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Abstract—The single-pulse model of the companion paper [1]
is extended to describe responses to pulse trains by introducing
a phenomenological refractory mechanism. Comparisons with
physiological data from cat auditory nerve fibers are made for
pulse rates between 100 and 800 pulses/s. First, it is shown that
both the shape and slope of mean discharge rate curves are
better predicted by the stochastic model than by the deterministic
model. Second, while interpulse effects such as refractory effects
do indeed increase the dynamic range at higher pulse rates, both
the physiological data and the model indicate that much of the
dynamic range for pulse-train stimuli is due to stochastic activity.
Third, it is shown that the stochastic model is able to predict the
general magnitude and behavior of variance in discharge rate as
a function of pulse rate, while the deterministic model predicts
no variance at all.

Index Terms—Auditory nerve, cochlear implant, functional
electrical stimulation, pulse-train response, population response,
refractory effect, renewal process, sensory prosthesis, stochastic
model.

I. INTRODUCTION

I N [1], we presented a stochastic model of auditory nerve
(AN) response to single electrical pulses, following the

conceptual approach used in [2]–[4]. In [5]–[8], we have
gone on to show that the stochastic single-pulse model better
predicts a range of psychophysical measures of loudness than
the equivalent deterministic model does. In this paper, we
extend the model to describe responses to pulse-train stimuli.
The final model, although more complex than the single-pulse

Manuscript received October 20, 1997; revised January 5, 1999. This work
was supported by the Human Communication Research Centre, The University
of Melbourne, the Bionic Ear Institute, and the CRC for Cochlear Implants,
Speech and Hearing Research.Asterisk indicates corresponding author.

*I. C. Bruce was with the Bionic Ear Institute and the Department of
Otolaryngology, The University of Melbourne, East Melbourne VIC 3002,
Australia. He is now with the Department of Biomedical Engineering, 505
Traylor Bldg., Johns Hopkins University, 720 Rutland Ave, Baltimore, MD
21205 USA (e-mail: ibruce@bme.jhu.edu).

L. S. Irlicht was with the Bionic Ear Institute and the Department of
Otolaryngology, The University of Melbourne, East Melbourne, VIC 3002,
Australia. He is now with County Investment Management, Melbourne VIC
3000, Australia.

M. W. White is with Department of Electrical and Computer Engineering,
North Carolina State University, Raleigh, NC 27695 USA.

S. J. O’Leary and G. M. Clark are with the Bionic Ear Institute and the
Department of Otolaryngology, The University of Melbourne, East Melbourne
VIC 3002, Australia.

S. Dynes is with the Eaton-Peabody Laboratory, Massachusetts Eye and
Ear Infirmary, Boston, MA 02114 USA.

E. Javel is with the Department of Otolaryngology, University of Minnesota,
Minneapolis, MN 55455 USA.

Publisher Item Identifier S 0018-9294(99)03978-6.

model, is still computationally efficient and can be fitted easily
to the statistics of AN parameters collected from physiological
studies.

Furthermore, this simple model is particularly valuable be-
cause it is composed of several “conceptual components” (e.g.,
a stochastic component, a refractory component). The impact
of various modifications or exclusions of the components can
be easily explored with such models—we will illustrate the
utility of this feature.

In Section II, we describe our analysis of the physiological
data. In Section III, we present the pulse-train model and
investigate response properties of the model at a range of pulse
rates. In particular, we compare the behavior of the model
with and without the stochastic component. In Section IV, we
describe the effects of pulse-train stimulation on the model of
total AN response developed in [1]. Finally, in Section V, we
discuss further physiological and modeling studies that would
help in refining and extending our model.

II. M ETHODS

The physiological data presented in this paper are single-
fiber cat AN data from [9] (see [1] for a summary of the
physiological methods). Along with Javelet al.’s analysis of
mean discharge rate in response to trains of evenly timed,
uniform, biphasic current pulses, we present a previously
unpublished analysis of this data set. The variance in discharge
rate is estimated by calculating the variance in the number of
discharges recorded in response to repeated presentation of a
100-ms pulse train. This analysis is examined further in [10].

