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Correspondence

Successive Coding in Multiuser Information Theory

Xin Zhang, Jun Chen, Member, IEEE,
Stephen B. Wicker, Senior Member, IEEE, and

Toby Berger, Fellow, IEEE

Abstract—In this correspondence, we show that solutions to the multiple
description coding problem and the broadcast channel coding problem
share a common encoding procedure: successive source encoding. We
use this connection as the basis for establishing connections between
the achievable multiple description rate region and Marton’s region for
broadcast channels. Specifically, we show that Marton’s encoding scheme
can be viewed as a multiple description coding procedure. We also explore
the dual problem, namely, the relationship between successive channel
decoding in multiple access communication and distributed source coding.
By illuminating these connections to multiple description, we hope to
motivate a solution to what remains a mostly unsolved problem.

Index Terms—Broadcast channel, dirty paper coding, distributed source
coding, Gram–Schmidt orthogonalization, multiple access, multiple de-
scriptions, successive coding.

I. INTRODUCTION

Shannon was the first to point out the intimate connection between
source and channel coding [1]. The existence of this duality has since
been relentlessly mined with significant success. This connection has
recently been extended to the multiuser information theory scenario.
Some noteworthy demonstrations of this connection include the
random coding level duality [2]–[5] and the operational duality [6]
between the Wyner–Ziv problem [7] and Gel’fand–Pinsker problem
[8]; the convex duality between Gaussian broadcast channels and
multiaccess channels [9]–[11]; and the sum-rate duality between
distributed source and channel coding problems [12], [13]. The recog-
nition of these connections has not only deepened our understanding
of these subjects, but has also lead to solutions to some long-standing
open problems.

There remain branches of multiuser information theory that are still
more or less isolated from the above connections, one such branch
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being the multiple description (MD) problem. The multiple descrip-
tion problem can be stated as follows: given a total available bit rate
R and a pair of channels, both of which are subject to failure, how can
one allocate rate and coded representations between the two channels
such that if one channel fails, an adequate reconstruction of the source
is possible, but if both channels are available, an improved reconstruc-
tion over the single-channel reception results? Some important contri-
butions to the MD problem can be found in [14]–[17]. Recently the MD
problem has been generalized to the L-channel case [18], [19].

Although the MD problem remains a largely unsolved problem, it
does exhibit some interesting connections with other problems in muli-
tuser information theory. In this correspondence, we show that the mul-
tiple description coding and broadcast channel coding share a common
encoding procedure: successive source encoding. We also explore the
dual problem, namely, successive channel decoding in multiple access
communication and distributed source coding.

The remainder of this correspondence is divided into four sections.
In Section II, we characterize the geometric structure of polymatroids
and contra-polymatroids. In Section III we propose an achievable MD
rate region and prove it is a contra-polymatroid. This region is shown
to be achievable via a low-complexity successive source encoding
scheme. For the Gaussian case, this successive source encoding
scheme has a simple implementation via Gram–Schmidt orthogonal-
ization. We establish some connections between this achievable MD
rate region and Marton’s region for broadcast channels. Specifically,
Marton’s encoding scheme can be viewed as a multiple description
coding procedure. Dual results in distributed source coding and mul-
tiple access communication are presented in Section IV. We conclude
the correspondence in Section V.

We use boldfaced letters to indicate (n-dimensional) vectors,
capital letters for random objects, and small letters for their re-
alizations. For example, we let X = (X(1); . . . ; X(n))T and
x = (x(1); . . . ; x(n))T . Calligraphic letters are used to indicate a set
(say, A). For any positive integer K , we define IK = f1; 2; . . . ; Kg.

II. POLYMATROID AND CONTRA-POLYMATROID

The polymatroid and the contra-polymatroid are two important geo-
metric objects arising in various multiuser information theoretic prob-
lems. In this section we give a simple characterization of their geo-
metric and combinatorial structures. These structures, when interpreted
in the information theoretic context, have intrinsic connections with
successive coding schemes.

Definition 1 ( [20], [21]): Let f : 2I ! R+ be a set function.
The polyhedron

B(f) (x1; . . . ; xL) 2 R
L

+ :
i2S

xi � f(S); 8S � IL

is a polymatroid if the set function f satisfies
1) f(;) = 0 (normalized).
2) f(S) � f(T ) if S � T (nondecreasing).
3) f(S) + f(T ) � f(S [ T ) + f(S \ T ) (submodular).
The polyhedron

G(f) (x1; . . . ; xL) :
i2S

xi � f(S);8S � IL
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is a contra-polymatroid if f satisfies
1) f(;) = 0 (normalized).
2) f(S) � f(T ) if S � T (nondecreasing).
3) f(S) + f(T ) � f(S [ T ) + f(S \ T ) (supermodular).

If f satisfies the three properties, f is called a rank function in both
cases.

One of the most important properties of polymatroid and contra-
polymatroid is that their vertices can be easily characterized. If � is a
permutation on the set IL, define the vectorv(�) 2 RL by v�(1)(�) =
f(f�(1)g) and

v�(i)(�) = f(f�(1); . . . ; �(i)g)� f(f�(1); . . . ; �(i� 1)g)

for i = 2; 3; . . . ; L.

Lemma 1 ( [20], [21]): Let B(f) (or G(f)) be a polymatroid (or
contra-polymatroid). Then the points v(�) where � is a permutation
on IL are precisely the vertices of B(f) (or G(f)).

Now we proceed to characterize the boundary of polymatroid B(f)
and contra-polymatroid G(f). The boundary of B(f) (or G(f)) is the
union of all its faces. Specifically, each vertex is a 0-dimensional face.
But for B(f), those trivial faces B(f) \ f(x1; . . . ; xL) : xi = 0g,
i = 1; 2; . . . ; L are precluded.

For ; � S � IL, define the hyperplane

H(S) = (x1; . . . ; xL) :
i2S

xi = f(S) :

Theorem 1: Let B(f) (or G(f)) be a polymatroid (or contra-poly-
matroid). F is a face of B(f) (or G(f)) if and only if F = B(f) \

k

i=1H(Si) (or F = G(f) \ k

i=1H(Si) ) for some ; � S1 �

S2 � � � � � Sk � IL.
Proof: See Appendix I.

Definition 2: LetDB(f) = B(f)\H(IL). We callDB(f) the dom-
inant face of B(f). Similarly,DG(f) = G(f)\H(IL) is referred to as
the dominant face of G(f).

