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Frequency Response

We next study the system response to a rather special
input, namely a sine wave.  The reason for doing so
is that the response to sine waves also contains rich
information about the response to other signals.
Let the transfer function be

H(s) = K

∑m
i=0 bis

i

sn +
∑n−1

k=1 aksk

H(jω) = |H(jω)|ejφ(ω)

where

Then the steady state response to the input  sin(wt) is
y(t) = |H(jw)|sin(wt + φ(w))
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In summary:

A sine wave input forces a sine wave at the output
with the same frequency. Moreover, the amplitude of
the output sine wave is modified by a factor equal to
the magnitude of H(jw) and the phase is shifted by a

quantity equal to the phase of H(jw).
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Bode Diagrams

Bode diagrams consist of a pair of plots. One of
these plots depicts the magnitude of the frequency
response as a function of the angular frequency, and
the other depicts the angle of the frequency response,
also as a function of the angular frequency.
Usually, Bode diagrams are drawn with special axes:
❖ The abscissa axis is linear in log(w) where the log is base

10.  This allows a compact representation of the frequency
response along a wide range of frequencies. The unit on
this axis is the decade, where a decade is the distance
between w1 and 10w1 for any value of w1.
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❖ The magnitude of the frequency response is measured in
decibels [dB], i.e. in units of 20log|H(jw)|. This has several
advantages, including good accuracy for small and large
values of |H(jw)|, facility to build simple approximations
for 20log|H(jw)|, and the fact that the frequency response
of cascade systems can be obtained by adding the
individual frequency responses.

❖ The angle is measured on a linear scale in radians or
degrees.
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Drawing Approximate Bode Diagrams

❖ A simple gain K has constant magnitude and phase Bode
diagram. The magnitude diagram is a horizontal line at
20log|K|[dB] and the phase diagram is a horizontal line at
0[rad] (when K ∈ !-).

❖ The factor sk has a magnitude diagram which is a straight
line with slope equal to 20k[dB/decade] and constant
phase, equal to kπ/2. This line crosses the horizontal axis
(0[dB]) at w = 1.
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❖ The factor as + 1 has a magnitude Bode diagram which
can be asymptotically approximated as follows:

◆ for |aw|<<1, 20 log|ajw + 1| ≈ 20 log(1) = 0[dB], i.e. for low
frequencies, this magnitude is a horizontal line.  This is
known as the low frequency asymptote.

◆ For |aw|>>1, 20 log|ajw + 1| ≈ 20 log(|aw|) i.e. for high
frequencies, this magnitude is a straight line with a slope of
20[dB/decade] which crosses the horizontal axis (0[dB]) at
w = |a|-1. This is known as the high frequency asymptote.
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◆ the phase response is more complex.  It roughly changes
over two decades.  One decade below |a|-1 the phase is
approximately zero.  One decade above |a|-1 the phase is
approximately sign(a)0.5π[rad].  Connecting the points
(0.1|a|-1, 0) and (10|a|-1, 0) by a straight line, gives
sign(a)0.25 π for the phase at w = |a|-1.  This is a very
rough approximation.

❖ For a = a1 + ja2, the phase Bode diagram of the factor as
+ 1 corresponds to the angle of the complex number with
real part 1 - wa2 and imaginary part a1w.
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Example

Consider a transfer function given by

To draw the asymptotic behavior of the gain diagram
we first arrange H(s) into a form where the poles and
zeros are designated, i.e.

Then using the approximate rules gives the result
below:

H(s) = 640
(s + 1)

(s + 4)(s + 8)(s + 10)

H(s) = 2
(s + 1)

(0.25s + 1)(0.125s + 1)(0.1s + 1)
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Figure 4.7:  Exact (thick line) and asymptotic (thin line) Bode
                    plots
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Filtering

In an ideal amplifier, the frequency response would
be H(jw) = K, constant ∀ w, i.e. every frequency
component would pass through the system with
equal gain and no phase.
We define:
❖ The pass band in which all frequency components pass

through the system with approximately the same
amplification (or attenuation) and with a phase shift
which is approximately proportional to w.
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❖ The stop band, in which all frequency components are
stopped.  In this band |H(jw)| is small compared to the
value of |H(jw)| in the pass band.

