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Abstract—The single-pulse model of the companion paper [1] model, is still computationally efficient and can be fitted easily

is extended to describe responses to pulse trains by introducing to the statistics of AN parameters collected from physiological
a phenomenological refractory mechanism. Comparisons with studies

physiological data from cat auditory nerve fibers are made for Furth this simpl del i ticularl luable b
pulse rates between 100 and 800 pulses/s. First, it is shown that urthermore, this simple model Is particularly valuable be-

both the shape and slope of mean discharge rate curves areCause itis composed of several “conceptual components” (e.g.,
better predicted by the stochastic model than by the deterministic a stochastic component, a refractory component). The impact
model. Second, while interpulse effects such as refractory effects of various modifications or exclusions of the components can

do indeed increase the dynamic range at higher pulse rates, both |, easily explored with such models—we will illustrate the
the physiological data and the model indicate that much of the .. .
utility of this feature.

dynamic range for pulse-train stimuli is due to stochastic activity. ] . . ) )
Third, it is shown that the stochastic model is able to predict the In Section Il, we describe our analysis of the physiological
general magnitude and behavior of variance in discharge rate as data. In Section Ill, we present the pulse-train model and
a fUI’]CFiOI"I of pulse rate, while the deterministic model predicts investigate response properties of the model at a range of pu|5e
no variance at all. rates. In particular, we compare the behavior of the model

Index Terms—Auditory nerve, cochlear implant, functional with and without the stochastic component. In Section 1V, we
electrical stimulation, pulse-train response, population response, describe the effects of pulse-train stimulation on the model of
refractory effect, renewal process, sensory prosthesis, stochastictota| AN response developed in [1]. Finally, in Section V, we
model. discuss further physiological and modeling studies that would

help in refining and extending our model.
|. INTRODUCTION

N [1], we presented a stochastic model of auditory nerve [l. METHODS

(AN) response to single electrical pulses, following the The physiological data presented in this paper are single-
conceptual approach used in [2]-{4]. In [5]{8], we hav@per cat AN data from [9] (see [1] for a summary of the
gone on to show that the stochastic single-pulse model beﬁgbsiological methods). Along with Javet al’s analysis of
predicts a range of psychophysical measures of loudness ti@hn discharge rate in response to trains of evenly timed,
the equivalent deterministic model does. In this paper, Wiiform, biphasic current pulses, we present a previously
extend the model to describe responses to pulse-train stimylpublished analysis of this data set. The variance in discharge
The final model, although more complex than the single-pulggte is estimated by calculating the variance in the number of
q'@gharges recorded in response to repeated presentation of a
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Pulses Discharges behavior of the membrane noise during the larger depolar-
2117t ization that occurs as a result of an action potential is not
+ > well understood. This requires a more thorough investigation

> of the behavior of ionic channels during and after action
potential generation. Some physiological data and modeling
Vietr results indicate that the noise only increases significantly
% t during depolarizations that do not generate an action potential
[13, Fig. 5-7], whereas others suggest that the membrane noise
could increase greatly during a segment of the refractory
period under some conditions [14], [15]. Due to the uncertainty
about the exact nature of these phenomena, we will not attempt
incorporate them into the model at this stage. Consequently,
Fig. 1. Stochastic model of pulse-train response. See text for explanatiortie Standard deviation df,.is. remains constant during the
circuit components. refractory period, i.e.¢g of Vigice = RS X Vipe't
An excitatory interpulse effect has also been observed if

to any one pulse in the train will be dependent on how t{8€ depolarization caused by a pulse is not great enough to

neuron has responded to the previous pulses in the pulse trBfi@duce an action potential. In this case, any pulse following
Such dependencies are commonly referred tanterpulse this subthreshold “conditioner” pulse will have a reduced
interactions threshold [13], [16]. These excitatory effects generally last for

