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Abstract—In this correspondence, we consider the multiuser successive
refinement (MSR) problem, where the users are connected to a central
server via links with different noiseless capacities, and each user wishes
to reconstruct in a successive-refinement fashion. An achievable region is
given for the two-user two-layer case and it provides the complete rate-dis-
tortion region for the Gaussian source under the MSE distortion measure.
The key observation is that this problem includes the multiple description
(MD) problem (with two descriptions) as a subsystem, and the techniques
useful in the MD problem can be extended to this case. It is shown that the
coding scheme based on the universality of random binning is suboptimal,
because multiple Gaussian side informations only at the decoders do incur
performance loss, in contrast to the case of single side information at the
decoder. It is further shown that unlike the single user case, when there are
multiple users, the loss of performance by a multistage coding approach
can be unbounded for the Gaussian source. The result suggests that in such
a setting, the benefit of using successive refinement is not likely to justify
the accompanying performance loss. The MSR problem is also related to
the source coding problem where each decoder has its individual side in-
formation, while the encoder has the complete set of the side informations.
The MSR problem further includes several variations of the MD problem,
for which the specialization of the general result is investigated and the im-
plication is discussed.

Index Terms—Multiple description coding, rate distortion, source
coding, successive refinement.

I. INTRODUCTION

Multiuser information theory has attracted much attention recently
because of the growth in the complexity and capability of the practical
communication networks. In this work, we consider the multiuser suc-
cessive refinement (MSR) problem formulated by Pradhan and Ram-
chandran in [1]. In this problem, a server is to provide multimedia data
to users connected to the server through channels with different (noise-
less) capacities, e.g., a dial-up connection vs. a high-speed cable con-
nection. The server performs the transmission in a broadcasting manner
in order to reduce operating cost, and thus the users with bad channels
will only receive a (known) subset of the bitstream, while the users
with good channels will be able to receive the complete bitstream. Fur-
thermore, to reduce the delay for each user, the server would also like
to provide the bitstream in a successive refinement fashion user-wise.
The “multiusers” in the MSR problem thus receive degraded message
sets, while the “successive refinement” refers to the fact that there are
multiple rounds (layers) of such transmissions.
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Fig. 1. A system diagram with two users and two layers. The “good” user (user
2) receives the complete message while the “bad” user (user 1) only receives a
subset of the message. There are two rounds of transmissions, illustrated by
the dotted curve and dash-dot curve, and in each round the users form their
reconstructions accordingly.

A diagram is given in Fig. 1 for a system with two users and two
layers. We will assume the user with good channel connection will re-
main so for the complete transmission, however the exact ratesR11 (the
first subscript specifies which user and the second subscript specifies
which round of transmission), R12; R21; R22 can vary. If the transmis-
sion rate is fixed during the transmission, then R

R
=

R

R
, which is

a special case of this general setting; this special case is important in
practice as we expect that the channels between the transmitter and the
receivers remain the same over the two rounds of transmission. We will
only consider the two-user two-layer system in this work.

The notion of successive refinement of information in the single user
setting was introduced by Koshelev [2] and by Equitz and Cover [3]
(see also [4]), and the problem is well researched. The main question
is whether the requirement of encoding a source progressively necessi-
tates a higher rate than encoding without the progressive requirement.
A source is successively refinable if encoding in multiple stages incurs
no rate loss as compared with optimal rate-distortion encoding at the
separate distortion levels; i.e., when the necessary encoding rate does
not increase comparing to a single stage coding. The reassuring result
by Equitz and Cover is that many familiar sources, such as the Gaussian
source under the mean squared error (MSE) distortion measure and
discrete sources under Hamming distortion measure are, in fact, suc-
cessively refinable. Lastras and Berger [5] further showed that when
the source has a real alphabet and the distortion measure is MSE, even
when the source is not successively refinable, the rate loss is bounded
by a universal constant.

In the multiuser setting, we are interested in understanding whether
the progressive coding requirement necessities any performance loss,
and if so, whether the loss is bounded. In this work, we provide an
achievable rate-distortion region for the problem with two users and
two layers by embedding a (two-description) multiple description
problem1 inside it, and show that this region is tight for the Gaussian
case. Furthermore, the loss of performance to a single layer coding
can indeed be unbounded, which suggests unless there is a significant
reason calling for a progressive coding, the loss of performance makes
it a less attractive system design.