❖ The transition band(s), which are intermediate between a
pass band and a stop band.
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❖ Cut-off frequency wc. This is a value of w, such that
                                     where        is respectively

◆ |H(0)|  for low pass filters and band reject filters

◆ |H(∞)| for high pass filters

◆ the maximum value of |H(jw)| in the pass band, for
band pass filters

( ) ,2/ĤjwH c = Ĥ
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❖ Bandwidth Bw.  This is a measure of the frequency width
of the pass band (or the reject band).  It is defined as Bw =
wc2 - wc1, where wc2 > wc1 ≥ 0. In this definition, wc1 and
wc2 are cut-off frequencies on either side of the pass band
or reject band (for low pass filters, wc1 = 0).
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Figure 4.8:  Frequency response of a bandpass filter
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Fourier Transform

Definition of the Fourier Transform

F [f(t)] = F (jω) =
∫ ∞

−∞
e−jωtf(t)dt

F−1 [F (jω)] = f(t) =
1
2π

∫ ∞

−∞
ejωtF (jω)dω
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Table 4.3:  Fourier transform table

f(t) ∀t ∈ R F [f(t)]
1 2πδ(ω)

δD(t) 1

µ(t) πδ(ω) +
1
jω

µ(t) − µ(t− to)
1 − e−jωto

jω

eαtµ(t) 	{α} < 0
1

jω − α

teαtµ(t) 	{α} < 0
1

(jω − α)2

e−α|t| α ∈ R+ 2α
ω2 + α2

cos(ωot) π (δ(ω − ωo) + δ(ω − ωo))
sin(ωot) jπ (δ(ω + ωo) − δ(ω − ωo))

cos(ωot)µ(t) π (δ(ω − ωo) + δ(ω − ωo)) +
jω

−ω2 + ω2
o

sin(ωot)µ(t) jπ (δ(ω + ωo) − δ(ω − ωo)) +
ωo

−ω2 + ω2
o

e−αt cos(ωot)µ(t) α ∈ R+ jω + α

(jω + α)2 + ω2
o

e−αt sin(ωot)µ(t) α ∈ R+ ωo

(jω + α)2 + ω2
o
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Table 4.4:  Fourier transforms properties.  Note that Fi(jw) =
                  F[fi(t)] and Y(jw) = F[y(t)].

f(t) F [f(t)] Description
l∑

i=1

aifi(t)
l∑

i=1

aiFi(jω) Linearity

dy(t)
dt

jωY (jω) Derivative law

dky(t)
dtk

(jω)kY (jω) High order derivative∫ t

−∞
y(τ)dτ

1
jω

Y (jω) + πY (0)δ(ω) Integral law

y(t− τ) e−jωτY (jω) Delay

y(at)
1
|a|Y

(
j
ω

a

)
Time scaling

y(−t) Y (−jω) Time reversal∫ ∞

−∞
f1(τ)f2(t− τ)dτ F1(jω)F2(jω) Convolution

y(t) cos(ωot)
1
2
{Y (jω − jωo) + Y (jω + jωo)} Modulation (cosine)

y(t) sin(ωot)
1
j2

{Y (jω − jωo) − Y (jω + jωo)} Modulation (sine)

F (t) 2πf(−jω) Symmetry

f1(t)f2(t)
1

2πj

∫ σ+j∞

σ−j∞
F1(ζ)F2(s− ζ)dζ Time domain product

eatf1(t) F1(jω − a) Frequency shift
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A useful result: Parseval’s Theorem

Theorem 4.1:  Let F(jw) and G(jw) denote the
Fourier transform of f(t) and g(t) respectively.  Then