The major form of interpulse interaction seen in physidPProximately half a millisecond, but may have longer time

logical data is known as the refractory effect, whereby aftéPnstants in small diameter fibers [17, Ch. IV]. This effect
an action potential is generated there is some time Og‘guwes further investigation, and could be added to our model

which the neuron is either unable or less able to be driv Aen sufﬁm:an.t mfofrmhatlon bebcomes qvaﬂablcTa I g
o discharge again [3], [L1][13]. The fime over which the AUtocorrelation of the membrane noise could also produce

neuron is subject to refractory effects is notionally divideﬁﬁerpulse interactions, e, th_e noise po_tential_during one pu_lse
into the absolute refractory perioénd therelative refractory may be correlated with the noise potential during the preceding

period The former occurs immediately after action potentia"’}nd following pl_JIses in the pulse train, such that- the|r.re-
ieonses are not independent. Such effects could be investigated

generation, and during this time it is not possible to produé ctroohvsiologically or by using a Hodakin—Huxlev-tvpe
another discharge. Following the absolute refractory perio physiologically or by using giin—ruxiey-typ

is the relative refractory period, during which the neuroWOd.el mcludmg stochastic acﬂwty .[18]_[.201’ but suph an in-
is harder to drive to discharge than when it is outside tr\]/eestlgatlon would be extremely difficult either experimentally
refractory period of computationally and is beyond the scope of this paper.

We are able to approximate this behavior by introducinggherefore’ we use a simplifying approximation thbis. is

. : . ﬁ%)nsidered to be uncorrelated between pulses.
phenomenological mechanism to our moo!el that descrlbe.s. %inally, for the purpose of numerical evaluation the model
end result of the refractory effects on the discharge probab|l|%. discretized, i.e., each pulse is divided into a number

Following our approach in [1], the single-fiber model presenteoq discrete bins of equal time. The level of discretization,

in this paper is defined in the form of an electrical circuiii,e number of bins per pulse, will have an effect at higher
Su't:blle ffo; Montedglarlo f5|mulat|ons. T9 Rl smgrl]e—pulssulse rates where a number of pulses fall within the relative
model of [1] we add a refractory potential.z as shown refractory period. The number of bins required is dependent

in Fig. 1. Following an action potential, the ‘threshold’ Wlthon the slope of the refractory function. We used ten bins per

which the stimulus potential is compared is raised over t}f.')(illse as our discretization level in computing our simulation

refractory period by some chosen function. _ . results, because we found that increasing the number of bins
The refractory functionV..;, will have a value of infinity beyond ten had negligible effect.

for the absolute refractory period, and will then generally
fall smoothly to zero over the relative refractory period. We,
therefore, make two assumptions regarding the behavior Bf Analytical Approximation of Stochastic Model
the refractory function. The stochastic model presented in Section Ill can be de-
1) Vi Is assumed to be monotonically decreasing, i.e.,stribed as a renewal process [21], [22]. In a renewal process,
falls from its maximum value at the beginning of thehe waiting times between successive occurrences of an event
refractory period to its minimum value at the end of thare mutually independent random variables having the same
refractory period without any transitory increases.  distribution [22, p. 303]. Our model qualifies as a renewal
2) The refractory effects are assumed to be of finite durprocess, because after each discharge it begins anew without
tion, i.e., Vg returns to a value of zero within a finiteany “memory” of prior discharges.
time.

Refractory effects may also change the behavior of the _ o - ,
LRelative spread (RS) is defined as the standard deviation of the (@oise

membrane 'n0|se. It appea'rs that the Vf’i”a_nCé/&fse may  givided by the threshold for the single-pulse response. Refer to [1] for further
increase with small, sustained depolarizations [1], [2]. Th&planation of this nomenclature.
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Using renewal process theory, exact analytical expressions 5
for the mean and variance in discharge rate can be derived
for our stochastic model in the case of a pulse train of infinite
duration. We approximate the actual finite pulse train of evenly

timed, uniform pulses by a pulse train of infinite duration. The (erwfe"”vw:fio ST exp(—{ime—0.7me)1.32mS), 0.7 < timi < S0
full mathematical derivation of our analytical approximation = 1.6} =1 ' . ime > 20ms-

is given in [7, Ch. 7]maras” code for the analytical version <
of the model is also available on request.
The approximation by an infinite pulse train constituteﬁ_
the only difference between the stochastic model in Fig. £
suitable for Monte Carlo simulation and the analytical version
of the model. In order to test the accuracy of this analytical

refr

1.4

1.2r

approximation, we conducted Monte Carlo simulations of the 1} o e—0 0

stochastic model. Responses to 10-, 20-, and 100-ms pulse

trains of rates 200 pps and 600 pps were simulated and ‘ , l

compared with the results of the analytical approximation. For 0 5 10 15 20
a 10-ms pulse train, the analytical description approximates Time (ms)

the response at 600 pps very well and the response at 200 pgSy. Relative increase in threshold due to refractory effects: physiological
almost exactly (the correlation coefficieafl.00 in both cases). data (0) and exponential least-squares fit (solid line).