The MSR problem includes the problem of multiple descriptions
(MD) as a subsystem, and the techniques in the MD literature (notably
[6] and [7]), are our main tools in this work. We show that the coding
scheme given in [1] based on random binning is suboptimal, because
multiple Gaussian side informations only at the decoders incur perfor-
mance loss compared to the side information also available at the en-
coder; this is in contrast to the case of single side information at the

1The MSR problem is in fact a special case of the general problem of multiple
descriptions with more than two descriptions; more precisely, there are four de-
scriptions in the systems, but only four distortion requirements are considered,
instead of one distortion constraint for each non-empty subset of the four de-
scriptions. From here on, we shall use MD to stand for the conventional two
description problem instead of the more general setting, unless specified other-
wise explicitly.
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decoder, where there is no essential loss [8]. The MSR problem is also
related to the problem considered in [9], where each decoder has its
individual side information, and the encoder has the complete set of
side informations. The MSR problem further includes several varia-
tions of the MD problem, such as the MD problem with central refine-
ment (MDCR) [10], as well as the conditional MD problem. We will
discuss the MDCR problem in detail and reveal the implication of the
general result from MSR.

The distortion-rate (D-R) region and the rate-distortion (R-D) region
given for the Gaussian MSR problem can be easily reduced to those for
the MD problem. Though the Gaussian MD region has been known for
more than 25 years, as pointed out in [11] (discussed more extensively
in [12]), the expressions given in the literature are usually not complete
(even incorrect if being used without caution) and we hope this confu-
sion can be clarified by the present work.2

It is worth pointing out that the formulation considered in this work
is from the source coding point of view, which implies a coding system
where source and channel coding are separated. However, it is well
known that under the degraded broadcast channel, for which the consid-
ered coding approach is arguably the most suitable, a source–channel
separation approach is not optimal (see, for example, [13]). It is nev-
ertheless useful to consider the current formulation, since first, joint
source–channel coding (JSCC) schemes are often more complex, and
second, the performance using source–channel separation can be used
to compare with that of any JSCC schemes to measure the possible
performance loss. Moreover, in [14] and [15], it was shown a source
channel separation indeed holds in the scenario of successive refine-
ment coding with side information at the decoder.

The rest of the correspondence is organized as follows. In Section II,
the problem is formally defined and some related background is given.
An achievable region is given in Section III. In Section IV, we prove
that the given achievable region is tight for the Gaussian source, then
analyze the performance loss comparing with single layer coding and
discuss a special case with fixed channel configuration. Section V dis-
cusses the MDCR problem as a special case of the problem being
treated and Section VI concludes the correspondence.

II. PROBLEM DEFINITION

Let X be a finite set and let X n be the set of all n-vectors
with components in X . Denote an arbitrary member of Xn as
xn = (x1; x2; . . . ; xn), or alternatively as xxx; (xi; x2; . . . ; xj) will
also be written as xi;...;j . Upper case is used for random variables and
vectors. A discrete memoryless source (DMS) (X ; PX) is an infinite
sequence fXig

1

i=1 of independent copies of a random variable X in
X with a generic distribution PX with PX(xn) = n

i=1
PX(xi).

Let X̂ be a finite reconstruction alphabet, and for simplicity we
assume that the decoders all use this reconstruction alphabet. Let
d : X � X̂ ! [0;1) be a distortion measure. The single-letter
distortion of a vector is defined as

d(xxx; x̂xx) =
1

n

n

i=1

d(xi; x̂i); 8xxx 2 Xn
; x̂xx 2 X̂n

: (1)

Instead of directly considering the system depicted in Fig. 1, we con-
sider the equivalent system given in Fig. 2. The reformulation is crucial,
which makes the rather involved relations between descriptions more
explicit. The double subscript in Fig. 1 is simplified to single subscript,
whose correspondence is made clear in Table I.

2Feng and Effros clarified the Gaussian MD region in terms of R-D charac-
terization in [11], but the interpretation of the degenerate region was not made
explicit.