Among all the faces of B(f) (or G(f)), DB(f) (or DG(f)) is of spe-
cial importance. For any vector (x01; . . . ; x

0
L) 2 B(f), there exists a

vector (x1; . . . ; xL) 2 DB(f) such that (x1; . . . ; xL) � (x01; . . . ; x
0
L).

That is to say, every vector in B(f) is dominated (componentwise) by
a vector in DB(f). Similarly, for any vector (x01; . . . ; x

0
L) 2 G(f),

there exists a vector (x1; . . . ; xL) 2 DG(f) such that (x1; . . . ; xL) �
(x01; . . . ; x

0
L).

Now we give a finer characterization of these two dominant faces. It
is easy to verify that

L

i=1

v�(i)(�) = f(IL):

So all the vertices are contained in DB(f) (or DG(f)). By
Theorem 1, F is a face of DB(f) (or DG(f)) if and only if

F = B(f) \ k

i=1H(Si) (or F = G(f) \ k

i=1H(Si) )

for some ; = S0 � S1 � S2 � � � � � Sk = IL. Let � be the
set of permutation � on IL such that f�(1); . . . ; �(jSij)g = Si
for i = 1; 2; . . . ; k � 1. We can verify that v(�) is a vertex of

F = B(f)\ k

i=1H(Si) (orF = G(f)\ k

i=1H(Si) ) for each

permutation� 2 �, and vice versa. HenceF = B(f)\ k

i=1H(Si)

(orF = G(f)\ k

i=1H(Si) ) has totally j�j = k

j=1(jSj nSj�1j!)

vertices.1 Moreover, we have dim F = B(f) \ k

i=1H(Si) (or

1These vertices may not be distinct.

dim F = G(f) \ k

i=1H(Si) ) � L � k, where the equality
holds when all the vertices of F are distinct.

III. SUCCESSIVE SOURCE ENCODING

In multiuser information theory, rate regions with polymatroid or
contra-polymatroid structure often have intimate connections with suc-
cessive coding schemes. We focus on the successive source encoding
in this section, while the successive channel decoding is left to next
section.

A. Successive Coding Function

We first prove the following invariant lemma before introducing the
successive coding function.

Lemma 2: Let � be a permutation on Ik and let (X1; . . . ; Xk) be a
set of k random variables. The sum

k�1

i=1

I(Z�(1); . . . ; Z�(i);Z�(i+1))

is invariant under �.
Proof: See Appendix II.

Definition 3: For any set of random variables fZ1; Z2; . . . ; Zkg, let

 (Zi; i 2 Ik) =
k�1

i=1

I(Z1; . . . ; Zi;Zi+1) (1)

if k � 2 and let  (Zi; i 2 Ik) = 0 if k = 1. We refer to  (�) as the
successive coding function.

Remark: By Lemma 2,  (Zi; i 2 Ik) does not depend on the or-
dering in fZ1; Z2; . . . ; Zkg and thus is well-defined.

Lemma 3: The successive coding function  (�) has the following
two properties:

1)  (Zi; i 2 S) �  (Zi; i 2 T ) if S � T (nondecreasing).
2)
 (Zi; i 2 S) +  (Zi; i 2 T )

�  (Zi; i 2 S [ T ) +  (Zi; i 2 S \ T )

(supermodular).
Proof: See Appendix III.

We will show that the successive coding function  (�) arises nat-
urally in both successive source encoding and successive channel de-
coding. Since Lemma 3 says that  (�) is essentially a rank function,
it is not surprising that successive coding schemes give rise to rate re-
gions with either polymatroid or contra-polymatroid structure.

B. Multiple Description Coding

Let fX(t)g1t=1 be an i.i.d. random process with X(t) � p(x) for
all t. Let d(�; �) : X � X ! [0; dmax] be a distortion measure.

Definition 4: We say that the rates fRi; i 2 ILg and distortions
fDA; ; � A � ILg are achievable if for all � > 0, there exist, for n
sufficiently large, encoding functions

f
(n)
i : Xn ! C

(n)
i log jC

(n)
i j � n(Ri + �) i = 1; . . . ; L

and decoding functions

g
(n)
A :

i2A

C
(n)
i ! Xn ; � A � IL

such that for X̂A = g
(n)
A (f

(n)
i (X); i 2 A)

1

n

n

t=1

d(X(t); X̂A(t)) < DA + �; ; � A � IL:
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Theorem 2: fRi; i 2 IL; DA; ; � A � ILg is achievable if
there exist functions gA(�), ; � A � IL, and random variables
(U1; . . . ; UL) jointly distributed with the generic source variable X
such that

i2A

Ri � (X;Ui; i 2 A)

DA � (X; gA(Ui; i 2 A))

for all ; � A � IL.
Proof: It can be verified that the resulting achievable region is

contained in the region proved in [18] and thus must be achievable.

Our proposed region, although not the largest known achievable MD
region, is of special importance. One can easily recover the region in
[18] from ours by appending some superimposed refinement; one can
also recover the region in [19] by incorporating the random binning
procedure. Therefore, to certain extent, our region is a fundamental
building block of all existing achievable MD rate-distortion regions.

Let

RMD(Ui; i 2 IL)

= (R1; . . . ; RL) :
i2S

Ri �  (X;Ui; i 2 S); 8S � IL :

By the properties of  (�) proved in Lemma 3, it is easy to see
that RMD(Ui; i 2 IL) is a contra-polymatroid. By Lemma 1,
RMD(Ui; i 2 IL) has L! vertices. Specifically, if � is a permutation
on IL, define the vector (R1(�); . . . ; RL(�)) by

R�(1)(�)= (X;U�(1)) = I(X;U�(1));

R�(i)(�)= (X;U�(1); . . . ; U�(i))� (X;U�(1) . . . ; U�(i�1))

= I(X;U�(1); . . . ; U�(i�1);U�(i)); i = 2; . . . ; L:

Then (R1(�); . . . ; RL(�)) is a vertex of RMD(Ui; i 2 IL) for every
permutation �.

The expressions of these vertices directly lead to the following suc-
cessive source encoding scheme.