Extending the pulse train duration to just 20 ms (four pulses

at 200 pps and 12 pulses at 600 pps) improves the accuraé¥y a few neurons in this data set. Consequently, it is
considerably, and for a 100-ms pulse train, the analyticiffeasible to estimate the range of refractory functions in
expressions provide an almost exact description of the modgN fibers, for use in our total AN model. Therefore, we

This indicates that the accuracy of the analytical descriptiogse a standard refractory function for all neurons, which we
is relatively insensitive to the length of the pulse train, i.ederive by fitting an exponential function to the cat data from
to the accuracy of the approximation by an infinite pulsg3, Fig. 3-5]. These data were collected using monophasic
train. pulses, but produce an exponential function fit similar to that

Furthermore, our implementation of the analytical approXf biphasic pulse data [12]. Our standard refractory function
imation takes just 0.04% of the time required by the Montg plotted in Fig. 2 as the relative increase in threshold, i.e.,
Carlo simulation to compute 500 iterations for a 100-ms pulswthr + Vier)/Vine» @long with its analytical description. Note
train. While the mean of the Monte Carlo stimulation outptthat the absolute refractory period lasts 0.7 ms, after which
converges rapidly, giving an accurate estimate after only 14k relative refractory period begins with a time-constant of
iterations, the variance has still not converged completely32 ms, with the refractory effects lasting for a total period of
after 500 iterations. The sample mean from the Monte Carj® ms. The effect of refractory function choice is investigated
simulations will converge at a rate af N, where N is the in the next section.
number of iterations, and the sample variance will converge1) Mean Discharge RatePlotted in Fig. 3 are mean dis-
more slowly, at a rate of approximately (N + 1)/2 [23, pp. charge rates for [9, Neuron 3-21] in response to 100, 200,
108]. Therefore, no results of the Monte Carlo simulations ag®0, 400, 600, and 800 pps trains of 108phase biphasic
presented here. Instead, predictions of the physiological pulggises. If a deterministic response is assumed, then one may
train data by the analytical version of the model are presenteghdily attribute all of a fiber's dynamic range to interpulse
in Section IlI-C. effects such as refractory effects. We can test this assumption
by comparing the mean discharge rate data with the discharge
probability for the first pulse in the pulse train, i.e., with a
response that is not subject to interpulse effects. Thus, also

Using the analytical version of the model described iplotted in Fig. 3 is the first-pulse discharge probability [1] of
Section 11I-B, we predict both the mean and variance of tHéeuron 3-21 (dotted lines) scaled to indicate what the pulse-
discharge rate, for the stochastic pulse train model where filbezin response would be if interpulse interactions were not
threshold and RS are determined from the first-pulse respopsesent, i.e., saturation discharge ratepulse rate. While
as described in [1], and for the equivalent deterministic modaterpulse effects do indeed increase the dynamic range at
(i.e., RS is set to zero). Given the values of threshold amigher pulse rates, much of the dynamic range for pulse-train
RS from fits to the first-pulse response, it simply remains &iimuli is due to stochastic activity, particularly for the lower
choose an appropriate refractory function. discharge rates.

The single-pulse response was calculated by investigatingNote that there were a good deal of responses at the
the response of each neuron to the first pulse in a pulse trdilgher stimulus levels for which no data were collected. As
It is, therefore, possible to directly calculate the refractomhe stimulus amplitude was increased, the neurophysiologists
function that produces the best fit to the discharge rate datauld stop collecting data once the discharge rate equaled
for the remainder of the pulse train. However, dischargbe stimulus’'s pulse rate. This was done because they had
rate data at a range of stimulation rates were collected fareviously found that the spike rate would remain nearly

