EE 4CL4 – Control System Design

Solutions to Homework Assignment #9

1. Compute the Z-transform for the discrete sequences that result from sampling the following signals a 1 Hz:

a.
$$e^{-0.1t} \cos(0.5t + \pi/4)$$
.
b. $t^2 e^{-0.25t}$. (25 pts)

If the sampling frequency is 1 Hz, then the sampling period, Δ , is 1 s. To compute the Z-transform of a sampled signal f(t) we first obtain the expression for $f(k\Delta) = f[k]$ and we then use the table of Z-transform pairs to obtain the Z-transform.

a. If $f(t) = e^{-0.1t} \cos(0.5t + \pi/4)$, then:

$$f[k] = a^{k} \cos(0.5k + \pi/4)$$

$$= a^{k} [\cos(0.5k)\cos(\pi/4) - \sin(0.5k)\sin(\pi/4)]$$

$$= \frac{a^{k}}{\sqrt{2}} [\cos(0.5k) - \sin(0.5k)],$$

where $a = e^{-0.1}$. Using the Z-transform pairs for sequences of the form $f[k] = a^k \cos(k\theta)$ and $f[k] = a^k \sin(k\theta)$ gives:

$$F(z) = \frac{1}{\sqrt{2}} \left[\frac{z(z - a\cos(0.5))}{z^2 - 2az\cos(0.5) + a^2} - \frac{az\sin(0.5)}{z^2 - 2az\cos(0.5) + a^2} \right]$$

$$= \frac{z(z - a\cos(0.5) - a\sin(0.5))}{\sqrt{2}(z^2 - 2az\cos(0.5) + a^2)}$$

$$= \frac{z(z - 1.228)}{\sqrt{2}(z^2 - 1.588z + 0.819)}.$$

b. If $f(t) = t^2 e^{-0.25t}$, then:

$$f[k] = k^2b^k$$
,

where $b = e^{-0.25}$. Using the Z-transform pair for a sequence of the form $g[k] = kb^k$ gives:

$$G(z) = \frac{bz}{(z-b)^2}.$$

We now make use of the Z-transform property that $\mathbb{Z}[kg[k]] = -z \frac{d G(z)}{d z}$ to calculate:

$$F(z) = \mathcal{Z}[kg[k]] = -z \frac{\mathrm{d} G(z)}{\mathrm{d} z} = \frac{bz(z+b)}{(z-b)^3}.$$

Dr. Ian C. Bruce

2. Consider the following recursive equation describing the relationship between the input u[k] and the output y[k] in a discrete-time (sampled-data) system:

$$y[k] - 0.5y[k-1] + 0.06y[k-2] = 0.6u[k-1] + 0.3u[k-2]$$
.

- a. Determine the transfer function.
- b. From the above result, compute the response of the system to a unit Kronecker delta. (25 pts)
- a. Taking the Z-transform of both sides of the difference equation with zero initial conditions gives:

$$Y_q(z) - 0.5z^{-1}Y_q(z) + 0.06z^{-2}Y_q(z) = 0.6z^{-1}U_q(z) + 0.3z^{-2}U_q(z)$$

The transfer function is normally expressed in positive powers of z only, so we multiply both sides by z^2 to yield:

$$H_q(z) = \frac{Y_q(z)}{U_q(z)} = \frac{0.6z + 0.3}{z^2 - 0.5z + 0.06}.$$

b. The response of the system to a unit Kronecker delta is the inverse Z-transform of the transfer function:

$$H_q(z) = \frac{0.6z + 0.3}{z^2 - 0.5z + 0.06} = \frac{0.6z + 0.3}{(z - 0.3)(z - 0.2)} = \frac{1}{z} \left[\frac{4.8z}{(z - 0.3)} - \frac{4.2z}{(z - 0.2)} \right].$$

The inverse Z-transform of the expressions inside the square brackets can be found in the table of Z-transform pairs, and then the "Backwards Shift" property from the Z-transform properties table can be used to find the effect of the factor 1/z outside the square bracket:

$$h[k] = \mathcal{Z}^{-1}[H_q(z)]$$

$$= -\delta_K[k] \{4.8(0.3)^{-1} - 4.2(0.2)^{-1}\} + 4.8(0.3)^{k-1} - 4.2(0.2)^{k-1}$$

$$= 5\delta_K[k] + 4.8(0.3)^{-1}(0.3)^k - 4.2(0.2)^{-1}(0.2)^k$$

$$= 5\delta_K[k] + 16(0.3)^k - 21(0.2)^k.$$

Alternatively, the "Unit Step" property from the Z-transform properties table can be used instead to find the effect of the factor 1/z outside the square bracket:

$$h[k] = \mathcal{Z}^{-1}[H_q(z)]$$

$$= \mu[k-1] \{4.8(0.3)^{k-1} - 4.2(0.2)^{k-1} \}$$

$$= \mu[k-1] \{4.8(0.3)^{-1}(0.3)^k - 4.2(0.2)^{-1}(0.2)^k \}$$

$$= \mu[k-1] \{16(0.3)^k - 21(0.2)^k \},$$

where $\mu[k]$ is the unit step function.