Successive Source Encoding for Vertex

1) Codebook Generation: Encoder �(1) indepen-
dently generates 2n[I(X;U )+� ] codewords

fU�(1)(j�(1))g
2
j according to the

distribution p(u�(1)). Encoder �(i) independently
generates 2n[I(X;U ;...;U ;U )+� ] codewords

fU�(i)(j�(i))g
2
j =1 according to

the distribution p(u�(i)), i = 2; . . . ; L.
2) Encoding Procedure: Given X, encoder �(1) finds the

codeword U�(1)(j
�
�(1)) such that U�(1)(j

�
�(1)) is strongly

typical with X, then encoder �(i) finds the codeword
U�(i)(j

�
�(i)) such that U�(i)(j

�
�(i)) is strongly typical with

(X;U�(1)(j
�
�(1)); . . . ;U�(i�1)(j

�
�(i�1))), i = 2; . . . ; L. Index

j��(i) is transmitted through channel �(i), i = 1; . . . ; L.
3) Reconstruction: Decoder A reconstructs X̂A with X̂A(t) =
gA(Ui(j

�
i ; t); i 2 A), ; � A � IL. Here Ui(j�i ; t) is the tth

entries ofUi(j
�
i ), t = 1; . . . ; n, i = 1; . . . ; L.

For this scheme, encoder �(1) does the encoding first, then encoder
�(2), encoder �(3), and so on. Generally the design of encoder �(i)
becomes more complicated as i gets larger since the sequence space
(X;U�(1); . . . ;U�(i�1)) its codebook needs to cover becomes larger.
To simplify the encoder design, we can replace its input by a sufficient
statistic. Specifically, let V�(i) be a sufficient statistic for estimating
U�(i+1) from (X;U�(1); . . . ; U�(i)), i.e.

(X;U�(1); . . . ; U�(i)) ! V�(i) ! U�(i+1)

form a Markov chain, i = 1; . . . ; L � 1. We can first map
(X;U�(1); . . . ;U�(i)) to V�(i) and let V�(i) be the input of
encoder �(i + 1), i = 1; . . . ; L � 1. This can be justified by the
Markov Lemma [22].

For the quadratic Gaussian case, we can let

V�(i) = (U�(i+1)jX;U�(1); . . . ; U�(i))

which is the MMSE estimate of U�(i+1) given (X;U�(1); . . . ; U�(i)),
i = 1; . . . ; L� 1. A closer look reveals that the above successive con-
struction of sufficient statistics is nothing but Gram–Schmidt orthogo-
nalization on fX;U�(1); . . . ; U�(L)g. In the standard form, we have

I0 =X;

I1 =U�(1) � (U�(1)jX);

Ii =U�(i) � (U�(i)jX; U�(1); . . . ; U�(i�1)); i = 2; . . . ; L:

fI0; . . . ; ILg are independent Gaussian random variables and
sometimes referred to as the innovation process. For vertex
(R1(�); . . . ; RL(�)) of RMD(Ui; i 2 IL), we have

R�(1)(�)= (X;U�(1)) = I(X;X + I1)

R�(i)(�)= I(X;U�(1); . . . ; U�(i�1);U�(i))

= I( (U�(i)jX; U�(1); . . . ; U�(i�1));

(U�(i)jX; U�(1); . . . ; U�(i�1)) + Ii); i=2; . . . ; L:

Intuitively, Ii can be viewed as the quantization error of encoder �(i).
The independence between quantization errors of different encoders
significantly simplifies the design of MD quantization system. See [23]
for a practical implementation using ECDQ.

Now we proceed to discuss the operational results associated with
the contra-polymatroid struture of RMD(Ui; i 2 IL). For ; � S �
IL, define the hyperplane

HMD(S) = (R1; . . . ; RL) :
i2S

Ri =  (X;Ui; i 2 S) :

Let

DMD(Ui; i 2 IL) = RMD(Ui; i 2 IL) \HMD(IL)

which is the dominant face of RMD(Ui; i 2 IL). Every rate tuple
(R01; . . . ; R

0
L) strictly insideRMD(Ui; i 2 IL) is dominated (compo-

nentwise) by a rate tuple (R1; . . . ; RL) 2 DMD(Ui; i 2 IL) in terms
of compression efficiency. Hence in search of the optimal scheme, the
attention can be restricted to rate pairs on the dominant face without
loss of generality.

It has been shown that every vertex of DMD(Ui; i 2 IL)
is achievable via an L-step successive source encoding scheme.
We now extend this result to the rate tuples on the boundary of
DMD(Ui; i 2 IL). From the discussion in the preceding sec-
tion, we know that F is a face of DMD(Ui; i 2 IL) if and

only if F = RMD(Ui; i 2 IL) \ k

i=1HMD(Si) for

some ; = S0 � S1 � � � � � Sk = IL. For any rate tuple
(R1; . . . ; RL) 2 RMD(Ui; i 2 IL) \

k

i=1HMD(Si) , we have

m2S nS

Rm = (X;Ui; i 2 Sj)�  (X;Ui; i 2 Sj�1)

= (Xj�1; Ui; i 2 Sj n Sj�1) (2)

where Xj�1 = (X;Ui; i 2 Sj�1), j = 1; . . . ; k. Note: Xj�1 should
be viewed as a single random variable when expand  (Xj�1; Ui; i 2
Sj n Sj�1) according to (1). From (2), it is clear that (R1; . . . ; RL)
can be achieved via a k-step successive group source encoding scheme.
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That is, at step j, encoders in group Sj n Sj�1 jointly search for code-
words Ui (i 2 Sj n Sj�1) such that (Ui; i 2 Sj n Sj�1) are jointly
typical with (X;Ui; i 2 Sj�1), j = 1; . . . ; k. So the successive en-
coding is implemented between different groups while the joint en-
coding is implemented within each group.

Now we propose a splitting method to achieve a general
point in DMD(Ui; i 2 IL) via successive source encoding. Let
U = fU1;1; . . . ; U1;m ; U2;1; . . . ; U2;m ; . . . ; UL;1; UL;m g jointly
distributed with the generic source variables X such that

1) L

i=1mi � 2L� 1 and 1 � mi � 2 for all i 2 IL;
2) Ui;m ! Ui;1 ! (X; fUj;1; . . . ; Uj;m gj 6=i) form a Markov

chain for all i 2 IL;
3) (X;U1; . . . ; UL) = (X;U1;1; . . . ; UL;1) in distribution.