III. PULSE-TRAIN RESPONSE

Although the investigation of single-pulse responses is
useful in the development and verification of a neural model
[1], single-pulse stimuli are not the usual output from cochlear
implants. Most cochlear implant speech processing strategies
typically utilize trains of pulses at rates higher than 100
pulses/s (pps) and train durations up to hundreds of millisec-
onds. Therefore, a practical model must accurately describe
the neural response to trains of current pulses at a range of
pulse rates and train durations.

A. Stochastic Model of Pulse-Train Response

In the case of pulse trains, the time-dependent nature of
neural response to current pulses means that the response
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Fig. 1. Stochastic model of pulse-train response. See text for explanation of
circuit components.

to any one pulse in the train will be dependent on how the
neuron has responded to the previous pulses in the pulse train.
Such dependencies are commonly referred to asinterpulse
interactions.

The major form of interpulse interaction seen in physio-
logical data is known as the refractory effect, whereby after
an action potential is generated there is some time over
which the neuron is either unable or less able to be driven
to discharge again [3], [11]–[13]. The time over which the
neuron is subject to refractory effects is notionally divided
into the absolute refractory periodand therelative refractory
period. The former occurs immediately after action potential
generation, and during this time it is not possible to produce
another discharge. Following the absolute refractory period
is the relative refractory period, during which the neuron
is harder to drive to discharge than when it is outside the
refractory period.

We are able to approximate this behavior by introducing a
phenomenological mechanism to our model that describes the
end result of the refractory effects on the discharge probability.
Following our approach in [1], the single-fiber model presented
in this paper is defined in the form of an electrical circuit,
suitable for Monte Carlo simulations. To the single-pulse
model of [1] we add a refractory potential as shown
in Fig. 1. Following an action potential, the ‘threshold’ with
which the stimulus potential is compared is raised over the
refractory period by some chosen function.

The refractory function will have a value of infinity
for the absolute refractory period, and will then generally
fall smoothly to zero over the relative refractory period. We,
therefore, make two assumptions regarding the behavior of
the refractory function.

1) is assumed to be monotonically decreasing, i.e., it
falls from its maximum value at the beginning of the
refractory period to its minimum value at the end of the
refractory period without any transitory increases.

2) The refractory effects are assumed to be of finite dura-
tion, i.e., returns to a value of zero within a finite
time.

Refractory effects may also change the behavior of the
membrane noise. It appears that the variance of may
increase with small, sustained depolarizations [1], [2]. The

behavior of the membrane noise during the larger depolar-
ization that occurs as a result of an action potential is not
well understood. This requires a more thorough investigation
of the behavior of ionic channels during and after action
potential generation. Some physiological data and modeling
results indicate that the noise only increases significantly
during depolarizations that do not generate an action potential
[13, Fig. 5-7], whereas others suggest that the membrane noise
could increase greatly during a segment of the refractory
period under some conditions [14], [15]. Due to the uncertainty
about the exact nature of these phenomena, we will not attempt
incorporate them into the model at this stage. Consequently,
the standard deviation of remains constant during the
refractory period, i.e., of .1

An excitatory interpulse effect has also been observed if
the depolarization caused by a pulse is not great enough to
produce an action potential. In this case, any pulse following
this subthreshold “conditioner” pulse will have a reduced
threshold [13], [16]. These excitatory effects generally last for
approximately half a millisecond, but may have longer time
constants in small diameter fibers [17, Ch. IV]. This effect
requires further investigation, and could be added to our model
when sufficient information becomes available.