Fig. 2. The equivalent system diagram to the two-user two-layer system de-
picted in Fig. 1.

TABLE I
THE CORRESPONDENCE BETWEEN SYSTEM OF FIG. 1 AND THAT IN FIG. 2

Definition 1: An (n;M1...4; D1...4) MSR code for source X con-
sists of four encoding functions �i and four decoding functions  i;
i = 1; 2; 3; 4

�i : X
n ! IM ; i = 1; 2; 3; 4

where Ik = f1; 2; . . . ; kg and

 1 : IM ! X̂n

 2 : IM � IM ! X̂n

 3 : IM � IM ! X̂n

 4 : IM � IM � IM � IM ! X̂n

such that

d(Xn
;  1(�1(X

n)))� D1

d(Xn
;  2(�1(X

n); �2(X
n)))� D2

d(Xn
;  3(�1(X

n); �3(X
n)))� D3

d(Xn
;  4(�1(X

n); �2(X
n); �3(X

n); �4(X
n)))� D4

where is the expectation operation.
For the rest of the correspondence, we will often refer to the output

of the encoding function �i as description i. All the logarithms and
exponentials are base e.

Definition 2: A rate distortion eight-tuple (R1...4;D1...4) is said to
be achievable, if for any � > 0 and sufficiently large n, there exist an
(n;M1...4;D1 + �; D2 + �; D3 + �; D4 + �) MSR code, such that
Ri + � � 1

n
log(Mi) for i = 1; 2; 3; 4.

The MSR rate-distortion region, denoted by Q, is the set of all
achievable eight-tuples. The problem of characterizing this region is
difficult in general, because the problem at hand can be reduced to
the well-known multiple description (MD) problem, which is a long
standing open problem. In the MD problem, one sends two descrip-
tions over two unreliable channels, either of which can break down;
the question is to characterize the achievable rate-distortion quintuple
consisting of the two description rates and the distortions of individual
description, as well as that resulting from the two descriptions jointly.
To reduce the MSR problem to the MD problem, we only need to set
R1 = R4 = 0 and D1 = 1.

The literature on the MD problem is vast (see [16] for a review) and
new results are emerging, but the problem remains open. Inner bound
exists [7] and it was shown that this bound is in fact quite good for
source with real alphabet under MSE distortion measure [17], but it
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is not tight in general [18]. The Gaussian source with MSE distortion
measure (and the recent extension to the vector Gaussian problem [19]),
for which this inner bound is tight, is the only case that the R-D region
is completely characterized. Given these facts, our focus will not be on
finding a complete solution for the general MSR problem. Instead, we
will extend the coding scheme in [7] to give an achievable region, and
then focus on the quadratic Gaussian case, for which the achievable
region is indeed tight.

We now briefly outline the coding scheme given by El Gamal and
Cover in [7] for the MD problem: given joint distribution PXX X X ,
generate two length-n codebooks using the marginals PX and PX ,
respectively. It is well known that if approximately exp(nI(X;X1))
and exp(nI(X;X2)) codewords are generated for the two codebooks,
respectively, then with high probability we can find codewords Xn

1 ,
respectively, Xn

2 , jointly typical with any Xn vector in the individual
codebook. However, to guarantee the chosen codewords Xn

1 ; X
n
2 are

also jointly typical together with Xn, the codebook sizes have to in-
crease. The resulting increased rate is the expense paid to “match” Xn

1

and Xn
2 . Then for the matched Xn

1 and Xn
2 vector, a conditional code-

book using PX jX X can be further added. The decoders then use the
codewords Xn

1 ; X
n
2 and Xn

3 as the reconstructions.

III. AN ACHIEVABLE REGION

Several schemes were outlined in [1] for the MSR problem which
can achieve several specific operating points. One of them is to treat
X̂1 and X̂2, which are the reconstructions in the first layer for user 1
and user 2, respectively, as side informations at the decoder and use the
Wyner–Ziv binning approach [8] to generate description three, and also
use binning for description 4. The intuition behind this scheme is that
the binning strategy has certain “universal” property that whenever the
bin is sufficiently small to decode with some side information, it can
also be decoded with better quality side information (see [20]). Since
X̂2 is a better quality side information than X̂1, user 2 can also decode
the description 3, which is meant for user 1; furthermore, user 2 can
use it to improve its estimation.