If we viewUi as a description ofX , thenUi;1 is an identical copy ofUi
and Ui;2 (if exists) is a coarse description of X . We can say that Ui;2
is split from Ui. Let U� be a permutation on U such that for all i 2 IL,
Ui;2 (if exists) is placed before Ui;1 with at least one random variable
between them (we refer this type of permutation as the well-ordered
permutation). Let fUi;jg�� denote all the random variables that appear
before Ui;j in U� .

Successive Source Encoding with Splitting:

1) Codebook Generation: For all i 2 IL, if mi = 1, then en-
coder i independently generates 2n[I(X;fU g ;U )+� ]

codewords fUi;1(ji;1)g
2
j =1 according

to the distribution p(ui;1); if mi = 2, encoder i first in-
dependently generates 2n[I(X;fU g ;U )+� ] codewords

fUi;2(ji;2)g
2
j =1 according to the distri-

bution p(ui;2), then for each codeword Ui;2(ji;2), encoder
i independently generates 2n[I(X;fU g ;U jU )+� ] code-

words fU2(ji;2; ji;1)g
2
j =1 according

to the conditional distribution
t

p(ui;1jUi;2(ji;2; t)). Here

Ui;2(ji;2; t) is the tth entry ofUi;2(ji;2).
2) Encoding Procedure: Encoding is carried out according to the

ordering in U� . Given X, if mi = 1, then encoder i finds the
codeword Ui;1(j

�
i;1) such that Ui;1(j

�
i;1) is strongly typical

with (X; fUi;1(j
�
i;1)g

�
� ); if mi = 2, encoder i first finds the

codeword Ui;2(j
�
i;2) such that Ui;2(j

�
i;2) is strongly typical

with (X; fUi;2(j
�
i;2)g

�
� ), then encoder i finds the codeword

Ui;1(j
�
i;2; j

�
i;1) such that Ui;1(j

�
i;2; j

�
i;1) is strongly typical

with (X; fUi;1(j
�
i;2; j

�
i;1)g

�
� ). Index j�i;1 and j�i;2 (if exists) are

transmitted through channel i, i = 1; . . . ; L.
3) Reconstruction: For allA � IL, decoderA reconstructs X̂A with
Ui;1(j

�
i;2; j

�
i;1) (orUi;1(j

�
i;1) if mi = 1), i 2 A.

It can be shown via an argument similar to that in [24] that a gen-
eral point on the dominant face ofRMD(Ui; i 2 IL) is achievable via
a successive source encoding scheme of at most 2L � 1 steps if the
splitting is used, and each Ui gets split at most once. It is noteworthy
that 2L� 1 is just an upper bound. For rate tuples on the boundary of
DMD(Ui; i 2 IL), the encoding steps can be further reduced. Intu-
itively, the splitting method can viewed as a way to create an order for
fU1; . . . ; ULg. We have already known that rate tuples on the boundary
of dominant face are achievable via successive group source encoding,
i.e., the order exists between different groups but not within each group.
So we just need to use the splitting method to create order within each
group. Specifically, for any rate tuple (R1; . . . ; RL) in

F = RMD(Ui; i 2 IL) \
k

i=1

HMD(Si)

for some ; = S0 � S1 � � � � � Sk = IL, the splitting can be
carried out in Si n Si�1; i = 1; 2; . . . ; kseparately. So the number of

successive encoding steps isL+dim(F) � k

i=1(2jSinSi�1j�1) =
2L � k:

Similar to the vertex case, we can successively construct sufficient
statistics along the order created by the splitting method to simplify
the encoder design. This procedure becomes Gram–Schmidt orthog-
onalization in the quadratic Gaussian case. Let U� be a well-ordered
permutation on U . Applying Gram–Schmidt orthogonalization to U�
yields

I
0
i = U�(i)� (U�(i)jX; fU�(i)g

�
� )

for i = 1; . . . ; jUj, where U�(i) is the ith element of U� . For i 2 IL,
if mi = 1 and U�(j) = Ui;1, then

Ri = I(X; fUi;1g
�
� ;Ui;1)

= I( (Ui;1jX; fUi;1g
�
� ); (Ui;1jX; fUi;1g

�
� ) + I

0
j);

if mi = 2, U�(k) = Ui;2 and U�(l) = Ui;1, then

Ri = I(X; fUi;2g
�
� ;Ui;2) + I(X; fUi;1g

�
� ;Ui;1jUi;2)

= I( (Ui;2jX; fUi;2g
�
� ); (Ui;2jX; fUi;2g

�
� ) + I

0
k)

+ I( (Ui;1jX; fUi;1g
�
� ); (Ui;1jX; fUi;1g

�
� ) + I

0
l jUi;2)

= I( (Ui;2jX; fUi;2g
�
� ); (Ui;2jX; fUi;2g

�
� ) + I

0
k)

+ I( (Ui;1jX; fUi;1g
�
� )� [ (Ui;1jX; fUi;1g

�
� )jUi;2];

(Ui;1jX; fUi;1g
�
� )� [ (Ui;1jX; fUi;1g

�
� )jUi;2] + I

0
l)

= I( (Ui;2jX; fUi;2g
�
� ); (Ui;2jX; fUi;2g

�
� ) + I

0
k)

+ I( (Ui;1jX; fUi;1g
�
� )� (Ui;1jUi;2);

(Ui;1jX; fUi;1g
�
� )� (Ui;1jUi;2) + I

0
l):

C. Broadcast Channel Coding

It is well-known [6], [25] that the encoding part of the Gel’fand–
Pinsker scheme [8] is essentially a source encoding. Now we extend
this result to the broadcast channel. The largest known achievable rate
region for the broadcast channel is by Marton [26]. Since the corner
points of Marton’s region are achievable via successive Gel’fand–
Pinsker coding [27], it is not surprsing that the encoding scheme for the
broadcast channel can be interpreted as successive source encoding.

