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Figure 7.1

Response of the Morris-Lecar excitable system, egs. 7.4-7.6, to a brief current pulse. For these parameters
(see appendix A), the system has a unique stable rest state, ¥ = —61mV, @ = .015. The line w = w is
shown lightly dashed. Four different stimuli lead to an instantaneous displacement of ¥ from ¥ to 1,
(values of ¥ are shown alongside the curves in panel A). Panel A shows the time course of the voltage.
Notice that intermediate responses are possible with some stimuli: the threshold is graded; firing occurs
with finite latency. Panel B shows trajectories in the V-w phase plane; nullclines are shown dashed and in-
tersect only once. The effect of a stimulus is to displace the initial condition horizontally from rest.
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Figure 7.2

Repetitive firing in the Morris-Lecar model for steady current. Bifurcation diagram in panel A shows the
steady-state voltage ¥ versus 7 (thin lines; stable are solid, unstable are dashed) and the maximum and
minimum voltage for periodic solutions shown as filled (stable) and unfilled (unstable) circles. The unstable
branch of periodic solutions meets the branch of steady-state oscillations at I = I, = 94 ,uA/cm2 and
I'=15L =212pA/cm” (Hopf bifurcation points). The unstable branch of periodic solutions coalesces
with the stable branch of periodic solutions at I = I, = 88 uA/em”. A similar coalescence occurs near [ =
215pA /cmz. For these parameters, the steady-state /-V curve is monotonic. Furthermore, panel B shows
that the frequency (plotted in Hz, and only for the stable limit cycles) as a function of current is always
bounded away from zero. Parameters are as figure 7.1.
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Figure 7.3

Bistability for stcady current near the threshold for repetitive firing for the Morris-Lecar model with
parameters as in figure 7.1 and 7 = 90 p.A/sz. In this region, where [ is between the first Hopf bifurca-
tion point, /;, and the “knee,” I,, there are two stable states (cf figure 7.2): a rest state (the intersection of
the nullclines) and a stable oscillation (SPO) separated by an unstable periodic solution (UPO). This is
shown in panel A. Panel B demonstrate switching from rest to oscillation and then back to rest for two
brief appropriately timed depolarizing current pulses.
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Figure 7.4

Excitability with three steady states and a distinct threshold; the response of the membrane to a brief
current pulse from the stable rest state. Four different stimuli result in a displacement of ¥ from ¥ to VO
(values of ¥ are given alongside the curves in panel A). (A) Time course of the voltage for I = 30 |,LA/cm
(B) Phase plane for the dynamics illustrated in panel A. Nullclines intersect at three places: (1) R a stable
rest state, (2) 7', a saddle point threshold, and (3) U/ an unstable node. The thick solid line shows the un-
stable manifold for the saddle point; here, unstable refers to movement in opposing directions away from
T (indicated by arrowheads). The manifold’s two branches lead to the stable rest state and form a smooth
loop in phase space. The heavy dashed line shows the stable manifold for the saddle point (arrowheads
pointing toward T). Any initial conditions to the left of this manifold decay to rest. Initial conditions
to the right lead to an action potential before returning to rest. Parameters are as in figure 7.1, except
Jea =4mSjem’, V3 = 12mV, ¥, = 17.4mV, 6 = 1/15.
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Figure 7.5

Onset of repetitive firing with arbitrarily low frequency for a constant current, I = 40.76 uA/cm2 shows an
oscillation with a period of about 220 msec. Panel A shows the voltage time course and panel B shows the
phase plane. Note the “narrow channel” between the two nullclines near —30mV, which accounts for
most of the oscillation period (see Rinzel and Ermentrout 1989). Parameters are as in figure 7.4.
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Figure 7.6

Multiple steady states and periodic orbits for a steady current when the I,V relation is N-shaped. (A)
Bifurcation diagram (line types as in figure 7.2A; parameters are as in figures 7.4-7.5). In spite of the
coexistent states, the system is monostable for I between I} = 40, the turning point of the steady states,
and I, = 98 where there is a Hopf bifurcation. Onset of repetitive firing at zero frequency occurs at I = I
where two fixed points coalesce. This corresponds to figure 7.4B when the unstable manifolds of the saddle
point form a closed loop. The branch of periodic orbits has a turning point at 7 = 116 before terminating

at the Hopf bifurcation point, I = I,. All current values in uA/cmz. (B) Frequency (in Hz) of stable
branch of periodic orbits.
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Figure 7.7