Autocorrelation of the membrane noise could also produce
interpulse interactions, i.e., the noise potential during one pulse
may be correlated with the noise potential during the preceding
and following pulses in the pulse train, such that their re-
sponses are not independent. Such effects could be investigated
electrophysiologically or by using a Hodgkin–Huxley-type
model including stochastic activity [18]–[20], but such an in-
vestigation would be extremely difficult either experimentally
or computationally and is beyond the scope of this paper.
Therefore, we use a simplifying approximation that is
considered to be uncorrelated between pulses.

Finally, for the purpose of numerical evaluation the model
is discretized, i.e., each pulse is divided into a number
of discrete bins of equal time. The level of discretization,
i.e., number of bins per pulse, will have an effect at higher
pulse rates where a number of pulses fall within the relative
refractory period. The number of bins required is dependent
on the slope of the refractory function. We used ten bins per
pulse as our discretization level in computing our simulation
results, because we found that increasing the number of bins
beyond ten had negligible effect.

B. Analytical Approximation of Stochastic Model

The stochastic model presented in Section III can be de-
scribed as a renewal process [21], [22]. In a renewal process,
the waiting times between successive occurrences of an event
are mutually independent random variables having the same
distribution [22, p. 303]. Our model qualifies as a renewal
process, because after each discharge it begins anew without
any “memory” of prior discharges.

1Relative spread (RS) is defined as the standard deviation of the noise(�)
divided by the threshold for the single-pulse response. Refer to [1] for further
explanation of this nomenclature.
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Using renewal process theory, exact analytical expressions
for the mean and variance in discharge rate can be derived
for our stochastic model in the case of a pulse train of infinite
duration. We approximate the actual finite pulse train of evenly
timed, uniform pulses by a pulse train of infinite duration. The
full mathematical derivation of our analytical approximation
is given in [7, Ch. 7].MATLAB

 code for the analytical version
of the model is also available on request.

The approximation by an infinite pulse train constitutes
the only difference between the stochastic model in Fig. 1
suitable for Monte Carlo simulation and the analytical version
of the model. In order to test the accuracy of this analytical
approximation, we conducted Monte Carlo simulations of the
stochastic model. Responses to 10-, 20-, and 100-ms pulse
trains of rates 200 pps and 600 pps were simulated and
compared with the results of the analytical approximation. For
a 10-ms pulse train, the analytical description approximates
the response at 600 pps very well and the response at 200 pps
almost exactly (the correlation coefficient1.00 in both cases).
Extending the pulse train duration to just 20 ms (four pulses
at 200 pps and 12 pulses at 600 pps) improves the accuracy
considerably, and for a 100-ms pulse train, the analytical
expressions provide an almost exact description of the model.
This indicates that the accuracy of the analytical descriptions
is relatively insensitive to the length of the pulse train, i.e.,
to the accuracy of the approximation by an infinite pulse
train.

Furthermore, our implementation of the analytical approx-
imation takes just 0.04% of the time required by the Monte
Carlo simulation to compute 500 iterations for a 100-ms pulse
train. While the mean of the Monte Carlo stimulation output
converges rapidly, giving an accurate estimate after only 100
iterations, the variance has still not converged completely
after 500 iterations. The sample mean from the Monte Carlo
simulations will converge at a rate of , where is the
number of iterations, and the sample variance will converge
more slowly, at a rate of approximately [23, pp.
108]. Therefore, no results of the Monte Carlo simulations are
presented here. Instead, predictions of the physiological pulse-
train data by the analytical version of the model are presented
in Section III-C.

C. Prediction of Pulse-Train Response

Using the analytical version of the model described in
Section III-B, we predict both the mean and variance of the
discharge rate, for the stochastic pulse train model where fiber
threshold and RS are determined from the first-pulse response
as described in [1], and for the equivalent deterministic model
(i.e., RS is set to zero). Given the values of threshold and
RS from fits to the first-pulse response, it simply remains to
choose an appropriate refractory function.