Theorem 3 (Marton’s Region [26]): The rate tuple (R1; . . . ; RL) is
achievable for discrete memoryless broadcast channel p(y1; . . . ; yLjx)
if there exist random variables (W1; . . . ;WL) with (W1; . . . ;WL) !
X ! (Y1; . . . ; YL) forming a Markov chain such that

i2S

Ri �
i2S

I(Wi; Yi)�  (Wi; i 2 S); 8; � A � IL:

Let

RBC(Wi; i 2 IL) = (R1; . . . ; RL) 2 R
L
+

:
i2S

Ri �
i2S

I(Wi;Yi)�  (Wi; i 2 S); 8; � S � IL :

It may seem natural to expect thatRBC(Wi; i 2 IL) is a polymatroid.
Although the “submodular” property of

i2S I(Wi; Yi)� (Wi; i 2
S) follows directly from the “supermodular” property of  (�),
it turns out that the “monotone” property, which amounts to re-
quiring I(Wi;Yi) � I(Wi;Wj ; j 6= i) for all i, is unguaran-
teed. Nevertheless, for the illustrative purpose, we assume that
RBC(Wi; i 2 IL) is a polymatroid. Therefore, it follows from



2250 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 6, JUNE 2007

Lemma 1 that RMD(Wi; i 2 IL) has L! vertices. Specifically, if � is
a permutation on IL, define the vector (R1(�); . . . ; RL(�)) by

R�(1)(�) = I(W�(1);Y�(1));

R�(i)(�) =

i

j=1

I(W�(j); Y�(j))�  (W�(1); . . . ;W�(i))

�
i�1

j=1

I(W�(j); Y�(j)) +  (W�(1); . . . ;W�(i�1))

= I(W�(i); Y�(i))� I(W�(1); . . . ;W�(i�1);W�(i));

i = 2; . . . ; L:

Then (R1(�); . . . ; RL(�)) is a vertex of RBC(Wi; i 2 IL) for every
permutation �. These vertices are achievable via L-step successive
Gel’fand–Pinsker coding.

Successive Gel’fand–Pinsker Coding for Vertex
( 1( ) . . . ( ))

1) Codebook Generation: There are L bin arrays, with
2n(R (�)�� ) bins in the ith array. First generate
2n(R (�)�� ) = 2n(I(W ;Y )�� ) codewords
fW�(1)(j�(1))g

2
j independently ac-

cording to the distribution p(w�(1)), and distribute them into
the bins in the �(1)th array such that each bin contains exactly one
codeword. Then independently generate 2

n(I(W ;Y )+� )

codewords fW�(i)(j�(i))g
2
j according to

the distribution p(w�(i)), and distribute them uniformly into
the bins in the �(i)th array, i = 2; . . . ; L.

2) Encoding Procedure: Given L independent messages
M1;M2; . . . ;ML, where Mi is the message for receiver i,
i = 1; 2; . . . ; L, first find, in the �(1)th array, the codeword
W�(1)(j

�
�(1)) in the bin with index M�(1); then successively

search in the �(i)th array for the codeword W�(i)(j
�
�(i)) in the

bin with index M�(i) such that W�(i)(j
�
�(i)) is strongly typical

with (W�(1)(j
�
�(1)); . . . ;W�(i�1)(j

�
�(i�1))), i = 2; . . . ; L.

Finally encoder converts (W1(j
�
1 ); . . . ;WL(j

�
L)) into X

according to p(xjw1; . . . ; wL), and transmits X to the
receivers.

3) Decoding Procedure: Given Yi, receiver i searches for the code-
word Wi such that Yi and Wi are jointly typical, and declares
the index of the bin containing Wi as the transmitted message.

It is straightforward to see from the above coding scheme that each
bin in the �(i)th array contains roughly 2[nI(W ;...;W ;W )]

codewords, i = 2; . . . ; L, and the encoding procedure is essentially
a successive source encoding in the order �(1) ! �(2) ! � � � !
�(L). In other words, pick an arbitrary bin from the �(i)th array, i =
2; . . . ; L, then theseL�1 bin together form an (L�1)-MD code if we
view W�(1) as the the source. Therefore, many results regarding to the
multiple description problem are also applicable here. For example, we
can successively construct sufficient statistics to reduce the encoding
complexity, which becomes Gram–Schmidt orthogonalization in the
Gaussian case. We use the renowned Costa’s dirty paper coding [28]
(which is a special case of Gel’fand–Pinsker coding) to illustrate this
point.

Consider the Gaussian broadcast channel Yi = X + Zi with the
power constraint X2 � P , where Zi � N (0; Ni), i = 1; . . . ; L.
Without loss of generality, we assume N1 � N2 � � � � � NL. Fol-
lowing Costa’s construction, we let

W1 =X1 (3)

Wi =�i�1

i�1

j=1

Xj +Xi; i = 2; . . . ; L (4)

whereX1; . . . ; XL are zero-mean, independent Gaussian random vari-
ables with X2

i = Pi and L

i=1 Pi = P . Furthermore, let �i =

Pi+1=(Ni+1 + L

j=i+2 Pj), i = 1; . . . ; L � 1, and X = L

i=1Xi.
By this construction, the following rate region

Ri � I(Wi;Yi)� I(W1; . . . ;Wi�1;Wi)

=
1

2
log 1 +

Pi

Ni +
L

j=i+1 Pj
; i = 1; . . . ; L (5)

is achievable. It was shown by Bergmans [29] that by varying Pi (i =
1; . . . ; L) under the constraint L

i=1 Pi = P , the rate region given in
(5) is exactly the capacity region of the Gaussian broadcast channel.
Writing (3) and (4) in the following equivalent form:

X1 =W1;

Xi =Wi � �i�1

i�1

j=1

Xj

=Wi � (WijW1; . . . ;Wi�1); i = 2; . . . ; L

we can see that it is exactly Gram–Schmidt orthogonalization on
(W1;W2; . . . ;WL).

Returning to the general case, one can easily derive the operational
results associated with the polymatroid struture by imitating the ap-
proach used in the multiple description problem. Also, the splitting
method can be used to achieve general points on the dominant face
via successive coding. Of course, all these are based on the assumption
that RBC(Wi; i 2 IL) is a polymatroid.

IV. SUCCESSIVE CHANNEL DECODING

We have studied the properties of  (�) and its consequences in the
successive source encoding scenario. We show in this section that  (�)
also arises naturally in the successive channel decoding scenario.

A. Multiple-Access Channel Coding

For the memoryless multiaccess channel p(yjx1; . . . ; xL) with the
fixed input distribution L

i=1 p(xi), the following rate region is achiev-
able

RMC(X1; . . . ; XL) = (R1; . . . ; RL) 2 R
L
+

:
i2S

Ri � I(Xi; i 2 S; Y jXi; i 2 S
c);8; � S � IL :

The following lemma follows from the fact that X1; . . . ; XL are
independent.

Lemma 4: I(Xi; i2S; Y )= (Y;Xi; i2S) for all ;�S � IL.
Proof: Without loss of generality, we assume S = f1; 2; . . . ; kg.