C. Prediction of Pulse-Train Response
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Fig. 3. Mean discharge rates for [9, Neuron 3-21] at pulse rates from 16@. 5. Mean discharge rates for the stochastic model at pulse rates of 100,
to 800 pps with a pulse width (phase duration) of 1@Jphase. Dotted lines 200, 300, 400, 600, and 800 pps with a pulse width of A8fphase. Dotted

are the first-pulse data of Neuron 3-21 scaled to indicate what the pulse-triires indicate mean discharge rates without refractory effects, i.e., single-pulse
response would be if interpulse interactionswere not present, i.e., saturatioodel predictions.
mean discharge rate pulse rate.
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Fig. 6. Mean discharge rates for the stochastic model with a modified
Fig. 4. Mean discharge rates for the deterministic version of the model refractory function (absolute refractory periedl ms; time-constant:2 ms)

pulse rates of 100, 200, 300, 400, 600, and 800 pps with a pulse widthatfpulse rates of 100, 200, 300, 400, 600, and 800 pps with a pulse width
100 ps/phase. Dotted lines indicate mean discharge rates without refractofyl00 i.s/phase. Dashed lines indicate mean discharge rates for the standard
effects, i.e., single-pulse model predictions. refractory function (from Fig. 5).

constant and equal to the pulse rate at these higher stimuest the same predictions without refractory effects, obtained
levels. from the stochastic single-pulse model presented in [1]. Both
In Fig. 4, we plot the deterministic pulse-train model’s prethe shape of the curves and their slopes better predict the
dictions of these data (solid lines). The dotted lines represgitysiological data than the deterministic model does.
the same predictions without refractory effects, obtained fromWe have also investigated the effects of the choice of
the deterministic single-pulse model presented in [1]. Wheagfractory function. Plotted in Fig. 6 are mean discharge rates
compared to the data in Fig. 3, the inclusion of the refractowyhere the refractory function has been modified to have an
mechanism is seen to improve the model’s prediction of tladsolute refractory period of 1 ms and a time-constant of 2 ms.
I/O function slope for each pulse rate, but it still does ndtor comparison, we have overlaid the discharge rate functions
reach the slope of the physiological data and the shapes of thethe standard refractory function from Fig. 5 (dashed lines).
curves are inaccurate. The modified refractory function produces a slightly better
Plotted in Fig. 5 are predictions of the mean discharge rateediction of the overlap of the physiological discharge rate
for the stochastic pulse-train model. The dotted lines repreersus intensity curves at discharge rates below approximately
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(b) Fig. 8. Variance per pulse versus discharge probability per pulse (o) for [9,

Neuron 3-21] with a pulse width of 1@@/phase at (a) 200 pps and (b) 600
Fig. 7. Mean discharge rate data and model predictions for [9, Neuron 3-H¥s. Also plotted are single-pulse stochastic model predictions (dotted lines) of
at pulse rates from 100 to 400 pps with a pulse width of a8fphase. (a) these data, the stochastic model predictions (solid lines) and the deterministic
Mean discharge rate data (solid lines) from Neuron 3-10. Dotted lines are f@del predictions (dashed lines).
first-pulse data of Neuron 3-10 scaled to indicate what the pulse-train response
would be if the interpulse interactions were not present, i.e., saturation mean
discharge rate- pulse rate. (b) Stochastic model predictions using the standqg@)int of 0.5 discharge probab”ity per pulse. The single-pulse

re_fractory function (solid lines). Dotted lines indicate mean discharge rateis_}rsion of the stochastic model (dotted line) overestimates the
without refractory effects. ) . . . s
variance, the error increasing with pulse rate. The deterministic
model (dashed line), on the other hand, cannot predict the
200 spikes/s than the standard refractory function does. Hoyériance at all. The pulse-train stochastic model (solid line)
ever, the shapes of the curves and the slopes appear to bepesgides the best prediction of the variance data. This was
accurate. found to be true also for pulse rates of 100, 300, 400, and
Mean discharge rate data at stimulation rates of 100, 2@00 pps.