The single-pulse response was calculated by investigating
the response of each neuron to the first pulse in a pulse train.
It is, therefore, possible to directly calculate the refractory
function that produces the best fit to the discharge rate data
for the remainder of the pulse train. However, discharge
rate data at a range of stimulation rates were collected for

Fig. 2. Relative increase in threshold due to refractory effects: physiological
data (o) and exponential least-squares fit (solid line).

only a few neurons in this data set. Consequently, it is
infeasible to estimate the range of refractory functions in
AN fibers, for use in our total AN model. Therefore, we
use a standard refractory function for all neurons, which we
derive by fitting an exponential function to the cat data from
[13, Fig. 3-5]. These data were collected using monophasic
pulses, but produce an exponential function fit similar to that
of biphasic pulse data [12]. Our standard refractory function
is plotted in Fig. 2 as the relative increase in threshold, i.e.,

, along with its analytical description. Note
that the absolute refractory period lasts 0.7 ms, after which
the relative refractory period begins with a time-constant of
1.32 ms, with the refractory effects lasting for a total period of
20 ms. The effect of refractory function choice is investigated
in the next section.

1) Mean Discharge Rate:Plotted in Fig. 3 are mean dis-
charge rates for [9, Neuron 3-21] in response to 100, 200,
300, 400, 600, and 800 pps trains of 100-s/phase biphasic
pulses. If a deterministic response is assumed, then one may
readily attribute all of a fiber’s dynamic range to interpulse
effects such as refractory effects. We can test this assumption
by comparing the mean discharge rate data with the discharge
probability for the first pulse in the pulse train, i.e., with a
response that is not subject to interpulse effects. Thus, also
plotted in Fig. 3 is the first-pulse discharge probability [1] of
Neuron 3-21 (dotted lines) scaled to indicate what the pulse-
train response would be if interpulse interactions were not
present, i.e., saturation discharge ratepulse rate. While
interpulse effects do indeed increase the dynamic range at
higher pulse rates, much of the dynamic range for pulse-train
stimuli is due to stochastic activity, particularly for the lower
discharge rates.

Note that there were a good deal of responses at the
higher stimulus levels for which no data were collected. As
the stimulus amplitude was increased, the neurophysiologists
would stop collecting data once the discharge rate equaled
the stimulus’s pulse rate. This was done because they had
previously found that the spike rate would remain nearly



BRUCE et al.: STOCHASTIC MODEL OF ELECTRICALLY STIMULATED AN: PULSE-TRAIN RESPONSE 633

Fig. 3. Mean discharge rates for [9, Neuron 3-21] at pulse rates from 100
to 800 pps with a pulse width (phase duration) of 100�s/phase. Dotted lines
are the first-pulse data of Neuron 3-21 scaled to indicate what the pulse-train
response would be if interpulse interactionswere not present, i.e., saturation
mean discharge rate= pulse rate.

Fig. 4. Mean discharge rates for the deterministic version of the model at
pulse rates of 100, 200, 300, 400, 600, and 800 pps with a pulse width of
100 �s/phase. Dotted lines indicate mean discharge rates without refractory
effects, i.e., single-pulse model predictions.

constant and equal to the pulse rate at these higher stimulus
levels.

In Fig. 4, we plot the deterministic pulse-train model’s pre-
dictions of these data (solid lines). The dotted lines represent
the same predictions without refractory effects, obtained from
the deterministic single-pulse model presented in [1]. When
compared to the data in Fig. 3, the inclusion of the refractory
mechanism is seen to improve the model’s prediction of the
I/O function slope for each pulse rate, but it still does not
reach the slope of the physiological data and the shapes of the
curves are inaccurate.

Plotted in Fig. 5 are predictions of the mean discharge rates
for the stochastic pulse-train model. The dotted lines repre-

Fig. 5. Mean discharge rates for the stochastic model at pulse rates of 100,
200, 300, 400, 600, and 800 pps with a pulse width of 100�s/phase. Dotted
lines indicate mean discharge rates without refractory effects, i.e., single-pulse
model predictions.

