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The Capacity of Finite-State Markov Channels
With Feedback

Jun Chen, Student Member, IEEE, and Toby Berger, Fellow, IEEE

Abstract—We consider a class of finite-state Markov channels
with feedback. We first introduce a simplified equivalent channel
model, and then construct the optimal stationary and nonsta-
tionary input processes that maximize the long-term directed
mutual information. Furthermore, we give a sufficient condition
under which the channel’s Shannon capacity can be achieved by
a stationary input process. The corresponding converse coding
theorem and direct coding theorem are proved.

Index Terms—Channel capacity, feedback, Markov channel,
typicality.

I. INTRODUCTION

WE study the capacity of a feedback channel whose state
process can be affected by its input and whose state in-

formation is available at both the transmitter and the receiver.
Our channel model is illustrated in Fig. 1. Were it not for the
feedback, our channel would belong to the family of finite-
state channels (FSC). The FSC literature is vast; see, for ex-
ample, [1]–[3]. In [4], Verdú and Han gave a general capacity
formula for channels without feedback. If in our model, the state
process were not affected by the input, i.e.,

, then our model would reduce to a special case in
the general framework of [5] and [6].

The feedback channel coding problem goes back to early
work by Shannon [7], Dobrushin [8], and Wolfowitz [9].
Tatikonda [10] introduced a model of feedback channels which
can be viewed as a generalization of the formulation in [4],
derived a general formula for the capacity of channels in this
class, and used dynamic programming to compute the optimal
input distribution. We show that channels described by our
model, which are called Markov channels in [10], possess under
certain conditions a relatively simple capacity formula and that
the corresponding optimal input distribution can be computed
with markedly less complexity than in the general case.

It is easy to see that if we let and

then Fig. 1 can be simplified to the model shown in Fig. 2.
Therefore, we henceforth consider only this simplified channel
model. The model in Fig. 2 was perhaps first introduced in [11],
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[12]. Ying and Berger [13] analyzed the capacity of this channel
model when the output is binary. In this paper, we will give a
more general treatment.

The rest of this paper is divided into eight sections. In Sec-
tion II, we introduce several basic notations and definitions.
In Section III, we prove the converse channel coding theorem
for our model, which provides an upper bound on the achiev-
able rate of information transmission through the channel. Then
we give a recursive formula to calculate the maximal directed
mutual information in Section IV. In Section V, we analyze
the optimum stationary input distribution that maximizes the
long-term directed mutual information. We generalize in Sec-
tion VI to analyze the optimum not-necessarily-stationary input.
A sufficient condition under which the optimum stationary input
is actually optimum among all the input distributions is given in
Section VII. We prove the direct channel coding theorem and
suggest a coding scheme in Section VIII. Finally, several direc-
tions to extend our results are discussed in Section IX which
serves as a conclusion.

II. PRELIMINARIES

A. Notation

We assume throughout the paper that the channel input and
output alphabets both are finite. Without loss of generality, we
let and .

B. Code Description

An feedback code for our channel consists of
the following.

1) An encoding function that maps the set of messages
to channel input words of block length

through a sequence of functions that depend
only on the message and the channel outputs up to time

, i.e.,

(1)

Although it may seem to be more general to let

this actually is equivalent to (1), as shown by the following
argument:
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Fig. 1. Our model.

Fig. 2. An equivalent model.

It follows easily by induction that

so (1) is of full generality.
2) A decoding function that maps a received sequence of

channel outputs to the message set such
that the average probability of decoding error satisfies

where

(2)

Note: The encoding function and decoding function
both depend on the initial channel state .

Definition 1: is an -achievable rate given the initial
state if for every there exists, for all sufficiently large

, an code such that . is
achievable if it is -achievable for all . The supremum of
all achievable rates is defined as the feedback capacity
given the initial state .

III. CONVERSE CHANNEL CODING THEOREM

This section is devoted to the proof of the converse channel
coding theorem.

Theorem 1 (Converse Channel Coding Theorem): Given the
initial state , information transmission with an arbitrary small
expected frequency of errors is not possible if

Here

and is the set of input distributions on which con-
sists of all the probability mass functions that satisfy

Proof: In the proof we implicitly assume that
and thus use instead of .

