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Abstract—The active filtering effect in the inner ear is disrupted
with sensorineural hearing impairment. This causes a loss of
frequency selectivity and dynamic range. Compression is often
used in hearing-aids in an attempt to re-establish the normal
dynamic range of the cochlear response. While some studies show
increased speech intelligibility with artificial noise sources for
compressive hearing-aids, most show little (< 1 dB versus linear
aids) or no advantage in competing speech. In this paper we
explore a quantitative model to explain the empirical performance
of compressive hearing-aids in competing speech. By combining an
accurate cochlear model with a model of higher auditory feature
analysis based on spectral-temporal clustering of onsets, we
previde an explanation for the failure of hearing-aid compression
algorithms to increase intelligibility. Our proposed spectral-
temporal intelligibility model suggests that increasing
intelligibility for a hearing impaired person in competing speech
requires both spectral and temporal suppression.

Index Terms—Adaptive signal
clustering, intelligibility metrics.

processing, compression,

I. INTRODUCTION

he rationale behind including some sort of compressive

preprocessing in a hearing-aid is the fact that an auditory
system loses dynamic range due to sensorineural impairment
[1]. Most researchers now agree that this loss is due to the
destruction of hair bundles on outer hair cells (OHCs) in the
cochlea. QHCs mechanically modulate the traveling wave of
acoustic energy along the basilar membrane. This modulation
acts as a nonlinear amplification at a particular frequency, and is
also responsible for the suppression or contrast enhancement
characteristics of a normal ear. Presumably, to restore normal
hearing to a sensorineural impaired individual, there must then
be some sort of compression in a hearing-aid.

Compression circuits in hearing-aids are characterized by
time, intensity and frequency parameters. Individual parameters
are selected based on reasons such as loudness normalization,
discomfort avoidance, or dynamic range compression. Dillon
gives an overview and tutorial on the competing rationales and
characteristics [2]. The degrees of freedom available to a
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hearing aid circuit designer make it infeasible to perform
empirical intelligibility testing across all the possible
parameters. Also, these studies look at what can be done to
alleviate the symptoms of sensorineural hearing impairment, but
do not really address the core problem,

The true problem that needs to be modeled is how the
compressive non-linearity of the cochlear amplifier, disturbed
by sensorineural hearing loss, can be restored by signal
processing in a hearing-aid. There is a complicated set of signal
processing that is taking place in the cochlea that ultimately
affects intelligibility. Quantitative evaluation of compression
circuits in hearing-aids, reduces the burden on empirical testing.

Quantitative analysis must also predict why there is such a
large discrepancy between the hearing impaired and normal
hearing person’s ability to unmask competing speech.
Understanding this disparity is key to building optimal
compression circuits, Reference [3} shows a SNR advantage
between 12-15 dB for normal hearing people over hearing
impaired people in identifying syllables in competing speech.
Over time, testing methodologies have been refined, but results
still show an enormous discrepancy between normal hearing
and hearing impaired people’s ability to understand speech
against contending speech. Table 1 gives an overview of normal
versus hearing impaired peoples ability to recognize target
speech with a masking speaker.

TABLE I
INTELLIGIBILITY IN SPEECH AND SPEECH-LIKE NOISE
- SRT
Study Description (Normal/mpaired)
Puguesno 20 elderly subjects with ski-
1383 [ 4]y, slope high frequency loss; -17.6/-5.3
freefield; Competing @ 55 dBA
Festen & 20 mixed age and losses;
Plomp, 1990  moenaural earphones; Competing -11.4/-1.1
[5] @ 80 dBA
Hyggeetal, 24 mixed age; freefield, binaural; § .
1992 [6] Competing Speech. 9-2/10* SNR
10 elderly subjects with ski-
Peters et al, slope high frequency loss; 11.9/0.8
1998 [7] monaural earphones; Competing o

@ 65 dBA
To underscore Table 1, in noise with a long term average
speech spectrum (LTASS) the difference in SRTs between
normal and impaired hearing individuals is only 2-5 dB [8].
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It seems that to allow a sensorineural impaired person the
ability to operate in the classical cocktail party in a way that
approaches a normal hearing person, auditory compression
must be understood in the competing speech regime. This will
intertwine the counterbalanced processes of compression and
suppression.