Bifurcation diagram (as in figure 7.6 but for ¢ = 0.23). Point A shows where the two lower steady states
coalesce, point B shows the Hopf bifurcation for the upper steady state, point C shows the coalescence
of the stable and unstable periodic branches, and point D shows where the branch of stable oscillatory
solufions terminates on the branch of saddle points (not on the knee, as in figure 7.6) at a saddle loop
homoclinic. For currents between points B and A, there are three stable states: (1) a low-voltage rest state,
(2) a high-voltage rest state, and (3) an oscillatory state. Note that the steady-state branch is identical to
that of figure 7.6; ¢ only affects the stability of the steady states and the behavior of the periodic orbits.
Vertical line at [ = 37.5uA /cm2 shows a current for which there are three stable states (cf. figure 7.8).
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1 as in figure 7.7). Panel A depicts the V-w phase plane. The nullclines intersect at three places representing
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03} y stable manifold of the saddle point (bold dashed line) form a separatrix between the lower stable rest state
and the stable periodic orbit. The unstable periodic orbit (UPO) separates the stable upper steady state
from the stable periodic orbit. Panel B shows the effects of three successive depolarizing current pulses.
02| ] Starting on the stable oscillation, the membrane is switched to the lower stable steady state. Another brief
' pulse pushes it back to the stable oscillation and a third pulse switches it to the upper steady state. No
single brief current pulse can switch it from the lower steady state directly to the upper steady state, al-
0.1 though the opposite transition is possible.
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Fig. 7.7 RESPONSE OF THE MORRIS—LECAR MODEL TO CURRENT PuLsEs Equations 7.11,
describing electrical events in the muscle cells of barnacles (Morris and Lecar, 1981), show a
qualitatively similar behavior to the squid axon membrane and to the FitzZHugh—Nagumo equations.
(A) Phase plane portrait (here membrane potential V), versus potassium activation w) for different
stimulus conditions, The nullclines are plotted in bold. In the presence of a stabilizing current injection,
the resting potential is —31.7 mV. From this state, the system is stimulated by brief current pulses,
instantly depolarizing the membrane (thin lines). If the stimulus depolarizes the muscle to either — 138
or to —14.8 mV, the system responds with a subthreshold excursion around the resting potential (two
innermost loops around the resting potential). For larger values, the system moves along a limit cycle:
it spikes. (B) Evolution of the membrane potential V,,, for this stimulus paradigm.
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Fig. 7.8 SUSTAINED SPIKING IN THE MORRIS-LECAR MODEL (A) Steady-state voltage and
(B) oscillation frequency as a function of the amplitude of the sustained current / for the reduced
Morris-Lecar model (Egs. 7.11). The steady-state /-V curve can also be viewed as the cumultative,
steady-state ionic current flowing at any particular membrane potential V,,. At /. = 24.9 pA/cm®
(arrow), the single equilibrium point (Fig. 7.7A) loses stability via hard excitation (a subcritical Hopf
bifurcation) when the real part of the two conjugate eigenvalues goes through zero and becomes
positive. As in the case for the Hodgkin—Huxley and FitzHugh-Nagumo equations, this type of onset
of oscillations implies a nonzero oscillation frequency (here a minimum of 50 Hz).
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Fig. 7.9 SysTEM wiTH MULTIPLE EQUILIBRIUM PoinTs The Morris-Lecar equations were
modified by changing the dynamics of potassium activation and making its voltage dependency
steeper (Egs. 7.16 and 7.17). (A) Under these conditions, the two nullclines can intersect up to three
times. Here, the lower equilibrium point is a globally attracting, stable sink, the middle one an unstable
saddle, and the upper one an unstable spiral. (B) Phase space portrait around the two lower equilibrium
points. The separatrix curve (thin line) at the saddle strictly separates sub- and suprathreshold regions
of phase space. Points to the left of this curve will decay back to the stable sink, while points to
the right will lead to a spike. If the current injected into the system is further increased, these two
equilibrium points will move toward each other, coalesce, and disappear. If the initial state of the
system lies in the neighborhood of these two curves, it will evolve very slowly since, by definition,
Vi = 0 along the V,, nullcline and 1 = 0 along the w nullcline, explaining why the system is able
to spike at very low frequencies.
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Fig. 7.10 SeikiNG AT Low FREQUENCIES Response of the modified Morris-Lecar equations
(Egs. 7.16 and 7.17) using current steps (starting at 1 = 0) of variable amplitude. In response to
a current step of 7.9 wA/em? amplitude, the membrane depolarizes. Close (o I} = 8.326 pA/em?, the
onset of spiking can be delayed almost indefinitely, similar to the delay observed in pyramidal cells
due to the presence of the A-like current (Fig. 9.7). This is not caused by the very slow time constant
of any one ionic current, but it is due to the structure of the nullclines in phase space (Fig. 7.9B).
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Fig. 7.11 SUSTAINED SPIKING IN THE
MobpirFiED MORRIS-LECAR MODEL (A)
Steady-state voltage and (B) oscillation fre-
quency as a function of / for the modified
Morris-Lecar model (Egs. 7.16 and 7.17).
Different from Fig. 7.8, the /-V relationship
is N—shaped. Spiking first occurs at /| (arrow)
when the slope of this curve is infinite and
then becomes negative. This happens when
the two lower equilibrium peints in the phase
portrait of Fig. 7.9 merge, creating oscilla-
tions with arbitrarily long interspike intervals
via a saddle-node bifurcation.
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