Let be the message random variable. For any
code, by Fano’s inequality

(3)

Since

we have

which we rewrite as

(4)

As , . Hence, the channel capacity

(5)
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Fig. 3. Example 1.

We have

(6)

where holds because, when conditioned on the input and
the previous output (i.e., the current channel state), the
channel output becomes independent of both the message

and the earlier outputs .
We call the directed mutual informa-

tion. The concept of directed mutual information was introduced
by Massey [14] who attributes it to Marko [15]. See [10] for a
detailed discussion of this concept. It has been shown in [13]
that the maximum directed mutual information for our channel
model is attained inside ; i.e., no loss of generality re-
sults from restricting to when maximizing the
directed information.

So we have

We remark that the upper bound on the
achievable rate is not always tight. Consider, for example, Fig. 3
in which the transition probability associated with every arrow
in the middle figure is . The following is apparent.

1) If , we can transmit no information through this
channel.

2) If or , we can transmit 1 bit of information per
channel use.

3) If , then with probability , whereupon
for all . Then half of the time , in which

case for all . The other half time , in which
case we can transmit 1 bit of information per channel use
after that.

According to Definition 1, the capacity of the channel of Fig. 3
is if the initial channel state . However, one readily can
compute that , an equal mixture of the
channel capacity for and that for .

IV. RECURSIVE FORMULA FOR THE MAXIMUM DIRECTED

MUTUAL INFORMATION

We mentioned in Section III that the maximum directed
mutual information of our channel model is attained inside

. This not only greatly simplifies the structure of the
input distribution that maximizes the directed mutual informa-
tion but also makes the joint (input, output) process possess a
Markov structure, as described by the following lemma.

Lemma 1 [11], [13]: If we restrict the distribution of input
to , then we have

1) is a first-order Markov chain;
2) also is a first-order Markov

chain.

Lemma 1 evidences how the underlying Markov structure in
our channel model allows us to bring to bear on the problem
at hand powerful techniques from Markov theory and dynamic
programming. This is partially reflected in the following the-
orem.

Theorem 2:

for any (7)

where

1) is the distribution of the first input when is the initial
state (The inclusion of in the subscript is intended to
stress that this distribution generally depends on ; we
emphasize that is not the input distribution at time

.);
2)

3) is the channel transition probability matrix for state ,
i.e.,

4)

where is the th component of the probability
vector ;

5) for .
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Proof: We prove this theorem by induction.

It is obviously true when (8)

Suppose it is true when (9)

Then we have (10)–(12) at the bottom of the page, where

holds because depends only on
and its value does not affect the re-

maining part of (10), so we can maximize it greedily.
The result of maximization follows from (8).
holds because the quantity in the square brackets in (11)
depends only on and its value does
not affect the remaining part of (11), so we can maximize
it greedily. The result of said maximization follows from
the induction hypothesis (9), and
holds via the same line of reasoning as in (11) and (12).

Theorem 2 shows that we can compute
in the following recursive way.

Use (7) to find and their corre-
sponding . Put
into (7) to find and their cor-
responding . Repeat until we
get and their corresponding

(Note: The maximum value of a
continuous function over a compact set always exists, though

need not be unique in
general).

Since are fixed, for simplicity we
henceforth abbreviate as .

V. OPTIMUM STATIONARY INPUT DISTRIBUTION

From Theorem 2, we see that the optimum input distribution
generally depends on time, which significantly complicates the
problem. In this section, we restrict our attention to input dis-
tributions that depend only on the current channel state (i.e.,
the previous channel output) but do not depend on time. We

(10)

(11)

(12)
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call these the stationary1 input distributions, and we let de-
note the set of such distributions. Correspondingly, defined
in Section III is the set of nonstationary input distributions. Let

denote the input distribution when the channel state is . Then
no loss in generality results from writing an element of as

. It is clear that, if we restrict the input dis-
tribution into , then is a homogeneous
Markov chain.

When the input distribution is stationary, we can easily find
the following recursive formula:

(13)

where

1) ;

2) with
.

It follows from (13) that

(14)

Using matrix representation, we can write (14) as

...
...

(15)

where

...
...

. . .
...

is a transition matrix for the homogeneous Markov chain
. It follows easily from (15) that

...
...