Though the above observation is important, and perhaps provides the
insight for the important result on symmetric N description problem
[21], it is not optimal for the current problem. Notice that since the
receiver 2 has access to both description 1 and description 2, it can also
reconstruct X̂1, in addition to X̂2 (which is its desired reconstruction).
As such, a conditional codebook on X̂1 is more suitable, since it is
available at both the encoder and the decoder.

It should now be clear that the MD coding method can be used in
MSR, if we treat X̂1 as the common side information available at both
the encoder and the decoders when encoding for X̂2; X̂3 and X̂4. To in-
sure there are sufficient codewords in the X̂1 codebook such that source
vectors are covered with high probability, a rate ofR1 = I(X; X̂1)+�1
can be chosen (�i; i = 1; 2; 3 are small positive quantities). Condi-
tioned on X̂1, two codebooks of size exp(nR2) and exp(nR3), re-
spectively, are generated using PX̂ j X̂ and PX̂ j X̂ ; as discussed in

the last section, in order to find X̂n
2 and X̂n

3 (conditioned on X̂1) jointly
typical withXn (i.e., matched) in these two codebooks with high prob-
ability, the codebook sizes should be chosen accordingly. More pre-
cisely, we can choose

R2 +R3 = I(X; X̂2X̂3 j X̂1) + I(X̂2; X̂3 j X̂1) + �2 (2)

R2 > I(X; X̂2 j X̂1); R3 > I(X; X̂3 j X̂1): (3)

Given the codeword X̂n
1 and the matched codewords X̂n

2 and X̂n
3 , in

the last coding stage a codeword in the codebook of size exp(nR4)
generated by PX̂ j X̂ X̂ X̂ is chosen which is jointly typical with the

source vector Xn and the previously chosen codewords X̂n
1 ; X̂

n
2 and

X̂n
3 ; for such a purpose we can choose R4 = I(X; X̂4 j X̂1X̂2X̂3) +

�3. Now an achievable region is readily available using standard tech-
niques, though it is not clear if it is optimal.

Here we would like to bring attention to a quite subtle and often-over-
looked fact: even when R1 = 0, the reduced problem is still not the
same as the MD problem. Notice there are three rates (R2; R3; R4) to
characterize here, instead of the two rates in the MD problem; it is nev-
ertheless a special case of the general three description problem. This
problem, which we refer to as the multiple descriptions with central
refinement (MDCR) problem [10], will be treated in more depth later.
Though not the same, the MDCR system is not unfamiliar: the coding
scheme in [7] in fact uses such a structure.

Given the discussion above, we next state an achievable region
without detailed proof for the sake of brevity.3 Define the regionQach

to be the set of all rate distortion eight-tuples (R1...4;D1...4) for which
there exist four random variables X̂1; X̂2; X̂3; X̂4 in finite alphabet
X̂ such that

d(X; X̂i) � Di; i = 1; 2; 3; 4 (4)

and the non-negative rate vector satisfies:

R1 � I(X; X̂1) (5)

i=1;2

Ri � I(X; X̂1X̂2) (6)

i=1;3

Ri � I(X; X̂1X̂3) (7)

i=1;2;3

Ri � I(X; X̂1X̂2X̂3) + I(X̂2; X̂3 j X̂1) (8)

i=1;2;3;4

Ri � I(X; X̂1X̂2X̂3X̂4) + I(X̂2; X̂3 j X̂1): (9)

The following theorem provides an achievable region.

Theorem 1:

Qach � Q:

If R1 = R4 = 0; Qach degenerates to the achievable region given
by El Gamal and Cover in [7]. The region is characterized by a set of
sum-rate bounds, instead of the individual rate for (R1; R2; R3; R4).
It is not immediately clear that the aforementioned coding scheme
(with individual rates) can achieve the complete region characterized
by the sum-rates in Theorem 1. However, a moment of thought reveals
that the structure of this system implies that for any code with rates
(r1; r2; r3; r4), we can freely move the rates r2 (and r3) into r1, and
rate r4 into r1; r2; r3 to construct new codes; see [23] (also [4]) for
a thorough explanation regarding a similar property in the successive
refinement problem. Thus indeed the region given in Theorem 1 is
achievable.