II. METHOD

We preprocess an acoustic signal with a compression
algorithm, and then model the resultant representation by the
auditory nerve activity, taking into account cochlear processing
effects including compression and suppression, as well as the
effects of sensorineural hearing loss. We further process this
auditory representation by calculating regions of onset of
activation, and clustering the onset data across time and
frequency. This spectro-temporal fusion reveals a very different
pattern between normal and impaired auditory representations.
We can thereby map the distortion between a normal and
impaired hearing representation in this domain, to obtain a
novel model of intelligibility. In this way we hope to produce a
quantitative mogel to predict hearing aid performance.

There have been several previous attempts to produce a
quantitative model to assess hearing aid performance or for
hearing-aid circuit design. Fabry and van Tassel [9] used the
articulation index, Kates [10] used a fairly simple
compressing/suppressing model, and Anderson [11] used an
invertible auditory model. None of these attempts represent
temporal information. The basic advantage of our method over
these models is the introduction of timing information into the
distortion metric. From the introductory discussion it is seen
that the temporal modulations in competing speech are
important in unmasking target speech in normal hearing people
but are not accessible to hearing impaired people. We aim to
show that most temporal information is lost with sensorineural
impaimment, and that present hearing-aid processing strategies
do not address this.

A. Empirical Data

Our model follows the process and data in Moore, Peters and
Stone [12]. They camried out SRT tests on elderly
hearing-impaired people with ski-slope, high-frequency loss
with simulated linear, WDRC and multiband (2, 4, 8)
compression hearing-aids. The subjects were fitted using the
“Cambridge” formula [13] for the linear condition. The
compression ratio (CR) and threshold (CT) were determined by
applying the following two constraints:

1. The gain in each channel for a 65 dB SPL, speech
shaped, input noise is the same as in the linear condition,
The gain in each channel makes a 45 dB SPL speech
signal in 65 dB SPL noise above the impaired hearing
threshold.

The second constraint could not be held in all conditions. Our
example loss profile was the average loss profile of the 18
subjects from the study. The hearing loss in dB SPL,
compression ratio and compression threshold per channel are

2.
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listed in Table 2. The attack and release times are typical of fast
compression: both were 8.2 ms. The output SRTs in competing
speech for the unaided, linear, and eight-channel compression
were reported as 0.5, -2.0, and -2.9 dB respectively [12].

TABLE 2
LOSS PROFILE AND PARAMETERS FOR A COMPRESSION CIRCUTT

Frequency Hearing Loss CR CT
250 28 1.7 223
500 31 L1 24.6
1000 38 13 16.1
2000 50 1.7 9.5
3000 59 2.4 7
4000 64 29 7
5000 66 29 7
6000 68 29 7

While Moore Peters and Stone used several different noise
types, we focused on competing speech because of the large
differences in intelligibility between stimulus types at the same
SNR. We used the same HINT sentences [14], but recorded for
multiple talkers [15]. To compile the statistics we used twenty
of the test sentences from the HINT corpus.

B. Auditory Model

The auditory periphery model used throughout was taken
from Bruce et al, [16]. This model comprises several sections,
each providing a phenomenological description of a different
part of auditory periphery function.

Controt
Input Path
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Fig. 1 Phenomenological auditory model j16).

The first section models outer and middle ear filtering up to
the cochlea. The control-path filter has a wider bandwidth than
the signal-path filter to account for wideband nonlinear
phenomena such as two-tone rate suppression. The synapse
model transforms the acoustic pressure wave after the nonlinear
filtering of the control and signal path into spontancous rate
with adaptation. This is the instantaneous spontaneous rate used
throughout this paper.

In our model, there was some damage to the inner and outer
hair cells, so there is not ideal functioning in the cochlea. From
the threshold losses detailed in Table 2, impairments of inner
and outer hair cells were calculated so that OHC impairment
accounted for around 30-60% of the total threshold shift at a
frequency, in dB [17]. The percent IHC loss was then adjusted
to explain the remaining threshold shift. Fig. 2 is an example of
normal and damaged auditory responses.