(16)

1Here, the term “stationary” does not have its usual connotation in the theory
of random processes. Specifically, since we do not rule out initial conditions
that cause the state process’s marginals to undergo a transient, similar transient
behavior may well be exhibited by the marginals of the input process. What
motivates our use of the term “stationary” is that, if the channel satisfies certain
conditions (which will be made clear in Section VI) and the input distribution is
“stationary” under our definition, then the joint input and output process (i.e., the
joint input and state process) forms an irreducible and aperiodic homogeneous
Markov chain and thus is asymptotically mean stationary in the sense of [16],
[17].

Since is a homogenous Markov chain, we
can divide its states into two categories: the transient states and
the recurrent states. Recurrent states can be decomposed into
disjoint irreducible closed sets. Furthermore, there are two kinds
of irreducible closed sets: aperiodic and periodic. Now we dis-
cuss them separately.

a) Aperiodic irreducible closed set (suppose it contains
states ).

Now consider the principal submatrix of with respect
to the th th th columns and rows, which we
denote by . Clearly, we can derive from (16) that

...
...

(17)

where

...
...

. . .
...

By the Markov convergence theorem for an aperiodic ir-
reducible closed set (see, e.g., [18]), we have

...
...

. . .
...

as (18)

where is the unique stationary (or equilib-
rium) distribution for the aperiodic irreducible closed set

. So by (17) and (18)

...
...

...
. . .

...
...

as . Thus, we have

(19)

which is independent of ; that is,
starting from any state in a given aperiodic irreducible
closed set, the limiting average directed mutual informa-
tion is identical.

b) Periodic irreducible closed set (suppose it contains
states and suppose the period is . Let

be the cyclic decomposition of the state
space).
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Now consider the principal submatrix of with respect
to the th th th columns and rows, henceforth
denoted by . Clearly, we can derive from (16) that

...
...

(20)

where

...
...

. . .
...

By the Markov convergence theorem for a periodic irre-
ducible closed set (see, e.g., [18]), we have

where is the component on the th row and th
column of matrix

is the unique stationary (or equilib-
rium) distribution for the aperiodic irreducible closed set

. More specifically, if and
(actually we just need the subscript of the cyclic state
space that they belong to differ by ),
then we have

(21)

(22)

It follows by (20), (21), and (22) that

(23)

which is independent of ; that is,
starting from any state in a given periodic irreducible
closed set, the limiting average directed mutual informa-
tion is identical.

Since the limiting average directed mutual information is seen
to have the same expression for an aperiodic irreducible closed
set as for a periodic irreducible closed set, in order to find the

stationary input that maximizes the average directed mutual in-
formation given the initial state , we can proceed as fol-
lows, where without loss of generality we suppose .

i) Let be the space containing all the probability
vectors. Now consider the product space

where for all . Decompose
into disjoint subsets such that

and the have the property that for any
, the indices of the positions that are

in the binary expansion of correspond to the states
that form an irreducible closed set with state .
For example, let and ; then, the binary
expansion of is . For any

states , , form an irreducible closed set. For any

state is either a transient state or an irreducible
closed set formed by itself.

ii) The maximum average directed mutual information for
a stationary input distribution can be obtained by

(24)
if the above maximization operation is feasible. Here,
is the set containing the indices of the positions that are

in the binary expansion of . For the previous
example, if , then .

iii) In ii), we did not consider in the maximization.
Clearly, under some stationary input distribution

, if state forms an irreducible closed
set by itself, then

if state is transient, then we have

where is the probability that the Markov chain will
end in the irreducible closed set and is the limiting
average directed mutual information for this irreducible
closed set as was discussed in a) and b). The example
discussed in Section III is a special case of iii).

When the initial state is transient under any input distribution,
it may seem to be a good choice to maximize the probability that
the Markov chain will be absorbed in the irreducible closed set
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Fig. 4. Example 2.

that has the largest limiting average directed mutual informa-
tion. To see that the problem actually is much more complicated,
consider the example shown in Fig. 4. If , then we can
let or (other inputs will drive the Markov chain into
state which is a dead end). But if we choose , then
with probability , the Markov chain will be driven to state
and stuck there forever; also, with probability , the Markov
chain will be driven to state and we can transmit 1 bit of in-
formation per channel use after that. If we choose , then
the Markov chain will be driven to state and we can transmit

bits of information per channel use after that. Clearly,
for this channel model, if we want to drive the Markov chain into
an irreducible closed set with highest limiting average directed
mutual information—namely, —then we need to take the
risk that we may actually end in the bad irreducible closed set

. The feedback channel capacity introduced in Definition 1
can be roughly interpreted as the maximal reliable communica-
tion rate in the worst case scenario. So for this channel model,
it is easy to check that . By Example 1 and 2,
we can see that if there does not exist a input distribution under
which all the channel states form a single irreducible set, the
feedback channel capacity given in Definition 1 may not reveal
the intrinsic structure of the channel. Outage capacity seems to
be a more proper concept in this context.