Fig. 6. Mean discharge rates for the stochastic model with a modified
refractory function (absolute refractory period=1 ms; time-constant=2 ms)
at pulse rates of 100, 200, 300, 400, 600, and 800 pps with a pulse width
of 100�s/phase. Dashed lines indicate mean discharge rates for the standard
refractory function (from Fig. 5).

sent the same predictions without refractory effects, obtained
from the stochastic single-pulse model presented in [1]. Both
the shape of the curves and their slopes better predict the
physiological data than the deterministic model does.

We have also investigated the effects of the choice of
refractory function. Plotted in Fig. 6 are mean discharge rates
where the refractory function has been modified to have an
absolute refractory period of 1 ms and a time-constant of 2 ms.
For comparison, we have overlaid the discharge rate functions
for the standard refractory function from Fig. 5 (dashed lines).
The modified refractory function produces a slightly better
prediction of the overlap of the physiological discharge rate
versus intensity curves at discharge rates below approximately
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(a)

(b)

Fig. 7. Mean discharge rate data and model predictions for [9, Neuron 3-10]
at pulse rates from 100 to 400 pps with a pulse width of 200�s/phase. (a)
Mean discharge rate data (solid lines) from Neuron 3-10. Dotted lines are the
first-pulse data of Neuron 3-10 scaled to indicate what the pulse-train response
would be if the interpulse interactions were not present, i.e., saturation mean
discharge rate= pulse rate. (b) Stochastic model predictions using the standard
refractory function (solid lines). Dotted lines indicate mean discharge rates
without refractory effects.

200 spikes/s than the standard refractory function does. How-
ever, the shapes of the curves and the slopes appear to be less
accurate.

Mean discharge rate data at stimulation rates of 100, 200,
300 and 400 pps from Neurons 3–10 (see Fig. 7) and [9,
Neurons 3–29] were also investigated, yielding similar results.

2) Variance of Discharge Rate:In Fig. 8 discharge rate
variances (o) are plotted for [9, Neuron 3-21] at pulse
rates of 200 and 600 pps. To allow comparison across
different pulse rates, both the mean and variance discharge-
rate data are normalized (divided by the pulse rate). This
normalization produces the discharge probability/pulse and
the variance per pulse respectively. It can be seen that with
increasing pulse rate the variance is compressed around the

(a)

(b)

Fig. 8. Variance per pulse versus discharge probability per pulse (o) for [9,
Neuron 3-21] with a pulse width of 100�s/phase at (a) 200 pps and (b) 600
pps. Also plotted are single-pulse stochastic model predictions (dotted lines) of
these data, the stochastic model predictions (solid lines) and the deterministic
model predictions (dashed lines).

point of 0.5 discharge probability per pulse. The single-pulse
version of the stochastic model (dotted line) overestimates the
variance, the error increasing with pulse rate. The deterministic
model (dashed line), on the other hand, cannot predict the
variance at all. The pulse-train stochastic model (solid line)
provides the best prediction of the variance data. This was
found to be true also for pulse rates of 100, 300, 400, and
800 pps.

Just as we investigated the effects of refractory function
choice on the mean discharge rate, we also investigate its
effect on the prediction of the variance data. In Fig. 9
the discharge rate variance data for 200 pps (o) and 600
pps (x) are replotted from Fig. 8, along with the model
predictions with the standard refractory function (dotted
lines). Newly plotted are predictions of these data by the
stochastic model with a modified refractory function (solid
lines)—absolute refractory period 1 ms; time-constant

2 ms. It can be seen that the change in refractory
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Fig. 9. Sensitivity to refractory function: The variance data for 200 pps (o)
and 600 pps (x) are replotted from Fig. 8, along with the model predictions
with the standard refractory function (dotted lines). Newly plotted are pre-
dictions of these data by the stochastic model with a modified refractory
function (solid lines).

function time-constants improves the model predictions
except for discharge probabilities above 0.6 in the 600 pps
case.

Variance of discharge rate data at stimulation rates of 200
and 400 pps from Neurons 3–10 (see Fig. 10) and [9, Neurons
3–29] were also investigated, yielding similar results.