I(Xi; i 2 S; Y )

= I(X1;Y ) +

k

i=2

I(Xi;Y jX1; . . . ; Xi�1)

=I(X1;Y )+

k

i=2

[I(Xi;Y;X1;� � �; Xi�1)�I(Xi;X1;� � �; Xi�1)]

= I(X1;Y ) +

k

i=2

I(Xi;Y;X1; . . . ; Xi�1)

= (Y;Xi; i 2 S):
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By Lemma 4 we can write

I(Xi; i2S; Y jXi; i2S
c)=I(Xi; i2IL; Y )�I(Xi; i2S

c; Y )

=I(Xi; i2IL; Y )� (Y;Xi; i2S
c):

Then it follows directly from Lemma 3 that RMC(X1; . . . ; XL) is a
polymatroid. Therefore, the rate tuple (R1(�); . . . ; RL(�)) defined by

R�(i)(�)

= (Y;X�(j); j= i;� � �; L)� (Y;X�(j); j = i+ 1; . . . ; L)

= I(X�(i);Y;X�(i+1); . . . ; X�(L)); i = 1; . . . ; L� 1;

R�(L)(�)

= I(X�(L); Y )

is a vertex of RMC(X1; . . . ; XL) for every permutation � on IL. It
is well-known that these vertices are achievable via successive channel
decoding. Specifically, we first decode X�(L), then decode X�(L�1)

usingX�(L) as the side information, and so on. An equivalent but more
illuminating interpretation is as follows.

1) At the first step, view X�(L) as the input, which generates the
outputY through a memoryless channel p(yjx�(L)).

2) At the ith decoding step, viewX�(L�i+1) as the input, which gen-
erates the output (Y;X�(L�i+2); . . . ;X�(L)) through a single-
input–multiple-output (SIMO) channel with transition probability

p(y; x�(L�i+2); . . . ; x�(L)jx�(L�i+1))

= p(yjx�(L�i+1); . . . ; x�(L))
L

j=L�i+2

p(x�(j)); i = 2; . . . ; L:

Here

p(yjx�(i); x�(i+1); . . . ; x�(L))

=
x ;...;x

(p(yjx1; . . . ; xL)
i�1

j=1

p(x�(j))); i = 2; . . . ; L:

So each step is just a single-user channel decoding. Similar to
the successive source encoding scenario, at each step we can re-
place the channel output by a sufficient statistic to reduce the
decoding complexity. Let’s consider the Gaussian multiaccess channel
Y = L

i=1Xi + N , where X1; . . . ; XL, and N are zero-mean,
independent Gaussian random variables. Applying Gram–Schmidt
orthogonalization to fY;X�(L); X�(L�1); . . . ; X�(1)g yields

I0=Y

I1=X�(L) � (X�(L)jY ) = X�(L) �
X2
�(L)

EN2 + L

j=1 X2
j

Y

Ii=X�(L�i+1) � (X�(L�i+1)jY;X�(L�i+2); . . . ; X�(L))

=X�(L�i+1)�
X2
�(L�i+1)

N2+ L�i+1
j=1 X2

�(j)

Y�
L

j=L�i+2

X�(j)

i = 2; . . . ; L:

This is exactly the classic successive cancellation procedure.

The polymatroid structure of RMC(X1; . . . ; XL) as well as the as-
sociated operational meaning has been characterized in [21], [30]. See
[24], [31]–[33] for the discussion of the splitting method in multiaccess
communication.

B. Distributed Source Coding

The general achievable rate region for the distributed lossy source
coding problem is sometimes referred to as the Berger-Tung region
[22], [34]. Specifically, let V1; . . . ; VL be the auxiliary random vari-
ables jointly distributed with the generic source variables X1; . . . ; XL

such that Vi ! Xi ! (Xj ; Vj ; j 6= i) form a Markov chain for all
i = 1; . . . ; L. The Berger-Tung region is defined as

RDS(V1; . . . ; VL) = (R1; . . . ; RL) 2 RL

:
i2S

Ri � I(Xi; i 2 S; Vi; i 2 SjVi; i 2 Sc); 8; � S � IL :

Lemma 5: If Vi ! Xi ! (Xj ; Vj ; j 6= i) form a Markov chain for
all i = 1; . . . ; L, then

I(Xi; i 2 S; Vi; i 2 SjVi; i 2 Sc)

=
i2S

I(Xi;Vi)�  (Vi; i 2 IL) +  (Vi; i 2 Sc):

Proof: Without loss of generality, we assume S = f1; . . . ; kg.
See the derivative at the bottom of the page, where (6) follows from
the fact that (Xi; Vi; i 6= k � j) ! Xk�j ! Vk�j form a Markov
chain.

Theorem 4: RDS(V1; . . . ; VL) is a contra-polymatroid.
Proof: By Lemma 5, the “supermodular” property of

I(Xi; i 2 S; Vi; i 2 SjVi; i 2 Sc) follows directly from the
“supermodular” property of  (�). In order to satisfy the “monotone”
property, by Lemma 5 we need I(Xi; Vi) � I(Vi;Vj ; j 6= i) for all i.
This is true because Vi ! Xi ! (Vj ; j 6= i) form a Markov chain for
all i.

By Theorem 4 and Lemma 1, the rate tuple (R1(�); . . . ; RL(�))
defined by

R�(i)(�)

= I(X�(i);V�(i)) +  (V�i+1; . . . ; V�(L)) �  (V�i; . . . ; V�(L))

=I(X�(i);V�(i))�I(V�(i);V�(i+1);� � �;V�(L)); i=1;� � �; L�1;

R�(L)(�)

= I(X�(L); V�(L))

I(Xi; i 2 S; Vi; i 2 SjVi; i 2 Sc) =

k�1

j=0

I(Xi; i 2 S; Vk�j jVk�j+1; . . . ; VL)

=

k�1

j=0

[I(Vk�j+1; . . . ; VL; Xi; i 2 S; Vk�j)� I(Vk�j ;Vk�j+1; . . . ; VL)]

=

k�1

j=0

[I(Xk�j ;Vk�j)� I(Vk�j ;Vk�j+1; . . . ; VL)] (6)

=
i2S

I(Xi;Vi)�  (Vi; i 2 IL) +  (Vi; i 2 Sc)
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is a vertex ofRDS(V1; . . . ; VL) for every permutation � on IL. These
vertices are achievable via successive Wyner–Ziv coding.