VI. OPTIMAL NONSTATIONARY INPUT DISTRIBUTION

Next, we study the nonstationary input distribution that max-
imizes the limiting average directed mutual information. Here,
“nonstationary” means the input depends both on the current
channel state (i.e., the previous channel output) and on time,
whereas “stationary” (as was discussed in Section V) means
the input depends only on current channel state. As we saw
in Section V, the transition matrix of the Markov process

depends on the input distribution. If the input is
stationary, then is a homogeneous Markov
chain and we have a simple way to determine the unique de-
composition of the state space into disjoint irreducible closed
sets and transient state sets. But when the input distribution is
not stationary, then becomes an inhomoge-
neous Markov chain and there is no simple method to determine
whether a state is transient or recurrent. Roughly speaking, if we
view a Markov chain as a random walk on a directed graph, then
the connectivity of this graph (which is determined by the tran-
sition matrix) is fixed for a homogeneous Markov chain, while it

changes with time for an inhomogeneous Markov chain. In our
case, the connectivity of the graph is determined by the input
distribution, so it will change with time if the input is nonsta-
tionary. In order to make the analysis tractable, we need to im-
pose some restrictions on our model.

First we introduce two concepts: strong irreducibility and
strong aperiodicity. Here, we imitate the definitions of irre-
ducibility and aperiodicity in the classic Markov theory.

Definition 2 (Strong Irreducibility): Let

We say there exists a directed edge from state to state if
. We say a Markov chain is

strongly irreducible if for any two states and ( can be equal
to ), there exists a directed path from to . For simplicity,
we just say , the matrix whose is , is
strongly irreducible, since contains all the information that
determines whether the Markov chain is
strongly irreducible or not.

Definition 3: Where the “length” of a path is the number of
edges comprising the path, let be the set of lengths of all the
possible closed paths from state to state . Let be the greatest
common divisor of . is called the period of state .

The following result says that period is a class property.

Lemma 2: If the Markov chain is strongly
irreducible, then for any and .

Proof: Let and be the integers such that there exist a
directed path of length from state to state and a directed
path of length from state to state . So there exists a directed
path of length from state to state . Hence, .

Let ; by Definition 3, there exists a directed path of
length from state to state . So ,
and hence . Since is arbitrary, .

Interchanging the roles of and gives , and hence,
.

So for a strongly irreducible Markov chain
, all the states have the same period, which we shall

denote by .

Definition 4 (Strong Aperiodicity): We say a strongly irre-
ducible Markov chain is strongly aperiodic
if .
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For simplicity, we just say that is strongly irreducible and
strongly aperiodic. Clearly, our definitions of irreducibility and
aperiodicity are stronger than those in the usual sense; i.e., if
the Markov chain is stongly irreducible and
strongly aperiodic, then it is irreducible and aperiodic in the
usual sense for any input distribution

Note, however, such a Markov chain is in general inhomoge-
neous since may depend on . Again, if
we view the Markov process as a random
walk on a directed graph, then strong irreducibility and strong
aperiodicity assure us that this directed graph is always strongly
connected and all the states of it are of period no matter what
input distribution is generating via the channel.

We now proceed to prove a lemma which will be useful in the
proof of the main theorem in this section.

Lemma 3: If is strongly irreducible and strongly aperiodic,
then there is a such that for all .

Proof: Since is strongly irreducible, every row of
should have at least one positive element. So we can scale every
row of to make it to be a transition matrix in which the
summation of the elements on every row is . Clearly, is irre-
ducible and aperiodic in the usual sense and we have

By [16, Example 5.9], there exists a such that
for all , . Since

it follows that

for any positive integer . So we can conclude that

for all .