Effects of sensorineural impairment such as spreading in time
and frequency are evident in the lack of separation between the
lines representing formant frequencies. What is not obvious in
this representation is how intelligibility is affected.
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Fig. 2 Auditory representation for the sentence "The boy
got into trouble”. Part A is from a normal hearing auditory
model, B is from a sensorinevral impaired auditory model.
There is noticeable smearing in time and frequency.
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C. Perceptual Grouping of Onset Stimuli

A representation of the acoustic waveform allowing grouping
of onset cues was chosen as a way of identifying acoustic events
that are perceptually relevant and may be the source of the
intelligibility difference between normal hearing and hearing
impaired people in competing speech. Onset characteristics of
the auditory representation were calculated with a difference of
exponentials filter, hy[n], in each frequency band

[#]1= % exp"’""‘—y exp™"'® . 4}
. a @

a, and a, were selected to pass frequencies from 4 to 32 Hz.
These frequencies contribute most to intelligibility, with a
signal’s fine temporal structure only adding a small amount to
intelligibility [18].

This onset data was then integrated over a typical acoustic
event time window, h,[n], which had a 6 dB cutoff at 125 Hz.
This integrator had a similar form to h[n],

()= %2 : exp™’®- @

For a sample rate of 11025 Hz a, was 0.06, ¢, was 0.10, and
ay was 0.001. An adaptive threshold and refraction operation
was then applied. The threshold value was determined to
produce some percentage of active events in the discretized
time-frequency grid when the refractory period is 1 ms. We
chose one tenth of a percent, but anything suitably sparse
clustered in our experiments, and gave similar results (anything
less then 1% clustered in our experience). This produced a
discrete event map such as the one given in Fig. 3. '

Fig. 3 clearly shows that important timing information is
carried across multiple frequencies. To calculate perceptual
relevance we applied a clustering algorithm using a
hard-decision rule for class membership based on a Gaussian
probability distribution assumption. Taking the threshelded
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Fig. 3 The input signal is represented on the auditory nerve.
Then low frequency auditory information is extracted with
an onset detector. The onset events are then integrated over
a speech cue period. With thresholding and a refraction
window, discrete events are finally mapped.

information from Fig. 3, and making each event, k, a two
dimensional sample in time (subscript t) and frequency
(subscript ), Z, ={2x, Zn}, the whole set of acoustic events is

represented as Z. Starting with a limited number of possible
classes, J, we run an iterative clustering algorithm, with death
for small clusters. A sample was assigned to class ] when

7P| 5)>m P2, alli® ) (3}
where -
1o g, T
P(j13,)= ————exp n e an) (4)

Var |det(2, )|
T H and T ; are the prior probability, mean and covariance

statistics for class j, respectively. All samples were classified
before the prior and statistics are recalculated in a batch mode.
Classes with a low prior probability were pruned; in these
examples, classes with less then half a percent of all the events
were discarded. Classification and statistical updates were
iterated until the priors stopped changing between iterations by
more then two percent root-mean-square.

The classes were then split in half along the temporal axis and
classification was again seeded and performed in the halved
datasets to account for time warping or long pauses. This
bifurcation helps competition and reduces reliance on initial
conditions, The result of this clustering, using the onset data
from Fig. 3 and bifurcated once with 50 initial classes is given in
Fig. 4.
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Fig. 4 The normal hearing, perceptual clusters mean and
two-standard deviation contours are plotted for the first
half of the example sentence.

III. RESULTS

A. Single Speech Stream

The goal of this research was to be able to quantify effects on
intelligibility of nonlinear, dynamic algorithms for
sensorineural impairment. The question we looked at first was
whether our “perceptually relevant” clusters produce distinctly
different representations for normal and impaired auditory
models. Using the same Cambridge linear fitting strategy, with
the simulated steeply sloped hearing loss as detailed in Table 2
we presented the stimuli to the normal and damaged auditery
models. The normal model produced the clusters shown in Fig.
4, the damaged mode! with preprocessing gain calculated by the

Cambridge formula produced the clusters shown in Fig 5.
‘Onset Perceptual Evant Clusters

[
o

Fig. 5 The sensorineural impaired perceptual clusters mean
and two-standard deviation contours are plotted in solid
lines. The normal clusters from Fig. 4 are plotted with
dotted lines for reference.

In this particular example, in the case of the impaired model,
fewer classes are formed, the variances of those c¢lasses are
greatly enlarged, and entire onset cues for some phones are lost,
The dotted lines representing the normal hearing clusters are
sometimes far removed from the impaired clusters. These
results are indicative of both spectral and temporal spreading.
Table 3 highlights the general results.