It is not clear whether the region Qach is convex. Interestingly, a
generalization of this region, denoted as Q0

ach, is indeed convex, and
we now provide this generalized region. Let the regionQ0

ach be the set
of all rate distortion eight-tuples (R1...4;D1...4) for which there exist
four random variablesU1; U2; U3; U4 in finite alphabetsU1;U2;U3;U4
such that there exists deterministic functions

g1 : U1 ! X̂ g2 : U1 � U2 ! X̂ (10)

g3 : U1 � U3 ! X̂ g4 : U1 � U2 � U3 � U4 ! X̂ (11)

3See also [22] for a similar result for multiple descriptions when both encoder
and decoders have access to common side information.



924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008

satisfying

d(X; g1(U1)) � D1 d(X; g2(U1; U2)) � D2 (12)

d(X;g3(U1; U3)) � D3 d(X; g4(U1; U2; U3; U4)) � D4 (13)

and the non-negative rate vector satisfies

R1 � I(X;U1) (14)

i=1;2

Ri � I(X;U1U2) (15)

i=1;3

Ri � I(X;U1U3) (16)

i=1;2;3

Ri � I(X;U1U2U3) + I(U2;U3 jU1) (17)

i=1;2;3;4

Ri � I(X;U1U2U3U4) + I(U2;U3 jU1): (18)

Theorem 10:

Q0

ach � Q:

The proof of this theorem follows the exact same line as that of
Theorem 1. Moreover, it can be shown straightforwardly that Qach �
Q0

ach, but it is not clear whether the inclusion in the other direction is
also true. Though the regionQ0

ach is more general, it is also more com-
plex due to the involvement of several decoding functions. In fact, as
suggested in [18], the achievable region given by El Gamal and Cover
[7] originally had a form with several decoding functions, which was
later largely abandoned in favor of the region defined without such
functions.4 The region Q0

ach is more suitable when we consider the
Gaussian source, and we thus include both forms here for complete-
ness.

It is not difficult to show that Q0

ach is convex. Let
P (U0

1 ; U
0
2 ; U

0
3 ; U

0
4 jX) and P (U1

1 ; U
1
2 ; U

1
3 ; U

1
4 jX) be two

conditional distributions which provide rate vectors in Q0

ach. Let
Q be a Bernoulli random variable with Pr(Q = 0) = � and
Pr(Q = 1) = 1 � �, which is independent of everything, then it is
easily seen

�I(X;U0
1 ) + (1� �)I(X;U1

1 )

= �I(X;U0
1 jQ = 0) + (1� �)I(X;U1

1 jQ = 1) (19)

= I(X;UQ
1 ; Q): (20)

Moreover

�I U0
2 ;U

0
3 jU0

1 + (1� �)I U1
2 ;U

1
3 jU1

1

= I UQ
2 ;UQ

3 jUQ
1 ; Q : (21)

Similar relations can be derived for the other mutual information quan-
tities. Now define Ui = (UQ

i ; Q), and the decoding functions can be
defined accordingly; it follows that this convex combination of the rate
vectors is indeed in Q0

ach.
Though we have considered discrete sources so far, the results can

be generalized to Gaussian sources using the techniques in [24], [25].
In the next section, we prove a converse for the Gaussian source under
the MSE distortion measure, and show that the region given in The-
orem 1 is tight for the Gaussian source. It is worth clarifying that the
converse result for the Gaussian MSR problem is not implied by that of
the Gaussian source with common side information at both the encoder

4Different from the MSR problem, in the MD problem, the region defined
without the decoding function is in fact more general; see [18].

and the decoders [22], because the optimal first codebook in MSR is not
necessarily a codebook generated with any single letter marginal dis-
tribution PX̂ , while the common side information is always an i.i.d.
random variable in the setting of [22]; moreover, the MSR problem is
further complicated by the included MDCR subsystem.