Theorem 3: If is strongly irreducible and strongly aperi-
odic, then exists and is independent of .

Proof: By Theorem 2, we have

(25)

where

Similarly

(26)

By the definition of and , we have

(27)

(28)

It follows from (26) and (27) that

(29)

Similarly, by (25) and (28), we have

(30)

Using matrix representation, we can write (29) and (30) jointly
as

...
...

...

(31)

where

...
...

. . .
...

Since is strongly irreducible and strongly aperiodic, by
Lemma 3, there is a such that

for all , . From (31), we can get

...

...

...
(32)

It is easy to see that
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for all positive integers , , . Let

Clearly, we have . Let

By (32), we can get

and thus we have

It follows by recursion that

(33)

and thus,

By (31), it is easy to show that is monotonically decreasing,
is monotonically increasing, and both of them are bounded,

so their limits exist. Hence,

implies

That is, exists and is independent of .
So we can conclude that

exists and is independent of .

Now we begin to analyze the convergence rate of

which is useful for Section VII.
By (33), we have, for any and

(34)

where

and

Note: .

VII. CONVERGENCE OF NONSTATIONARY INPUT TO

STATIONARY INPUT

We now show that under certain conditions, the limiting
maximum average directed mutual information actually can be
achieved by a stationary input. Before proving the main the-
orem in this section, we need to introduce several definitions.

Definition 4 (The Vector -Norms): For

Specifically, for , we have

Definition 5 (the Matrix -Norms): For

Specifically, for , we have

is the square root of the

largest eigenvalue of

For the detailed discussion of the properties of the vector
-norms and matrix -norms, see [19].

Definition 6: Let denote the set of all probability
vectors. We say an channel transition probability ma-
trix if there exists a subset such that the
following three conditions are satisfied.

i) .
ii) For any

iii) There exists a positive constant such that

for any nonidentical and with the direction
from to .

is called the -subset.
See Appendix I for the detailed discussion of Definition 6.
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We also need the following lemma concerning the backward
product of matrices.

Lemma 4 [13]: If , then for any
, there exists a positive number such that, for all

where , are stochastic matrices.

Now we are ready to prove the main theorem in this section.

Theorem 4: If is strongly irreducible and strongly aperi-
odic and , then

where is the equilibrium distribution of the
channel output process induced by the stationary input distribu-
tion .

Proof: Let be the -subset. Since

where , Definition 6 and the
discussion in the Appendix assure us that

is attained inside and there exists a unique such
that

First, we derive a bound on the convergence rate of . Let

We have

and thus,

(35)

where the direction of is from to (We temporarily
suppose that ). Since is the max-
imum value of and the direction of is from to

, it follows that

(36)

Since is linear with respect to
, it follows that

Then, by Definition 6, we have

(37)

Since is the maximum value of and the direc-
tion of is from to , it follows that

(38)

Putting (38) into (37), we get

(39)

By (35), (36), and (39), we have

or equivalently

(40)

It follows from (34) that

and it is easy to check that

So for any we have

(41)
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It is obvious that (41) also holds when . Thus,

(42)

for any as . Hence, is a Cauchy sequence.
Since is complete, there exists such that .
Clearly, this result holds for all .

Let , where and are defined in the
equations at the bottom of the page. By Holder’s inequality
and (42)

Clearly, we have

where . Hence,

Applying Lemma 4, we deduce that for any , there exists
a positive number such that, for all

(43)

Since for every , it follows that for any , there
exists a positive number such that, for all

... (44)

Let . In the remaining part of this proof,
we implicitly assume . Now we have

...

...

...

where , the he input distributions of are

respectively.
Similarly, we have

...

...
...

. . .
...

and

...
...

. . .
...
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...

...

All the input distributions of are

. So we have

(45)

where are given in equations at the bottom of
the page. Now we evaluate , and , respectively, in
(46)–(48) at the bottom of the following page.

Clearly, we have

(49)

(50)

... (51)

By (43)

(52)

since if .
By (44)

... (53)

since if .
Putting (49)–(53) into (48) yields

(54)

Now put (46), (47), and (54) back into (45), obtaining

Since here is arbitrary, it follows that

(55)

The strong irreducibility of guarantees that the output
process induced by any stationary input
distribution form an irreducible Markov chain on the state space

. So from the analysis in Section V, we have

where is the equilibrium distribution of the
channel output process induced by the stationary input distribu-
tion . Hence,

(56)

...
...

