Refractory Properties of Cochlear Implant-Induced Spiking in Auditory Nerve Fibers are
Dependent on Location of Stimulation and Voltage-Gated Channel Type Distribution
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Abstract

Background Experimental work has demonstrated that auditory nerve fibers
(ANFs) of cats cannot fully respond to high rates of electrical stimulation, thus

Jason Boulet!? and lan Brucel?3

Auditory Engineering Laboratory!, McMaster Integrative Neuroscience Discovery & Study?,
Department of Electrical & Computer Engineering®, McMaster University, Hamilton, ON, Canada

Il. METHODS: ANF Models

Compartmental Model

I1l. RESULTS: Single-Pulse Response

Firing Efficiency (FE)

I1l. RESULTS: Spike Initiation and Propagation

Relative Membrane Potential
Model A Model B Model C

AUDITORY
ENGINEERING
LABORATORY

lIl. RESULTS: Spike-Rate Adaptation

Post-Stimulus Time-Histograms at FE = 0.5

pl p2 p3 p4 cl c2 c3 c4 C5

. . . . . , i 1 ~—"" 2 . V (mV) L 00-
reducm.g ’rh.e information transfer to tr1e l?raln. Mrller et al. (2001) have §hown /Perlphe/\ral axon\igm\a/ Centr/al axon unit: iim ,."‘ Figure 5 - FE is the probability of a |' 140 o §
that a limiting factor of the reduced spike information transfer can be attributed 10150 150 150 32.6 150 200 250 300 350 N I spike given a single pulse of current in- : _ fwo 0:50- %
to the neuron’s refractory period. A computational model of a node of Ranvier | NI < i Lg » put. Data points are the mean values . S ¥ oo 0251 w N
of the ANF (Negm and Bruce, 2008) suggested that low-threshold potassium T- t € ( “ { { { o (T .§05 , ]:.rom 1000 S'mmatciog trials anéi e S 80 00-
(KLT) and hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pl p2 p3 p4 cl c2 3 c4 e 1 c23 il ,/’ 't to an integrated Gaussian (Bruce ¢ | ’ 60 0751 o
. . . . Q\ p > , et al., 1999a). The threshold current 55 X | : ~ E
channels (Yi et al., 2010) might be responsible for a larger refractory period o a £ R 9 is the current at FE — 0.5 and the 8. ( 40 T o ‘ | " ’ S
Negm and Bruce, in prep.). ,* lati dis RS = o/0. Thi S 4 D oo | KBTI | il T | il A
( 5 Prep ) : : : L Figure 2 : Feline ANF morphology is based on Woo et al. (2010). The soma is myelinated, o Y relative spread 15 o/ > < 20 100 .é
Methods We extend that work with a simulation study taking into account . . v example is the response from an elec- r 8C
_ _ _ o - which contrasts with the mouse and human ANF. | e | | | trode placed 0.5 b de 3 0 co75 o
ANF morphology (Woo et al., 2010) to consider the differential spiking activity o 340 ey current (2 400 rode placed U.o mm above node cJ. g = 0501 =
as a function of 1) the location of electrical stimulation and 2) nodal channel lon Channel Distribution Soatial Soiking R . . . . » o.zs-tL | WML ; L " ] | L
composition at important locations along the ANF. Specifically, we test three ~ oo | P4 'ab b_l_p' NG RESPONSE e A C 7001
ANF models variants: A) only fast Nav and delayed-rectifier Kv at all nodes £ 50 L L L L L L ” A RN oo 0.975- = - - - - - - e o
| ants: . €S, = g nitiation = Figure 10 :  One example of a simulation of the relative membrane potential as a function of 0.50 sl . \ ~
B) with the addition of KLT & HCN channels (YI et al., 2010) at the first %100 %‘ﬁg”e' EZ‘ .I u N . Ros 09501 % time and node of Ranvier along the ANF. For these particular trials, we present the ANF with 0.251 ‘ T L— T N
peripheral node and on the nodes of Ranvier neighboring the soma and C) by 3 50 L L L L L L = W< s *-. * 09251 ; ] a stimulus 0.5 mm over node p4, with an IPI of 750 ps and a second-pulse magnitude of 1.50. ooo-,k ,,,,, MAAERNRN |\ ROASDIR k ,,,,, LAMTAVENOTE MR \ ,,,,, | L
— Qc4 _ . . CB38RBS°RBREBR T B 8B3°B8B3°B3B3°B3BS°TRISBTB38BB3°HB383B 3
expanding the distribution of KLT channels to all nodes (Bortone et al., 2006). e O MHCN B 0.4 _3)0998 mTmeee stim TS T T Y Yimems o TTe o EEe
, © C 0.9 TTUUrTITITa TN o - B . _ _
Results In general, we observed the absolute refractory period of model C S s0 h h h h h h O o i - I1l. RESULTS: Threshold Ratio (2nd-pulse/1st-pulse) Figure 14 :  PSTHs for our model ANFs. The responses are shown for stimulated nodes p1
to be the greatest followed by model B, then by model A. Models B and C o % 0 x 0 - . . e 0.3 g OF 3 T to cb at the stimulus rates 200, 800, 2000 and 5000 kHz with monophasic stimulation and at
contrasted with model A by having a greater probability of spike initiation at Node of Ranvier B 071 o E— C We fit the threshold data to a distance of 0.5 mm. The. PSTHS were generated by averaging across 100 simulation trials
the location of stimulation. Model A did not show a strong relative refractory Figure 3 :  Hossain et al. (2005) found high densities of Nav1.6 channels located at pl, p4 0.2 o75] TR 0., a;+ ap (1) of 200 ms for two sets of time-bins (Zhang et al., 2007).
period at its peripheral nodes. We argue that the washout of the relative and cl in the mouse ANF. Yi et al. (2010) have shown HCN channels at the same nodes 0.50- 3 1= 2 (1 — ex Plmes ) | ) 4 2, (1 — ex IPl—Tabs
refractory period in this region was dependent on the low correlation between in mouse spiral ganglion cells. KLT channels have been localized on ANF axons entering rat 0.1 N 1 P Ty 2 P ™ IV. CONCLUSIONS
the location of the stimulating electrode and the location of spike initiation. ( ) 0 F(_).'_25 Effqis o.'7F5E i which has been found to fit the threshold ratio data better with two time scales
. . . . . . . . . . Iring ICIENCY, " " "
Conclusion Preliminary results indicate that model C is most consistent with Circuit Model | N - | T (Negm and Bruce, in prep.) than with one (Miller et al., 2001). > Single-pulse threshold currents in models C>B>A.
the published physiological data. In addition to the KLT & HCN channels of Ve V., Vi s Ve ks Figure 6 . (left) Probability of spike initiation from single pulse stimulation. Results were

model C, other ion channel types may be necessary to explain all aspects of

gathered from 1000 simulation trials. Probability is mapped onto a color as function of the
stimulated site (x-axis) and the spike initiation node (y-axis). Gray values indicate no spike.

Threshold Ratio

Mono Bi

» Models B and C show a stronger relationship between where the stimulus
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peripheral node (or terminal) and the nodes neighboring the soma in mouse
spiral ganglion cells. KLT channels have been localized on ANF axons
entering rat cochlear nucleus (Bortone et al., 2006).

state transition diagrams for Nav, Kv (Mino et al., 2002), KLT (Negm and
Bruce, 2008) and HCN1,4 (Liu and Davis, 2012) are shown in Table 1. Red

states indicate fully open states that contribute to conducting ionic current.
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Figure 7 :  (left) Threshold current (#) and (right) Relative Spread (RS) across all nodes
over 1000 trials.
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