300 and 400 pps from Neurons 3-10 (see Fig. 7) and [9,Just as we investigated the effects of refractory function
Neurons 3—29] were also investigated, yielding similar resulishoice on the mean discharge rate, we also investigate its
2) Variance of Discharge Ratetn Fig. 8 discharge rate effect on the prediction of the variance data. In Fig. 9
variances (o) are plotted for [9, Neuron 3-21] at pulsthe discharge rate variance data for 200 pps (o) and 600
rates of 200 and 600 pps. To allow comparison acropps (x) are replotted from Fig. 8, along with the model
different pulse rates, both the mean and variance dischargeedictions with the standard refractory function (dotted
rate data are normalized (divided by the pulse rate). THiees). Newly plotted are predictions of these data by the
normalization produces the discharge probability/pulse astbchastic model with a modified refractory function (solid

the variance per pulse respectively. It can be seen that wiithes)—absolute refractory period= 1 ms; time-constant
increasing pulse rate the variance is compressed around the2 ms. It can be seen that the change in refractory
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Variance of discharge rate data at stimulation rates of 20
and 400 pps from Neurons 3—-10 (see Fig. 10) and [9, Neurons
3-29] were also investigated, yielding similar results.
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IV. TOTAL AUDITORY NERVE RESPONSE 02 04 0.6 .
Discharge Probability per Pulse
The output of our model of total auditory nerve response )

developed in [1, Section 1V] is the discharge probability for 10 Vari | disch babil e (0) for [8
: ; ; ,10. Variance per pulse versus discharge probability per pulse (o) for [9,

each_ﬁber, apd _the,summed response is well approxma}tedﬁ&mn 3-10] with a pulse width of 10@s/phase at (a) 200 pps and (b) 400

a Poisson distribution if the mean summed response is Igs. Also plotted are single-pulse stochastic model predictions (dotted lines) of

than 15 and by a Gaussian if it is greater or equa| to 15. Rbese data, stochastic model predictions (solid lines) and deterministic model

pulse-train stimuli, the output of the population model Simplglredlctlons (dashed lines), the latter two using the standard refractory function.

becomes the mean and variance in discharge rate for each fiber.

With regards to the summed response, although for responses V. DISCUSSION

to pulse trains the individual fibers are described by renewaIWe have shown that a deterministic model is a poor descrip-

processes rather than Bernoulli processes, application of {l%en of a fiber’s response, in light of the improvements in the

central limit theorem [24] shows that the summed responsé

will still be well approximated by a Gaussian distribution if thé)redlcnon Of. physiological data when a StOCha.St.'c component
of response is added to the neural model. Specifically, we have

mean is large enough>({5). If the mean is less than 15, the . _ .
Poisson distribution approximation of the summed respontéjémOI that a simple stochastic model can accurately predict the

will worsen if one or more fibers diverge from behaving"efan and variance of the discha}rge rate in response to.pulse
like a Bernoulli process. As is evident from Figs. 8 and 10/@ins. Our results suggest that in the case where a uniform
the renewal process model of a fiber's behavior (stochastiractory function is assumed across all neurons, just two
pulse-train model) differs from a Bernoulli process (stochast@rameters (threshold and RS) can well describe the response
single-pulse model) only when its discharge probability p&f an auditory nerve fiber to single biphasic pulses and pulse
pulse becomes larger than about 0.05. For total cochlear spif@ns. We have shown that an even more precise description
counts of less than 15, fiber discharge probabilities above 008y be achieved by estimating a specific refractory function
could only occur if: i) the density of surviving AN fibersfor each neuron. However, the improved accuracy gained by
is very low, or ii) the stimulating electrode is very selectivestimating refractory functions for each neuron may not justify
and, therefore, effectively stimulates only a small number tiie additional parameters required to describe each neuron in
fibers. the total auditory nerve model.
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The analytical descriptions of single fiber response to pulsgembrane noise was seen to increase following a subthreshold
trains used in this paper provide a simple and computationafiylse, i.e., in response to a depolarization that does not
efficient method of modeling the response of a large-scalenerate an action potential. This may explain why, for mid
population of AN fibers to trains of evenly timed, uniformto high pulse rates, the variance per pulse in our cat data is
pulses. Furthermore, the output of the model, being a mesglightly greater for discharge probabilities per pulse below 0.5
and a variance for each neuron with a known distributiothan for discharge probabilities above 0.5 [e.g., see Fig. 10(b)]:
allows the direct use of signal detection theory to determine tf@ discharge probabilities per pulse below 0.5, the majority
resolution with which the AN can convey information abouof the pulses in a pulse train are effectively subthreshold,
an electrical stimulus. producing greater membrane noise and, consequently, greater