...

...

...

...
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It is obvious that the limiting average directed mutual informa-
tion induced by the optimal input distribution is always greater
than or equal to the limiting average directed mutual informa-
tion induced by any stationary input distribution, so we have

(57)

Combining (56) and (57) and noticing the arbitrariness of ,
we can conclude that

(58)
for all .

i) ...

... (46)

ii) ...

... (47)

iii) ...

...

...

...

...

...

...

... (48)
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Remark: The condition is
introduced for purely technical reasons. It enables us to prove
that converges to exponentially fast by exploiting the
strict concavity property of mutual information function. The-
orem 4 still holds when this condition is removed. However, the
proof will be less direct compared with the current one.

VIII. DIRECT CHANNEL CODING THEOREM

In this section, we prove the direct channel coding theorem
and suggest a coding scheme for our channel model.

Theorem 5 (Direct Channel Coding Theorem): If is
strongly irreducible and strongly aperiodic, then all rates less
than

are achievable, where is the equilibrium dis-
tribution of the channel output process induced by the stationary
input distribution .

Proof: We shall implicitly assume that .
It has been shown in [10] that the general formula for the

capacity of feedback channels is

where

1)

is the set of all channel input distributions;
2)

3) the in probability of a sequence of random vari-
ables , denoted by , is
defined as the largest extended real number such that

, .
Let

Let

for ; ; . Since
is strongly irreducible and strongly aperiodic, we can check that
the joint process induced by the stationary
input distribution constitutes an irreducible

Markov chain with converging
to , where is the equilibrium
distribution of the channel output process induced by the sta-
tionary input distribution . Note:

1) The recurrent state space of this Markov chain maybe
smaller than

The strong irreducibility and strong aperiodicity of only
guarantees that induced by the sta-
tionary input distribution form an ir-
reducible and aperiodic Markov chain on the state space

.
2) We assume the strong irreducibility and strong aperiod-

icity of only for simplicity. More generally, we would
need to decompose the state space into disjoint irreducible
closed sets, whereupon the proof would proceed along the
same lines.

Now we have

Since

is a function of , and is an er-
godic process, it follows that

is also an ergodic process. So we have

in probability
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Fig. 5. FSC with state information available at transmitter and receiver.

which implies that

Now the proof is complete since

Theorem 6: If is strongly irreducible and strongly aperi-
odic and , then

and is independent of the initial state .
Proof: By Theorem 1

If is strongly irreducible and strongly aperiodic,
, by Theorem 4

Theorem 5 shows the tightness of this upper bound and com-
pletes the proof.

In the remainder of this section, we suggest a coding scheme
for our channel model, which also makes the meaning of the
capacity formula transparent.

We first consider the channel model shown in Fig. 5, in which
the state information is simultaneously available to both the
transmitter T and the receiver R. If the state process is stationary
and ergodic, then it is well known [9], [20], [21] that the channel
capacity is

where is the number of channel states and is the stationary
distribution of the ergodic state process . The following
is the outline of the coding scheme for this channel [21].

Let

Fix the block length . Let be the number of times during
the symbols for which the channel state is , i.e.,

Let . Since the state process is stationary and er-
godic, we have and

in probability.
An code for this channel is constructed

by multiplexing codes

, where code corresponds
to the channel state . By doing this, we
actually decompose the channel into memoryless channels
and the existence of these codes follows immediately from the
direct coding theorem for memoryless channels. Since is
not necessarily equivalent to , the codes are truncated if

and zero filled if . Represent each message
as a -dimensional vector with

and map the th index (i.e., ) into a codeword form the th
code (i.e., the code with parameters ),
for . If , then the transmitter sends as
the th symbol the next unsent symbol of the codeword cor-
responding to the th index of the message from the th code

