ELEC ENG 4CL4:
Control System Design

Notes for Lecture #4
Monday, January 12, 2004

Dr. lan C. Bruce

Room: CRL-229

Phone ext.: 26984

Email: ibruce@mail.ece.mcmaster.ca




High-order differential and
difference-equation models

An alternative format to state-space equations is a high-order
differential equation that directly relates inputs to outputs,
commonly referred to as input-output models.

In the continuous-time case, these models have the form:

d"y (1) d" L (t) _
l< T oy (1), Tl ,...,u(t))-O,

where [ is some nonlinear function.

In the discrete-time case, we can write:

m (ylk+n],ylk+n—1],...,ylk],ulk+n-1],..., ulk]) = 0O,

where m is a nonlinear function.
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Modeling Errors

The so-called additive modeling error (AME) Is
defined by atransformation g_such that

Y= Yo + ge(u)

A difficulty with the AME isthat it is not scaled
relative to the size of the nominal model. Thisisthe

advantage of the so-called multiplicative modeling
error (MME), g, , defined by

Y = golu + galu))
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Example 3.5
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The output of a plant is assumed to be exactly described

by

Yy = f<3atoc<u>>

where f(o) iIsa linear transformation and sat denotes the

saturation operator, i.e.
sato () = <

If the nominal modedl Isc

/

a |z(t)] > |af
r |z(t)] < laf

\

nosen as gy(e) = f (o), I.e. the

saturation is ignored, determine the additive and the
multiplicative modeling errors.
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Figure 3.3: AME and MME due to saturation

Multiplicative modelling error
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L 1nearization

Although almost every real system includes
nonlinear features, many systems can be reasonably
described, at least within certain operating ranges, by
linear models.



Linearization using a Taylor series
expansion around an operating point

Consider two variables y and « related via the nonlinear
function f(o), i.e., y = f(x).

The normal operating point is designated by z,,.

If the function f(o) is continuous over the range of interest,
the Taylor series expansion of the function is given by:

y = f(z)
df (x — o) |, d°f (z — z0)? |




The slope at the operating point:

4

is a good approximation to the function f(o) over a small
range of (z—x,), the deviation from the operating point.

A reasonable linear approximation of the nonlinear function is
then:

d
y=Fo)+ | (@ 20) =yotm(z—0).

ZE a’j:xo

where m is the slope at the operating point. This can be
written as the linear equation:

(y —yg) =m(x —xg) oOrF Ay = mAx.
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Thus consider |
2(t) = f(z(t),u(t))

y(t) = g(x(t), u(t))
Say that { Xo(1), Ua(t), Yo(D); t O R} isagiven set of
trajectories that satisfy the above eguations, i.e.

iq(t) = flzq(t),uq(t));  xq(lo) given

yo(t) = g(zq(t), uq(t))
H(0) ~ flaque) + So| (@) @)+ o] (u(t) ~ ug)
V1)~ glaqua) + 52| (a(t)~wa) + 92| (ult) ~ ug)
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of

A= —
Ox | z=zq
’U,:’LLQ

dg

C=—2
’U,:UQ
E)_‘fchqu)
F =g(zq,uq)

Goodwin, Graebe, Salgado ©, Prentice Hall 2000

of
B= —
ou | z=zq
UZUQ
dg
D= —=
UZ’LLQ
9 of
€Z —_ — Uu
U=UQ U=uQ
a €T — éL' Uu
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Example 3.6

Consider a continuous time system with true model
given by

dx(t)

— = fla(t),u(t) = —v/z(t) + (u(t))

3

Assume that the input u(t) fluctuates around u = 2.
Find an operating point with uy =2 and alinearized
model around it.

dAda;(t) = —%Am(t) + %Au(t)
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Figure 3.4: Nonlinear system output, v, (t), and linearized
system output, Y,(t), for a square wave input of increasing
amplitude, u(t).
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Example 3.7 (Inverted pendulum)

0(t)

W Figure 3.5: Inverted pendulum

In Figure 3.5, we have used the following notation:

y(t) - distance from some reference point

O(t) - angleof pendulum

M - massof cart

m - massof pendulum (assumed concentrated at tip)
[ - length of pendulum

f(t) - forcesapplied to pendulum
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Example of an Inverted Pendulum
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Application of Newtonian physicsto this system
leads to the following mode:

i=1 +Slm20<t> [fg T 62(t)0sin 0(t) — g cos B(t) sin (1)

) — ! —f J COS )2 sin COS . sin
’= W + sin? 0(2) [ ——cos0(t) +07(¢)sin6(t) cosO(t) + (1 # Am)gsin 0(¢)

where A_=(M/m)
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Thisisalinear state space model in which A, B and C are:

0 1 0 0 0
|00 0 | w | e
A=|o o U 1|5 B=| ¥ | c=[1 0 0 0]
M-+m 1
0 0 (]\—Zﬁ)g 0] | M/
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Summary

0 Inorder to systematically design a controller for a
particular system, one needs aformal - though possibly
simple - description of the system. Such adescriptionis
called a mode!.

0 A model isaset of mathematical equations that are
Intended to capture the effect of certain system variables
on certain other system variables.
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0 Theitalicized expressions above should be understood as
follows:

1 Certain systemvariables: It isusually neither possible
nor necessary to model the effect of every variable on
every other variable; one therefore limits oneself to
certain subsets. Typical examples include the effect of
Input on output, the effect of disturbances on output, the
effect of areference signal change on the control signal,
or the effect of various unmeasured internal system
variables on each other.
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o Capture: A modd is never perfect and it istherefore

always associated with a modeling error. The word
capture highlights the existence of errors, but does not
yet concern itself with the precise definition of their
type and effect.

Intended: Thisword is areminder that one does not
always succeed in finding a model with the desired
accuracy and hence some iterative refinement may be
needed.

Set of mathematical equations. There are numerous
ways of describing the system behavior, such as linear

or nonlinear differential or difference equations.
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0 Modes are classified according to properties of the equation
they are based on. Examples of classification include:

Model
Attribute Contrasting Attribute Asserts whether or not ...

Singleinput

Single output Multiple input multiple output ... the model equations have one input and one output only

Linear Nonlinear ... the model equations are linear in the system variables

Time varying Time invariant ... the model parameters are constant

Continuous Sampled ... model equations describe the behavior at every instant of
time, or only in discrete samples of time

I nput-output State space ... the model equations rely on functions of input and output
variables only, or also include the so called state variables.

Lumped Distributed parameter ... the model equations are ordinary or partial differential

parameter equations

0 Inmany situations nonlinear models can be linearized
around a user defined operating point.





