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Minimum Time Dead-Beat Control

The basic idea in dead-beat control design is similar
to that in the minimal prototype case:  to achieve
zero error at the sample points in a finite number of
sampling periods for step references and step output
disturbances (and with zero initial conditions).
However, in this case we add the requirement that,
for this sort of reference and disturbance, the
controller output  u[k]  also reach its steady state
value in the same number of intervals.
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The design involves cancelling the open loop poles
in the controller.  Thus, the system is (for the
moment) assumed to be stable. We see that the result
is achieved by the following control law

The resulting closed loop complementary sensitivity
function is
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Example

Consider the servo system

Synthesize a minimum time dead-beat control with
sampling period ∆ = 0.1[s].

The next slide shows the simulated response.

Go(s) =
1

s(s+ 1)
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Figure 13.7: Minimum time dead-beat control for a
second order plant
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From the above result we see that the intersample
problem has been solved by the dead-beat control
law.

Note, however, that this is still a very wide-
bandwidth control law and thus the other problems
discussed in the slides for Chapter 12 (i.e. noise,
input saturation and timing jitter issues) will still be
a problem for the dead-beat controller.
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The controller presented above has been derived for
stable plants or plants with at most one pole at the
origin. Thus cancellation of A0q(z) was allowed.
However, the dead-beat philosophy can also be
applied to unstable plants, provided that dead-beat is
attained in more than  n  sampling periods.  To do
this we simply use pole assignment and place all of
the closed loop poles at the origin.
Indeed, dead-beat control is then seen to be simply a
special case of general pole-assignment.  We study
the general case below.
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Digital Control Design by Pole
Assignment

Minimal prototype and dead-beat approaches are
particular applications of pole assignment.  Indeed,
all can be derived by solving the usual pole
assignment equation:

for particular values of

The general pole assignment problem is illustrated
below.
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Example

Consider a continuous time plant having a nominal
model given by

Design a digital controller,  Cq(z), which achieves a
loop bandwidth of approximately 3[rad/s].  The loop
must also yield zero steady state error for constant
references.

Go(s) =
1

(s+ 1)(s+ 2)
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We first use the MATLAB program  c2del.m to obtain
the discrete transfer function in delta form representing
the combination of the continuous time plant and the
zero order hold mechanism.  This yields

We next choose the closed loop polynomial  Aclδ(γ) to
be equal to

D {Gho(s)Go(s)} =
0.0453γ + 0.863

γ2 + 2.764γ + 1.725

Aclδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4)
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The resulting pole assignment equation has the form

(γ2 + 2.764γ + 1.725)γLδ(γ) + (0.0453γ + 0.863)Pδ(γ) = (γ + 2.5)2(γ + 3)(γ + 4)



Chapter 13  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

The MATLAB program  paq.m is then used to solve
this equation, leading to  Cδ(γ), which is finally
transformed into  Cq(z).  The delta and shift
controllers are given by

Finally, the closed loop response is as shown on the
next slide.

Cδ(γ) =
29.1γ2 + 100.0γ + 87.0

γ2 + 7.9γ
=

Pδ(γ)
γLδ(γ)

and

Cq(z) =
29.1z2 − 48.3z + 20.0
(z − 1)(z − 0.21)
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Figure 13.8: Performance of digital control loop
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Summary
❖ There are a number of ways of designing digital control

systems:
◆ design in continuous time and discretize the controller prior to

implementation;
◆ model the process by a digital model and carry out the design in

discrete time.

❖ Continuous time design which is discretized for
implementation:

◆ Continuous time signals and models are utilized for the design;
◆ Prior to implementation, the controller is rep0laced by an

equivalent discrete time version;
◆ Equivalent means to simply map  s  to  δ (where δ is the delta

operator);
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◆ Caution must be exercised since the analysis was carried out in
continuous time and the expected results are therefore based on the
assumption that the sampling rate is high enough to mask sampling
effects;

◆ If the sampling period is chosen carefully, in particular with
respect to the open and closed loop dynamics, then the results
should be acceptable.

❖ Discrete design based on a discretized process model:
◆ First the model of the continuous process is discretized;
◆ Then, based on the discrete process, a discrete controller is designed and

implemented;
◆ Caution must be exercised with so called intersample behavior:  the

analysis is based entirely on the behavior as observed at discrete points in
time, but the process has a continuous behavior also between sampling
instances;
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◆ Problems can be avoided by refraining from designing solutions
which appear feasible in a discrete time analysis, but are known to
be unachievable in a continuous time analysis (such as removing
non-minimum phase zeros from the closed loop!).

❖ The following rules of thumb will help avoid intersample
problems if a purely digital design is carried out:

◆ Sample 10 times the desired closed loop bandwidth;
◆ Use simple anti-aliasing filters to avoid excessive phase shift;
◆ Never try to cancel or otherwise compensate for discrete sampling zeros;
◆ always check the intersample response.


	EE4CL4 - Lecture #32 cover page.pdf
	ELEC ENG 4CL4:Control System Design

	EE4CL4 - Lecture cover page.pdf
	ELEC ENG 4CL4:Control System Design