.
Since the receiver knows exactly the state information that

was used at the transmitter, it can demultiplex the received
stream into separate codewords and decode them. Since the
state process is stationary and ergodic, as , the rate

is achievable.
It is easy to see that the capacity formula of this channel

model closely resembles ours in that both of them can be repre-
sented as the average of mutual information over the stationary
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distribution of the channel state process. This suggests that the
multiplexing coding scheme may work in our channel model as
well. But we should note that in our model, the current channel
state is the previous channel output, so it will be affected by the
channel input. Although we have shown that if the input process
is stationary, the output process (i.e., channel state process) is
an irreducible homogeneous Markov chain and thus is ergodic,
it does not imply that the output process induced by a spe-
cific codeword is still ergodic (or close to ergodic). The random
coding argument based on strong typicality tells us that for a dis-
crete memoryless channel with finite input and output alphabets,
the statistics of the output process induced by a good codeword
are close to those of the output process induced by the optimal
input distribution that achieves the channel capacity. But strong
typicality only guarantees that the statistics of a whole code-
word are close to the optimal input distribution, while a trun-
cated version may not have this property. In the multiplexing
scheme, the output process is generated by several multiplexed
codewords, each of which is designed for its corresponding de-
composed memoryless channel. And the length of a multiplexed
codeword is proportional to the stationary probability measure
assigned on its corresponding state. We want the statistics of
the output process induced by the multiplexed codewords to be
close to the equilibrium distribution induced by the optimal sta-
tionary input. Clearly, this depends highly on the cooperation
of the multiplexed codewords. Even a small fluctuation of the
statistics in a portion of a multiplexed codeword may have a
domino effect on the transmission of the other multiplexed code-
words and finally make the output process deviate from the de-
sired distribution. The result of the large deviation in the output
process is that the symbols in some multiplexed codewords are
totally sent while many symbols in some others of the multi-
plexed codewords are still unsent. So, in order to guarantee the
stability of the multiplexing scheme, we need the multiplexed
codewords to behave better than those codewords in the sense
that their empirical distributions well-approximate the input dis-
tribution to which they correspond. Theorem 7 below shows that
for a discrete memoryless channel with finite input and output
alphabets, the empirical statistics of each of the words of a good
code can be made to closely approximate the optimum input dis-
tribution even despite their being subjected to truncation.

Before proving Theorem 7, we need to give a definition.
We consider an information source , where

are independent and identically distributed (i.i.d.) with distribu-
tion . Let denote the cardinality of the set of values
may assume. Here we suppose and for all

.

Definition 7: The super-typical set with respect to
is the set of sequences such

that

for all and all , where is
the number of occurrences of in the sequence , and is an
arbitrarily small positive real number. The members of
are called super-typical sequences.

It’s clear that the super-typical set is a subset of the
strongly typical set . But the following lemma says that as
and go to infinity, these two sets have no essential difference.

Lemma 5: For any , , there exists a positive
integer such that when , we have

Proof: See Appendix II.

This lemma implies that no loss of generality results from
restricting attention to the super-typical set. It is obvious that
the random coding argument based on strong typicality can
be translated to an argument based on super typicality without
any change. So for any discrete memoryless channel with finite
input and output alphabets, there exists a good codebook, all the
codewords of which are super-typical. This is summarized in
Theorem 7.

Theorem 7: Let be any discrete memoryless channel
with finite input and output alphabets. For any input distribution

that is consistent with , for any ,
there exists such that for all , there exists a

code with average probability of error less than
and . Furthermore, each of these
codewords is super-typical with respect to .

Proof: The proof is omitted since it is almost the same
as the standard proof of direct coding theorem for memoryless
channel based on weak typicalicy or strong typicality, see [22].
The only difference is that we require that the randomly gener-
ated codewords satisfy super typicality. And Lemma 5 assures
us that there is no essential difference between strong typicality
and super typicality when the alphabets are finite.

We want to point out another difference between the multi-
plexing coding scheme for our feedback channel and that for
the channel model shown in Fig. 5. Zero filling is not a good
choice for our channel when , since this will make
the statistics of the codeword deviate from the corresponding
input distribution and thus induce a big deviation at the output.
Instead, we will fill in the letters so as to ensure that the length-
ened codewords still satisfy super typicality and/or we will
try to drive the channel into those states that still have unsent
symbols.

IX. CONCLUSION

We derived a simple formula for the capacity of finite-state
Markov channels with feedback when the channel transition
probability satisfies certain conditions. Actually, the same ca-
pacity formula holds under much weaker conditions. It will be
shown elsewhere [23], [24] that based on the classification of
Markov decision processes [25], the capacity of Markov chan-
nels with feedback can be studied in full generality.