∫ ∞

−∞
f(t)g(t) dt =

1
2π

∫ ∞

−∞
F (jω)G(−jω) dω
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Table 4.5:  System models and influence of parameter
                  variations

System Parameter Step response Bode (gain) Bode(phase)

K

τs+ 1
K K

K

− π
2

τ
τ τ

τ

− π
2

ω2
n

s2 + 2ψωns+ ω2
ψ

ψ
ψ

ψ

−π

ωn

ωn
ωn

ωn

−π

as+ 1

(s+ 1)2
a

a

a

a

− π
2

−as+ 1

(s+ 1)2
a a

a

a

− 3π
2

ibruce
n
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Modeling Errors for Linear Systems
If a linear model is used to approximate a linear system,
then modeling errors due to errors in parameters and/or
complexity can be expressed in transfer function form
as

where Gε(s) denotes the AME and G∆(s) denotes the
MME, introduced in Chapter 3.
AME and MME are two different ways of capturing the
same modeling error. The advantage of the MME is that
it is a relative quantity, whereas the AME is an absolute
quantity.

Y (s) = G(s)U(s) = (Go(s) + Gε(s))U(s) = Go(s)(1 + G∆(s))U(s)
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Example:  Time Delays

Time delays do not yield rational functions in the
Laplace domain. Thus a common strategy is to
approximate the delay by a suitable rational expression.
One possible approximation is

where k determines the accuracy of the approximation.
For this approximation, we can determine the
magnitude of the frequency response of the MME as
shown below.

e−τs ≈
(−τs + 2k

τs + 2k

)k

k ∈ 〈1, 2, . . . 〉
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Figure 4.9:  MME for all pass rational approximation of time
                  delays
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Missing resonance effect

The omission of resonant modes is very common
when modeling certain classes of systems, such as
robots, arms, antennas and other large flexible
structures. This situation may be described by

The modeling errors are now given by

G(s) =
ω2

n

s2 + 2ψωns + ω2
n

F (s) Go(s) = F (s) 0 < ψ < 1

Gε(s) =
−s(s + 2ψωn)

s2 + 2ψωns + ω2
n

F (s) G∆(s) =
−s(s + 2ψωn)

s2 + 2ψωns + ω2
n
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Figure 4.10:  MME frequency response for omitted resonance,
                     for different values of the damping factor ϕ
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Bounds for Modeling Errors

In control system design it is often desirable to
account for model errors in some way.  A typical
specification might be

where ε(w) is some given positive function of w.

|G∆(jω)| < ε(ω)
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Summary
❖ There are two key approaches to linear dynamic models:

◆ the, so-called, time domain, and
◆ the so-called, frequency domain

❖ Although these two approaches are largely equivalent, they
each have their own particular advantages and it is
therefore important to have a good grasp of each.



Chapter 4  Goodwin, Graebe, Salgado
©

, Prentice Hall 2000

❖ In the time domain,
◆ systems are modeled by differential equations
◆ systems are characterized by the evolution of their

variables (output etc.) in time
◆ the evolution of variables in time is computed by

solving differential equations
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❖ In the frequency domain,
◆ modeling exploits the key linear system property that

the steady state response to a sinusoid is again a
sinusoid of the same frequency;  the system only
changes amplitude and phase of the input in a fashion
uniquely determined by the system at that frequency,

◆ systems are modeled by transfer functions, which
capture this impact as a function of frequency.
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❖ With respect to the important characteristic of stability, a
continuous time system is

◆ stable if and only if the real parts of all poles are strictly
negative

◆ marginally stable if at least one pole is strictly
imaginary and no pole has strictly positive real part

◆ unstable if the real part of at least one pole is strictly
positive

◆ non-minimum phase if the real part of at least one zero
is strictly positive.
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❖ All models contain modeling errors.

❖ Modeling errors can be described as an additive (AME) or
multiplicative (MME) quantity.

❖ Modeling errors are necessarily unknown and frequently
described by upper bounds.
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