IV. TOTAL AUDITORY NERVE RESPONSE

The output of our model of total auditory nerve response
developed in [1, Section IV] is the discharge probability for
each fiber, and the summed response is well approximated by
a Poisson distribution if the mean summed response is less
than 15 and by a Gaussian if it is greater or equal to 15. For
pulse-train stimuli, the output of the population model simply
becomes the mean and variance in discharge rate for each fiber.
With regards to the summed response, although for responses
to pulse trains the individual fibers are described by renewal
processes rather than Bernoulli processes, application of the
central limit theorem [24] shows that the summed response
will still be well approximated by a Gaussian distribution if the
mean is large enough (15). If the mean is less than 15, the
Poisson distribution approximation of the summed response
will worsen if one or more fibers diverge from behaving
like a Bernoulli process. As is evident from Figs. 8 and 10,
the renewal process model of a fiber’s behavior (stochastic
pulse-train model) differs from a Bernoulli process (stochastic
single-pulse model) only when its discharge probability per
pulse becomes larger than about 0.05. For total cochlear spike
counts of less than 15, fiber discharge probabilities above 0.05
could only occur if: i) the density of surviving AN fibers
is very low, or ii) the stimulating electrode is very selective
and, therefore, effectively stimulates only a small number of
fibers.

(a)

(b)

Fig. 10. Variance per pulse versus discharge probability per pulse (o) for [9,
Neuron 3-10] with a pulse width of 100�s/phase at (a) 200 pps and (b) 400
pps. Also plotted are single-pulse stochastic model predictions (dotted lines) of
these data, stochastic model predictions (solid lines) and deterministic model
predictions (dashed lines), the latter two using the standard refractory function.

V. DISCUSSION

We have shown that a deterministic model is a poor descrip-
tion of a fiber’s response, in light of the improvements in the
prediction of physiological data when a stochastic component
of response is added to the neural model. Specifically, we have
found that a simple stochastic model can accurately predict the
mean and variance of the discharge rate in response to pulse
trains. Our results suggest that in the case where a uniform
refractory function is assumed across all neurons, just two
parameters (threshold and RS) can well describe the response
of an auditory nerve fiber to single biphasic pulses and pulse
trains. We have shown that an even more precise description
may be achieved by estimating a specific refractory function
for each neuron. However, the improved accuracy gained by
estimating refractory functions for each neuron may not justify
the additional parameters required to describe each neuron in
the total auditory nerve model.
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The analytical descriptions of single fiber response to pulse
trains used in this paper provide a simple and computationally
efficient method of modeling the response of a large-scale
population of AN fibers to trains of evenly timed, uniform
pulses. Furthermore, the output of the model, being a mean
and a variance for each neuron with a known distribution,
allows the direct use of signal detection theory to determine the
resolution with which the AN can convey information about
an electrical stimulus.

As was the case for the single-fiber model of [1], the
pulse-train model presented in this paper may also be suitable
for functional electrical stimulation of other types of nerve
fibers. However, use of this model for a paradigm other
than stimulation of the AN by a cochlear implant would
require validation of the assumptions and approximations of
this paper for the particular stimulus and neural properties of
that paradigm.

The analytical approximation was developed to describe
responses to trains of evenly timed, uniform pulses, as are
commonly used in psychophysical and physiological investi-
gations. However, current speech processing strategies used
in cochlear implants may produce trains of pulses that vary in
amplitude over the duration of the train. Neither the analytical
descriptions, nor the methods used in deriving them, can be
directly applied to simulate the response to such pulse trains.
Monte Carlo simulations of the model illustrated in Fig. 1
could be used instead to estimate the neural response.

Further physiological and modeling studies would be help-
ful in refining and extending a number of aspects of our
model—specific suggestions follow.

