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Figure4.1 Compression and rarefaction of air particles in front of an infinitely large wall: (a) illustration
of springiness among air particles; (b) compression; (¢) rarefaction.



F1GURE 3.11 Superposition of two transverse waves of the same amplitude and
frequency, moving in mutually opposite directions +V and —V. The resulting
wave pattern does not propagate: it remains “anchored” at the nodes N, changing

only its amplitude.
(Roederer, 1994)
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FiGUure 4.2 Standing wave modes in a vibrating string.

(Roederer, 1994)
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FIGURE 4.7 Superposition of two (a) and three (b) harmonics selected so as to
approximate the triangular shape shown in Fig. 4.6.

(Roederer, 1994)



FiGure 4.13 Holograms depicting the first four vibration modes of the top plate of
a violin (with f holes and mounted sound post, without fingerboard). Each one of
the dark curves represents a contour of equal deformation amplitude. (a) 540 Hz;
(b) 775Hz; (c) 800Hz; (d) 980 Hz. Reprinted by permission from Jansson et al.,

1970.
(Roederer, 1994)
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FiGURE 4.17 Standing wave modes (pressure variations) in an idealized cylindrical

pipe, open at both ends.

(Roederer, 1994)
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FIGURE 4.19 Standing wave mode in an idealized cylindrical pipe, closed at one

end.

(Roederer, 1994)
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(b)  Truncated Cone, Length L

FIGURE 4.24 Typical resonance curves (after Benade, 1971) for clarinet-type
(cylindrical) and oboe-type (conical) air columns (without mouthpiece, bell;
closed fingerholes).

(Roederer, 1994)
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FIGURE 4.22 Generation of an edge tone.
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FIGURE 4.23 Reed mechanism for a reed-stop organ pipe.

(Roederer, 1994)
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FIGURE 4.25 Resonance curve of a trumpet (Benade, 1971) (given in linear scale).

By permission of Professor A. Benade, Case Western Reserve University, Cleveland, Ohio.

(Roederer, 1994)
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Fic. 6.45. Growth, steady-state, and decay characteristics of various musical instru-
ments. A. Plucked-string instruments. B. Struck-string instruments. C. Bowed-
string instruments. D. Flue organ pipe. E. Air-, mechanical-, and lip-reed instru-
ments. F. Percussion instruments of definite pitch. G. Drums. H. Voice vowel
sounds.

(Olson, 1967)
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Figure 4.10 Frequency response of uniform tube with (a) vibrating walls with p(/.0) = 0. (b)
vibrating walls. and viscous and thermal loss with p(l,0) = 0; (c) vibrating walls, viscous and
thermal loss, and radiation loss [26],[28]. 3 dB bandwidths are given.

SOURCE: MR, Poroll, A Quasi-One-Dimensional Digiral Simulation for the Time-Varying Vocal Tract
[26]. ©1973, M.R. Portnoft and the Massachusetts Institute of Technology. Used by permission.
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Figure 4.14 Concatenated tube model. The kth tube has cross-sectional area A,
and length [
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Figure 4.15 Sound waves in the concatenated tube model consist of forward- and
backward-going traveling waves that arise from reflection and transmission at a tube

junction.
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Figure 4.18 Signal flow graph conversion to discrete time: (a) lossless two-tube
model; (b) discrete-time version of (a); (c) conversion of (b) with single-sample

delays.

SOURCE: L.R. Rabiner and R.W. Schafer, Digital Processing of Speech Signals [28].
©1978, Pearson Education, Inc. Used by permission.
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Figure 4.19 Comparison of the concatenated tube approximation with the “exact” solution for area
function (estimated by Faut [7]) of the Russian vowel /a/ [26],[28]: (a) cross-section A(x) for a vocal
tract model with 10 lossless sections and terminated with a 30 em? section that does not reflect; (b)
reflection coefficients 7, for 10 sections; (c) frequency response of the concatenated tube model—the
solid curve corresponds to the lossless termination (zero bandwidths) and the dashed curve corresponds to
the condition with loss (finite bandwidths); (d) frequency response derived from numerical simulation of
Portnoff.

SOURCE: M.R. Portnoff, A Quasi-One-Dimensional Digital Simudation for the Time-Varying Vocal Tract [26].
©1973, M.R. Portnoff and the Massachusetts Institute of Technology. Used by permission.
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Figure 4.20 Overview of the complete discrete-time speech production model.
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Figure 4.24 Transformed vocal fold/vocal tract first-formant interaction
model that is Norton equivalent to circuit of Figure 4.22.

SOURCE: C.R. Jankowski, Fine Structure Features for Speaker Identification
[10]. ©1996, C.R. Jankowski and the Massachusetts Institute of Technology.

Used by permission.
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