Successive Wyner-Ziv Coding for Vertex ( 1( ) . . . ( ))

1) Codebook Generation: Encoder �(L) indepen-
dently generates 2n[I(X ;V )+� ] codewords

fV�(L)(j�(L))g
2
j =1 according

to the distribution p(v�(L)), and distributes them
into 2n[I(X ;V )+� ] bins such that each bin
contains exactly one codeword. Encoder �(i) inde-
pendently generates 2n[I(X ;V )+� ] codewords

fV�(i)(j�(i))g
2
j =1 according to the

distribution p(v�(i)), and uniformly distributes them into

2
n[R (�)+� ] bins, i = 1; . . . ; L� 1.

2) Encoding Procedure: Given Xi, encoder i searches for the code-
word Vi(j

�
i ) such that Vi(j

�
i ) is strongly typical with Xi. The

index of the bin containing Vi(j
�
i ), say b�i , is sent to the decoder.

3) Decoding Procedure: Decoder first decodes the code-
word V�(L) in the bin b��(L) of encoder �(L). Clearly,
V�(L) = V�(L)(j

�
�(L)). Then the decoder successively

searches in the bin b��(L�i) of encoder �(L � i) for the code-
word V�(L�i) such that V�(L�i) is strongly typical with
(V�(L�i+1); . . . ;V�(L)), i = 1; . . . ; L � 1.

We can view the above decoding procedure as successive channel
decoding. There are exactly one codeword in each bin of encoder �(L),
and roughly 2nI(V ;V ;...;V ) codewords in each bin of en-
coder�(i), i = 1; . . . ; L�1. We first decodeV�(L)(j

�
�(L)) unambigu-

ously; then regard the codewords in bin b��(L�1) of encoder �(L� 1)
as a channel codebook, and V�(L)(j

�
�(L)) as the channel output gen-

erated by V�(L�1)(j
�
�(L�1)) through the channel p(v�(L)jv�(L�1)).

Therefore, recovering V�(L�1)(j
�
�(L�1)) based on V�(L)(j

�
�(L)) is a

channel decoding operation. Similarly, for i = L � 2; L � 3; . . . ; 1,
viewing the codewords in bin b��(i) of encoder �(i) as a channel
codebook, and (V�(i+1)(j

�
�(i+1)); . . . ;V�(L)(j

�
�(L))) as the

channel output generated by V�(i)(j
�
�(i)) through the SIMO

channel p(v�(i+1); . . . ; v�(L)jv�(i)), we can successively de-
code V�(L�2)(j

�
�(L�2));V�(L�3)(j

�
�(L�3)); . . . ;V�(1)(j

�
�(1))

via channel decoding. Similar to the multiaccess channel case,
at each decoding step, we can replace the channel output by a
sufficient statistic to simplify the decoding complexity, i.e., re-
place (V�(i+1); . . . ; V�(L)) by '(V�(i+1); . . . ; V�(L)) with the
property that (V�(i+1); . . . ; V�(L)) ! '(V�(i+1); . . . ; V�(L))
! V�(i) form a Markov chain, i = 1; . . . ; L � 1. In the
quadratic Gaussian case, we can let '(V�(i+1); . . . ; V�(L)) =
(V�(i)jV�(i+1); . . . ; V�(L)), which is essentially Gram–Schmidt

orthogonalization on fV�(L); V�(L�1); . . . ; V�(1)g. The contra-poly-
matroid structure of RDS(V1; . . . ; VL) was first observed in [12],
[35]. See [38] for the characterization of the dominant face of
RDS(V1; . . . ; VL), and [25], [36]–[38] for the application of the
splitting method in distributed source coding.

V. CONCLUSION

We synthesized many classic results in multiuser information theory
with an emphasis on the underlying successive coding schemes.
Successive coding is practically important because it reduces a com-
plicated multiuser coding problem into sequences of low-complexity
single-user source encoding or channel decoding problems. Although
a direct successive coding order may not exist for general points
on the dominant face, we can use the splitting method to create a
coding order as long as the rate region possesses a polymatroid or
contra-polymatroid structure. Once such an order is given, sufficient
statistics can be successively constructed along this order to reduce the

source encoding complexity or the channel decoding complexity. In
the Gaussian case, this successive construction of sufficient statistics
becomes Gram–Schmidt orthogonalization.

APPENDIX I
PROOF OF THEOREM 1

We only prove the results regarding polymatroid. The proof for
contra-polymatroid is completely analogous.

The “if” part is straightforward. We only need to check that for every
; � S1 � S2 � � � � Sk � IL, F = B(f) \ k

i=1H(Si) is
nonempty. This can be verified by noticing that for every permutation
� on IL satisfying f�(1); �(2); . . . ; �(jSij)g = Si, i = 1; 2; . . . ; k,
the vertex v(�) is contained in F .

Now we proceed to prove the “only if” part. For ; � S; T � IL, by
the “submodular” property of f we only need to consider the following
two cases.

1) f(S) + f(T ) > f(S [ T ) + f(S \ T ): Suppose there exists
a vector (x1; . . . ; xL) 2 B(f) such that

i2S
xi = f(S) and

i2T
xi = f(T ). We have

i2S

xi +
i2T

xi = f(S) + f(T )

>f(S [ T ) + f(S \ T )

�
i2S[T

xi +
i2S\T

xi

=
i2S

xi +
i2T

xi

which results in a contradiction. HenceB(f)\H(S)\H(T ) = ;.
2) f(S) + f(T ) = f(S [ T ) + f(S \ T ): Suppose there exists

a vector (x1; . . . ; xL) 2 B(f) such that
i2S

xi = f(S) and

i2T
xi = f(T ). Since

i2S

xi +
i2T

xi = f(S) + f(T )

= f(S [ T ) + f(S \ T )

�
i2S[T

xi +
i2S\T

xi

=
i2S

xi +
i2T

xi

it implies
i2S[T

xi = f(S[T ) and
i2S\T

xi = f(S\T ).
So we haveB(f)\H(S)\H(T ) � B(f)\H(S[T )\H(S\T ).
It can be shown using the same method that the converse is also
true, i.e., B(f)\H(S[T )\H(S\T ) � B(f)\H(S)\H(T ).
Therefore,B(f)\H(S)\H(T ) = B(f)\H(S[T )\H(S\T ).