This general pattern should be indicative of differences
between normal and impaired listeners on the order of 3 to 5 dB
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TABLE 3
DIFFERENCES IN NORMAL AND IMPATRED PERCEPTUAL CLUSTERING

. Impaired Impaired
Varizble Normal Linear 8-Channe]
G 10ms 11 ms 12 ms
of 398 Hz 503 Hz 517 Hz
Classes/second 538 35.5 32.6

in SRT. This is the baseline deficit that hearing impaired people
face in conditions without any temporally modulated noise.
Another test versus empirical data is to judge the difference
between linear and the 8-channel compression preprocessing.
With the 8-channel compression circuit the impaired results are
almost identical to the linear case. In only three of the twenty
test sentences did compression produce a “phantom grouping”,
where a cluster was formed outside of a phone boundary. This is
the expected result with speech presented at 65 dB SPL because
it will very rarely go under the comipression threshold with the
windowed energy calculation used here. Compression circuits
do not overly change the AN representation of onset cues.

B. Competing Speech Streams

So far we have dealt with speech in noise. An important
question is how are these results affected by competing speech
streams? Moore, Peters and Stone used a female talker whose
fong term average speech spectrum was modified to match the
male targets as an interfering signal. The time envelope was
basically undisturbed. Figure 6 shows the clustering that takes

place in a normal hearing model for these data.
QOnaet Perceptual Event Clusters

Fig. 6 Normal competing speech clusters for the same input
as Figure 4 and 5. There are more classes with smaller
variances between them then the normal hearing model
clustering without competing speech.

The compression and suppression characteristics of a normal
undamaged ear have clearly changed the representation between
target speech and target speech with competing speech. The
clusters are smaller and more are made. This is not the case in
the impaired auditory system’s ability to cluster two speech
signals as shown in Fig, 7,

Fig. 7 is the grouping that takes place with 8-channel
compression. Clearly the auditory system can not make use of
the onset characteristics of a speech signal with this type of
compression. While the normal ear responds with more specific
groupings of acoustic events because of spectral-temporal
suppression, the normal compression circuit does nothing to
reestablish normal cochlear signal processing.
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Fig. 7 Impaired competing speech clusters for the same
inpat as Fig. 4 and 5. There are roughly the same number of
classes and those class variances remain high.

Table 4 is a comparison of the clustering statistics in
competing speech.

TABLE 4
DIFFERENCES IN NORMAL AND IMPAIRED PERCEPTUAL CLUSTERING IN
COMPETING SPEECH
. Impaired Impaired
Variable Normal Linear 8-Channel

[ 10ms 12 ms 12 ms
o 348 Hz 555 Hz 573 Hz
bl 70.8 384 341

Comparing to Table 3 the data that jumps out is the much
smaller variances in the normal ear, the larger number of
classes, while the statistics for the impaired ear remains
remarkably similar. This is conceivably the reason why a
normal hearing person has reduced SRT in competing speech
versus steady noise (-12 dB versus -4 dB) while a hearing
impaired person does not see the same level of advantage (-2 dB
versus 1 dB) [7].

We think of intelligibility as the ability to group perceptually
relevant acoustic cues while removing other events from
different streams. This is different from the articulation index
(AD) or speech inteliigibility index (SII). They calculate the
intelligibility of a speech token based on the summation of
signal-to-noise ratio (SNR} in a set of bands. We maintain that a
meore appropriate measure of the intelligibility of a speech token
is the event-to-noise ratio. Here our events will have some
spectral-temporal mask that can be used to determine whether
the acoustic cue is discriminable. This can test specific phones,
while the Al and SII measures have an implicit assumption
about the ensemble statistical structure of speech across
frequency.

IV. CONCLUSION

We have outlined a way of representing acoustic material that
qualitatively predicts intelligibility for a compression circuit in
a hearing-aid in competing speech. This representation is
affected by time, intensity and frequency parameters. To make it
into a useful intelligibility metric it still needs validation against
normal conditions, and a mapping between the clustered space
and a scalar intelligibility value.

To make the ideal predictor, the clustering space needs to be
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optimized. The input spectrum is not entirely contiguously
represented in the auditory cortex, so the frequency dimension
may be “folded” to make different frequencies proximal in the
clustering space. There is also the extension to higher
dimensionality. One necessary addition would be the phase
dimensicn. .

Another possibility to moving towards the ideal hearing-aid
predictor would be the addition of attentional information, A
prior probability weighting for the expected speech stream
could easily be added in the clustering algorithm.
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