Finally, we mention the relationship between the channel
whose state process cannot be affected by the input and the
one whose state process can be affected. We assume in both
cases the realization of the state process is available both at
transmitter and receiver. For the channel whose state process
cannot be affected by the input, the conventional multiplexing
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coding scheme [20], [21] can be viewed as a greedy algorithm
which tries to maximize the immediate mutual information.
For the channel whose state process can be affected by the
input, this greedy algorithm is not optimal since we not only
want to maximize the immediate mutual information but also
want to visit the preferable states as often as possible. So the
optimal coding scheme is a tradeoff between these two goals.
From this perspective, it seems appropriate to call this type of
code an error-correction and state-control code in contrast with
a conventional error-correction code. Since the optimal coding
scheme needs to exploit the ergodicity of the state process,
however, it usually causes a long delay in decoding, especially
when the state space is big and/or the probability measures
assigned to some states are close to zero. Therefore, in some
delay-limited applications, certain kinds of greedy schemes are
more attractive. In this sense, a channel whose state process
can be affected by the input is considerably more flexible than
one whose state process cannot be affected, since we can use
“idle” periods to drive the channel into preferable states and
thereby increase the efficiency when we really need to use
the channel for information transmission. In a quite general
manner of speaking, such a channel can be “matched” to an
information source in the spirit of [11]. Perhaps this is one of
the reasons why many real neural networks possess structure
that subscribes to the channel models treated in this paper.

APPENDIX I
DISCUSSION OF DEFINITION 6

Lemma 6: For any channel transition probability
matrix , if , then .

Proof: Let be an arbitrary -dimensional vector with
the constraint . Let . We have

If , then is invertible, whereupon it follows
that

So

which implies that

(59)

We have

(60)

where

Combining (59) and (60), we have

(61)

Since

and

is linear with respect to , it follows that

(62)

Now let . It is easy to verify that Conditions i) and
ii) in Definition 6 are trivially satisfied. Furthermore, for any
nonidentical and with the direction from to ,
by (62), we have

where . So Condition iii) in Definition 6 is also satis-
fied.

Now we begin to discuss the implications of three conditions
in Definition 6, which immediately suggests a way to construct

in the general case.
Consider the following equivalence relation:

if and only if is in the null space of

Let be a partition of generated by the above equivalence
relation such that for any , if and only if .
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Condition i) implies that for any . Condition
iii) implies that for each , contains at most one element
since if there exist two nonidentical , then

where the last equality follows from the fact that is in the null
space of . Hence, contains exactly one element.

Let with

Condition ii) implies that

where the last equality is because is a constant for
.

Now we are ready to present the procedure of constructing .

1) Let . By singular value decompo-
sition, there exist orthogonal matrices and

such that

where

with .
2) Let . Then we have

Let . Parti-
tion as and let . Then

(63)

where is a solution to the fol-
lowing constrained optimization problem:

(64)

subject to .
3)

where .

It is easy to check that the resulting satisfies Conditions i)
and ii) in Definition 6 and we have

for any nonidentical . We are unable to prove that

is uniformly bounded away from as required in Definition 6.
However, we believe it is true under fairly general conditions.

Now consider the following maximization problem:

(65)

where is an arbitrary real vector. Suppose the max-
imum is attained inside for some . Let be that unique
element of . Now we have

where follows from the fact that is a constant
for . So the maximum is attained inside . Furthermore,
there exists a unique that achieves this maximal value.
Since if there are nonidentical such that

by taking derivative with direction from to , we have

i.e.,

which is contradictory to Condition iii) in Definition 6.

APPENDIX II
PROOF OF LEMMA 5

We write

where . Then , , are i.i.d.
random variables with and

. Note that

Let . Clearly
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and

Let . Now

Terms in the sum of the form

and

are (if , , , are distinct) since the expectation of the product
is the product of the expectations, and in each case one of the
terms has expectation . The only terms that do not vanish are
those of form and . There are and

of these terms, respectively. The last observation im-
plies

Chebyshev’s inequality gives us

Hence,

Note: An alternative approach is to use Chernoff bound, which
yields a tighter upper bound on for large
and .

Since

there exists a positive integer , when , we have

Hence,

when .
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