From 1) and 2), we can see that for ; � A1 � A2 � � � � � Ai �
IL and ; � T � IL, we have either

B(f) \
i

j=1

H(Aj) \H(T ) = ;

or

B(f) \
i

j=1

H(Aj) \H(T )

=B(f) \
i

j=1

(H(Aj) \H(T ))

=B(f) \
i

j=1

(H(Aj [ T ) \H(Aj \ T ))

=B(f) \H(A1 \ T ) \ � � � \ H(Ai \ T ) \H(A1 [ T )

\ � � � \ H(Ai [ T ): (7)

Notice in (7) we have (A1 \ T ) � � � � � (Ai \ T ) � (A1 [ T ) �

� � � � (Ai [ T ). Therefore, for any face F = B(f) \ l

j=1 Tj ,
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by successively applying (7) we can write F in the form F = B(f) \
k

i=1 Si for some ; � S1 � � � � � Sk � IL.

APPENDIX II
PROOF OF LEMMA 2

Since any permutation can be decomposed into a sequence of oper-
ations that exchange two adjacent positions, we only need to show that
the sum is invariant under permutation � = (1; . . . ; i; i+1; . . . ; k) and
permutation �0 = (1; . . . ; i� 1; i+ 1; i; i + 2; . . . ; k), which further
boils down to show

I(Z1; . . . ; Zi�1;Zi) + I(Z1; . . . ; Zi;Zi+1)

= I(Z1; . . . ; Zi�1;Zi+1) + I(Z1; . . . ; Zi�1; Zi+1;Zi):

This is true because

I(Z1; . . . ; Zi�1;Zi+1) + I(Z1; . . . ; Zi�1; Zi+1;Zi)

= I(Z1; . . . ; Zi�1;Zi+1) + I(Z1; . . . ; Zi�1;Zi)

+ I(Zi+1;ZijZ1; . . . ; Zi�1)

= I(Z1; . . . ; Zi�1;Zi) + I(Z1; . . . ; Zi;Zi+1)

which completes the proof.
When the entropy (or differential entropy) exists for all the random

variables and random vectors of interest, the following proof is more
straightforward. Since

I(Z�(1); . . . ; Z�(i);Z�(i+1))

=H(Z�(1); . . . ; Z�(i)) +H(Z�(i+1))�H(Z�(1); . . . ; Z�(i+1));

it follows that
k�1

i=1

I(Z�(1); . . . ; Z�(i);Z�(i+1))=

k

i=1

H(Zi)�H(Zi; i 2 Ik);

which clearly does not depend on �.

APPENDIX III
PROOF OF LEMMA 3

The “nondecreasing” property is obvious. So we only need to
verify the “supermodular” property. For any S; T � Ik , suppose
S = fi1; . . . ; il; il+1; . . . ; img, T = fil+1; . . . ; im; im+1; . . . ; ing,
and S \ T = fil+1; . . . ; img. We have

 (Zi; i 2 S) +  (Zi; i 2 T )

=

m�1

j=1

I(Zi ; . . . ; Zi ;Zi )+

n�1

j=l+1

I(Zi ; . . . ; Zi ;Zi )

=

m�1

j=1

I(Zi ; . . . ; Zi ;Zi ) +  (Zi; i 2 S \ T )

+

n�1

j=m

I(Zi ; . . . ; Zi ;Zi )

�

m�1

j=1

I(Zi ; . . . ; Zi ;Zi ) +  (Zi; i 2 S \ T )

+

n�1

j=m

I(Zi ; . . . ; Zi ;Zi )

= (Zi; i 2 S \ T ) +  (Zi; i 2 S [ T )

which completes the proof.

Remark: Suppose the entropy (or differential entropy) exists for
all the random variables and random vectors of interest. We can write

 (Zi; i 2 S) =
i2S

H(Zi)�H(Zi; i 2 S). Then the “supermod-
ular” property of  (�) is equivalent to the “submodular” property of
H(�).
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Information Rates Subject to State Masking

Neri Merhav, Fellow, IEEE, and
Shlomo Shamai (Shitz), Fellow, IEEE

Abstract—We consider the problem of rate–R channel coding with
causal/noncausal side information at the transmitter, under an additional
requirement of minimizing the amount of information that can be learned
from the channel output about the state sequence, which is defined in
terms of the mutual information between the state sequence and the
channel output sequence. A single-letter characterization is provided for
the achievable region of pairs f(R;E)g. Explicit results for the Gaussian
case (Costa’s dirty-paper channel) are derived in full detail.

Index Terms—Binning, causal side information, equivocation, dirty-
paper channel, Gel’fand–Pinsker channel, noncausal side information,
secrecy.

I. INTRODUCTION

The problem of information transfer via state–dependent channels
is classical (see [14] for a partial review). One of the most interesting
models is the case where the channel states are available at the trans-
mitter either causally or noncausally. This framework has been fully
characterized for independent and identically distributed (i.i.d.) states
in famous studies by Shannon [19] and by Gel’fand and Pinsker (G-P)
[9], repectively. These models, and in particular the G-P setting, have
gained much interest in the last few years, mainly due to the wide scope
application areas, such as watermarking [3], [15], [17], [20], [16], mul-
tiple–input multiple–output (MIMO) broadcast channels [1], [2], [13],
and cooperative networks [11], just to name a few applications.

One of the most interesting and well-known examples is the G-P
channel is the Gaussian setting where the states impact the channel ad-
ditively. The surprising result by Costa [4] demonstrates that no loss
in capacity is suffered no matter how strong that independent inter-
fering state sequence is. Evidently, the many applications and the chal-
lenge here motivated much work in terms of actual coding strategies
that come close to the optimum. These coding strategies (see, e.g., [26]
and references therein), build on the insight of random binning which
is the central mechanism in showing achievability in this problem [9],
and can, in fact, be interpreted as practical binning strategies. In the
Gaussian channel, nicknamed “dirty paper” [4], efficient techniques
based on modern codes were recently reported as well (see [8], [21],
and references therein). Source—channel coding aspects in the frame-
work of state–dependent channel of this type are also considered [18],
and the source–channel separation principle has been shown valid in
various scenarios, in which the model itself is intimately related to the
Wyner–Ziv (W-Z) source coding problem with side information at the
decoder [25], and the G-P channel [9].

While in models addressed in [18] the source and channel states
are assumed independent, this is not always the case. In some applica-
tions, the channel–state process is not inherently channel–related (like
in fading), but may rather be an information–bearing signal on its own.
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