrium
point lies along the middle portion of
the V nullcline and is unstable. Because
the system has a stable limit cycle, it
will not diverge; rather, it generates a
train of “action potentials” whose time
course is shown in (B). Regardless of the
initial state of the system, it will always
converge rapidly onto this limit cycle.
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Fig. 7.6 DISCHARGE CURVE OF THE FITZHUGH-NAGUMO MODEL (A) Steady-state membrane
potential and (B) oscillation frequency of the limit cycle for the FitzHugh-Nagumo equations as a
function of a sustained current /. As the membrane is depolarized in response to increasing injection of
current, it loses stability at /_ = 0.33 (arrow) and moves on a stable limit cycle. An important property
of this type of bifurcation phenomenon, known as hard excitation or subcritical Hopf bifurcation, is
that oscillations occur with nonzero frequency. This behavior is also characteristic for the Hodgkin—
Huxley equations. Between /_ and 7, = 1.42, the system moves along the limit cycle. The frequency
of the oscillation is a function of I (dashed line in panel A). Beyond /., the equilibrium point becomes
stable again, and the system remains “locked™ at a depolarized level (not shown).
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