Dr. Ian C. Bruce April 2, 2003

3. Determine the step response of the discrete-time system with the transfer function:

$$H(z) = \frac{1}{(z - 0.6)^2}$$
. (25 pts)

The step response y[k] of a given system with transfer function $H_q(z)$ can be computed from

$$Y_q(z) = H_q(z) \frac{z}{z-1}.$$

A partial fraction expansion is then used and known inverse Z-transforms for simple fractions are applied.

$$Y_{q}(z) = H_{q}(z) \frac{z}{z - 1} = \frac{z}{(z - 1)(z - 0.6)^{2}} = z \left[\frac{25}{4} \frac{1}{z - 1} - \frac{25}{4} \frac{1}{z - 0.6} - \frac{5}{2} \frac{1}{(z - 0.6)^{2}} \right]$$

$$= \frac{25}{4} \frac{z}{z - 1} - \frac{25}{4} \frac{z}{z - 0.6} - \frac{25}{6} \frac{0.6z}{(z - 0.6)^{2}}$$

$$\Rightarrow y[k] = Z^{-1} \left[\frac{25}{4} \frac{z}{z-1} - \frac{25}{4} \frac{z}{z-0.6} - \frac{25}{6} \frac{0.6z}{(z-0.6)^2} \right] = \frac{25}{4} - \frac{25}{4} (0.6)^k - \frac{25}{6} k(0.6)^k.$$

4. Assume that, in Figure 12.6 on page 339 of Goodwin et al., $G_o(s)$ is given by:

$$G_o(s) = \frac{2}{(s+1)(s+2)}.$$

- a. Compute the Delta-Transform of the transfer function from u[k] to y[k], $H_{o\delta}(\gamma)$, as a function of the sampling interval Δ .
- b. Verify that, if we make $\Delta \rightarrow 0$, then:

$$\lim_{\delta \to 0} H_{o\delta}(\gamma)\Big|_{\gamma=s} = G_o(s). \tag{25 pts}$$

a. One method for computing the Delta-transform transfer function makes use of the property:

$$Y_{o\delta}(\gamma) = \Delta Y_{oq}(z)\Big|_{z=\Delta\gamma+1}.$$
 (1)

As in Fig. 12.6 (in the book) we assume a zero order hold. Then, the Z-transform for the system's response to the Kronecker delta is:

$$Y_{oq}(z) = \frac{z - 1}{z} \mathcal{Z} \left[\mathcal{L}^{-1} \left[\frac{2}{s(s+1)(s+2)} \right]_{t=k\Delta} \right]$$

$$= \frac{z - 1}{z} \mathcal{Z} \left[1 - 2e^{-k\Delta} + e^{-2k\Delta} \right]$$

$$= \frac{z - 1}{z} \left[\frac{z}{z - 1} - 2\frac{z}{z - e^{-\Delta}} + \frac{z}{z - e^{-2\Delta}} \right].$$

From Eq. (1) above, the Delta-transform for the system's response to the Kronecker delta is then:

$$\begin{split} Y_{o\delta}(\gamma) &= \Delta Y_{oq}(z)\Big|_{z=\Delta\gamma+1} \\ &= \Delta \frac{\Delta\gamma}{\Delta\gamma+1} \left[\frac{\Delta\gamma+1}{\Delta\gamma} - 2\frac{\Delta\gamma+1}{\Delta\gamma+1-e^{-\Delta}} + \frac{\Delta\gamma+1}{\Delta\gamma+1-e^{-2\Delta}} \right] \\ &= \Delta \left[1 - 2\frac{\Delta\gamma}{\Delta\gamma+1-e^{-\Delta}} + \frac{\Delta\gamma}{\Delta\gamma+1-e^{-2\Delta}} \right] \end{split}$$

We now note that the Delta-transform transfer function is the system's response to a scaled version of the Kronecker delta, $\frac{1}{\Delta}\delta_{\scriptscriptstyle K}[k]$, rather than the unscaled Kronecker delta. Therefore, the transfer function $H_{\scriptscriptstyle o\delta}(\gamma)$ can be obtained from:

$$H_{o\delta}(\gamma) = \frac{1}{\Delta} Y_{o\delta}(\gamma)$$

$$= 1 - 2 \frac{\Delta \gamma}{\Delta \gamma + 1 - e^{-\Delta}} + \frac{\Delta \gamma}{\Delta \gamma + 1 - e^{-2\Delta}}$$

$$= 1 - 2 \frac{\gamma}{\gamma + a} + \frac{\gamma}{\gamma + b}$$

$$= \frac{(2a - b)\gamma + ab}{(\gamma + a)(\gamma + b)},$$

where $a = (1 - e^{-\Delta})/\Delta$ and $b = (1 - e^{-2\Delta})/\Delta$.

b. First we calculate the values of a and b when $\Delta \to 0$, making use of the Taylor series expansion of the exponential terms:

$$a = \frac{1 - e^{-\Delta}}{\Delta} = \frac{1 - \left(1 - \Delta + \frac{1}{2}\Delta^{2} - \frac{1}{6}\Delta^{3} + \dots\right)}{\Delta} = \frac{\Delta - \frac{1}{2}\Delta^{2} + \frac{1}{6}\Delta^{3} - \dots}{\Delta} = 1 - \frac{1}{2}\Delta + \frac{1}{6}\Delta^{2} - \dots$$

$$\Rightarrow \lim_{\Delta \to 0} a = 1$$

$$b = \frac{1 - e^{-2\Delta}}{\Delta} = \frac{1 - \left(1 - 2\Delta + \frac{1}{2}(2\Delta)^{2} - \frac{1}{6}(2\Delta)^{3} + \dots\right)}{\Delta} = \frac{2\Delta - 2\Delta^{2} + \frac{4}{3}\Delta^{3} - \dots}{\Delta} = 2 - 2\Delta + \frac{4}{3}\Delta^{2} - \dots$$

$$\Rightarrow \lim_{\Delta \to 0} b = 2$$

Thus:

$$\lim_{\Delta \to 0} H_{o\delta}(\gamma)\Big|_{\gamma=s} = \left[\frac{(2 \cdot 1 - 2)\gamma + 1 \cdot 2}{(\gamma + 1)(\gamma + 2)}\right]_{\gamma=s}$$
$$= \frac{2}{(s+1)(s+2)}$$
$$= G_o(s).$$

Dr. Ian C. Bruce April 2, 2003