Discharge rate data at a range of stimulation rates were
only available for three neurons in the cat data analyzed in
this paper. It would be desirable to compare the model to
more physiological data, for further verification of the model.
Additional data could also help in further refining the model.
In particular, an estimate of the distribution of refractory
functions in the cat AN could be obtained if more data were
available.

The stimulation rates investigated in this paper were all
800 pps or lower. Development of speech processing strategies
utilizing significantly higher stimulation rates is currently
being investigated by a number of cochlear implant research
groups. It would, therefore, be useful to extend our model to
describe physiological data collected at these higher stimula-
tion rates when such data become available.

Furthermore, much of the neurophysiology and, as a conse-
quence, much of the modeling in this paper emphasizes mod-
erate to high discharge probabilities per pulse. Implant users
may be operating at considerably lower discharge probabilities,
particularly when receiving continuous stimulation from a
multichannel speech processor [6]–[8]. It may, therefore, be
useful to collect further data at stimulus intensities that produce
low discharge probabilities per pulse.

Further investigation into the behavior of membrane noise
following both subthreshold and suprathreshold stimulation is
required. Single-fiber data from the cat AN and one stochastic
model [13, Fig. 5-7] indicate that the membrane noise does
not change significantly during the refractory period. However,

membrane noise was seen to increase following a subthreshold
pulse, i.e., in response to a depolarization that does not
generate an action potential. This may explain why, for mid
to high pulse rates, the variance per pulse in our cat data is
slightly greater for discharge probabilities per pulse below 0.5
than for discharge probabilities above 0.5 [e.g., see Fig. 10(b)]:
for discharge probabilities per pulse below 0.5, the majority
of the pulses in a pulse train are effectively subthreshold,
producing greater membrane noise and, consequently, greater
variance in the response. This phenomenon could be significant
if cochlear implants are operating at intensities that produce
low discharge probabilities, such that many pulses in a pulse
train will effectively be subthreshold.

A different stochastic model [14] has shown that in some
cases membrane noise may increase significantly during a por-
tion of the refractory period. Single-fiber data from the cat AN
[15] also revealed that some neurons exhibit double-spiking
and that the stochastic component of the second spike is signif-
icantly increased. This may be a result of the membrane noise
increasing by such an amount during the refractory period
following the first spike that a second spike is spontaneously
generated [15]. These phenomena could also be significant for
cochlear implant speech processing strategies and, therefore,
further investigation of these phenomena is desirable.

As well as choice of refractory function and the effects of
subthreshold and suprathreshold stimulation on noise levels,
the other interpulse interactions discussed in Section III-A
such as the excitatory effect of subthreshold stimulation on
thresholds, but not included in this model, may account for
some of the differences seen between the variance data at
mid to high discharge rates and our model’s predictions of
these data (e.g., see Figs. 8 and 10). These other interpulse
interactions could be included in our model when they are
better understood, and may be modeled directly using our
methodology if they do not violate the assumptions and
approximations set forth. Additionally, as was the case in [1],
a separate stochastic description of action potential latency
would be needed to investigate the effects of jitter in theories
of coding that are dependent on the exact timing of discharges.
Our model is also unable to deal with specific effects occurring
in response to pulse trains that are due to neural conduction
properties, e.g., anodal or cathodal blocking [25], or the
occurrence of abortive spikes as observed by Paintal [26] and
simulated with a deterministic cable model by Frijnset al. [27].

In [7] and [8], we used the stochastic single-pulse model of
[1] to predict a range of measures of loudness perception,
including threshold, uncomfortable loudness, and intensity
difference limen. The results of that study suggest that cochlear
implants are indeed operating in the region where stochastic
activity is significant. In all the cases investigated, the stochas-
tic model predicted psychophysical performance significantly
better than the deterministic model did. This suggests that
the stochastic single-pulse model is not just more accurate
in its prediction of physiological response, but also in its
prediction of the resulting behavioral performance. With the
pulse-train model presented in this paper, we may now have
an appropriate tool for extending this investigation to the
prediction of psychophysical data for higher stimulation rates.
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