As was the case for the single-fiber model of [1], theariance in the response. This phenomenon could be significant
pulse-train model presented in this paper may also be suitatbleochlear implants are operating at intensities that produce
for functional electrical stimulation of other types of nervdow discharge probabilities, such that many pulses in a pulse
fibers. However, use of this model for a paradigm othérain will effectively be subthreshold.
than stimulation of the AN by a cochlear implant would A different stochastic model [14] has shown that in some
require validation of the assumptions and approximations cfises membrane noise may increase significantly during a por-
this paper for the particular stimulus and neural properties én of the refractory period. Single-fiber data from the cat AN
that paradigm. [15] also revealed that some neurons exhibit double-spiking

The analytical approximation was developed to descrilsand that the stochastic component of the second spike is signif-
responses to trains of evenly timed, uniform pulses, as agantly increased. This may be a result of the membrane noise
commonly used in psychophysical and physiological invesiicreasing by such an amount during the refractory period
gations. However, current speech processing strategies uksldwing the first spike that a second spike is spontaneously
in cochlear implants may produce trains of pulses that vary generated [15]. These phenomena could also be significant for
amplitude over the duration of the train. Neither the analyticabchlear implant speech processing strategies and, therefore,
descriptions, nor the methods used in deriving them, can tther investigation of these phenomena is desirable.
directly applied to simulate the response to such pulse trainsAs well as choice of refractory function and the effects of
Monte Carlo simulations of the model illustrated in Fig. Bubthreshold and suprathreshold stimulation on noise levels,
could be used instead to estimate the neural response. the other interpulse interactions discussed in Section Ill-A

Further physiological and modeling studies would be helpuch as the excitatory effect of subthreshold stimulation on
ful in refining and extending a number of aspects of odhresholds, but not included in this model, may account for
model—specific suggestions follow. some of the differences seen between the variance data at

Discharge rate data at a range of stimulation rates wdred to high discharge rates and our model's predictions of
only available for three neurons in the cat data analyzed tihese data (e.g., see Figs. 8 and 10). These other interpulse
this paper. It would be desirable to compare the model tateractions could be included in our model when they are
more physiological data, for further verification of the modebetter understood, and may be modeled directly using our
Additional data could also help in further refining the modemethodology if they do not violate the assumptions and
In particular, an estimate of the distribution of refractorgpproximations set forth. Additionally, as was the case in [1],
functions in the cat AN could be obtained if more data wer@ separate stochastic description of action potential latency
available. would be needed to investigate the effects of jitter in theories

The stimulation rates investigated in this paper were &@f coding that are dependent on the exact timing of discharges.
800 pps or lower. Development of speech processing stratediiy model is also unable to deal with specific effects occurring
utilizing significantly higher stimulation rates is currentlyin response to pulse trains that are due to neural conduction
being investigated by a number of cochlear implant researefpperties, e.g., anodal or cathodal blocking [25], or the
groups. It would, therefore, be useful to extend our model @scurrence of abortive spikes as observed by Paintal [26] and
describe physiological data collected at these higher stimugimulated with a deterministic cable model by Frigtsl. [27].
tion rates when such data become available. In [7] and [8], we used the stochastic single-pulse model of

Furthermore, much of the neurophysiology and, as a con$t} to predict a range of measures of loudness perception,
quence, much of the modeling in this paper emphasizes mdacluding threshold, uncomfortable loudness, and intensity
erate to high discharge probabilities per pulse. Implant usélierence limen. The results of that study suggest that cochlear
may be operating at considerably lower discharge probabilitiéplants are indeed operating in the region where stochastic
particularly when receiving continuous stimulation from activity is significant. In all the cases investigated, the stochas-
multichannel speech processor [6]-[8]. It may, therefore, iié model predicted psychophysical performance significantly
useful to collect further data at stimulus intensities that produbétter than the deterministic model did. This suggests that
low discharge probabilities per pulse. the stochastic single-pulse model is not just more accurate

Further investigation into the behavior of membrane noi¢e its prediction of physiological response, but also in its
following both subthreshold and suprathreshold stimulation Rsediction of the resulting behavioral performance. With the
required. Single-fiber data from the cat AN and one stochasBglse-train model presented in this paper, we may now have
model [13, Fig. 5-7] indicate that the membrane noise do@8 appropriate tool for extending this investigation to the
not change significantly during the refractory period. Howeveprediction of psychophysical data for higher stimulation rates.
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