IV. THE GAUSSIAN SOURCE

In this section, we shall focus on the Gaussian source with MSE
distortion measure, and establish the distortion-rate as well as the rate-
distortion region.

A. The Distortion-Rate Region for the Gaussian Source

Theorem 2 below gives the distortion-rate (D-R) region for the
Gaussian source, and Theorem 20 gives the rate-distortion (R-D)
region. Similar to the MD problem, the D-R region is simpler than the
R-D region due to less number of degenerate regions (see [11] and
[26]). It will be illustrated that the R-D region can be established from
the D-R region. We shall first present the theorems, and then follow
the approach by Ozarow [6] to establish the D-R region.

Theorem 2: For the Gaussian source X � N (0; �2x) under MSE
distortion measure, the achievable distortion-rate region for rates
(R1; R2; R3; R4) is given by

d1 � �2x exp[�2R1] (22)

d2 � �2x exp[�2(R1 +R2)] (23)

d3 � �2x exp[�2(R1 +R3)] (24)

d4 � �2x exp[�2(R1 +R2 +R3 +R4)]

1� ( j p��p� j+)2 (25)

where jxj+ = max(x; 0) and

d�1
�
= �2x exp[�2R1]; d̂2

�
= min(d2; d

�

1)

d̂3
�
= min(d3; d

�

1) �
�
= 1� d̂2

d�1
1� d̂3

d�1

�
�
=
d̂2d̂3
d�21

� exp[�2(R2 +R3)]: (26)

Define the function R(D) = 1

2
log 1

D
. The following theorem de-

scribes the R-D region for the Gaussian source.

Theorem 20: For the Gaussian source X � N (0; �2x) under MSE
distortion measure, the achievable rate-distortion region for distortions
(d1; d2; d3; d4) is given as follows:

R1 � R�

1

�
= R(

min(d1; �
2
x)

�2x
): (27)

For any rates R1 � R�

1 and R4 � 0, define d̂4
�
= d4 exp(2R4). The

achievable rates (R2; R3) are given as

R2 � R(d̂2=d
�

1); R3 � R(d̂3=d
�

1) (28)

R2 +R3 �
R(d̂4=d

�

1); 0 < d̂4 < d̂2 + d̂3 � d�1

0; d̂4 > d̂2
�1

+ d̂3
�1 � (d�1)

�1
�1

R(d̂4=d
�

1) + L; otherwise
(29)

where

L =
1

2
log

(d�1 � d̂4)
2

(d�1 � d̂4)2 + (d�1
p
� + d̂2 � d̂4 d̂3 � d̂4)2

:

(30)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 2, FEBRUARY 2008 925

Fig. 3. The equivalence of the R-D and D-R characterization of (R ;R ; d̂ ): (a) D-R characterization and (b) R-D characterization. R = R(d̂ =d ); R =
R(d̂ =d ), and d = (d̂ + d̂ � (d ) ) .

There is one degenerate case in the D-R region (when � < �), and
there are two degenerate cases in the R-D region (the first two cases
in (29)). They are degenerate in the sense that any eight-tuple in those
regions is worse than or equal to (in each component) an eight-tuple on
the boundary of the nondegenerate region. This interpretation is made
more explicit at the end of the forward proof for Theorem 2.

The region given in Theorem 2 reduces to the Gaussian MD region,
when R1 = R4 = 0. The form of this achievable region is not sur-
prising, given the aforementioned achievable scheme and the Guassian
MD region in [6] (with the additional degenerate case made explicit
here). However, the converse is not yet clear due to the involvement
of the coding functions �1 and �4. More precisely, the following two
questions regarding �1 and �4, respectively, can be asked:

1) Is a Gaussian codebook optimal for encoder �1?
2) With the additional information provided by �4, should the code-

books generated for �2 and �3 still have the same structure as
the MD codebooks? In other words, should there still be matched
codewords for (almost) every typical source sequence in the code-
books for �2 and �3 (or the matching can be moved into �4)?

In the proof, we will show that the answers to both the questions are
positive. The main difference from the well-known proof by Ozarow
[6] for the Gaussian MD problem is the additional coding stages �1 and
�4, which makes the converse more involved, and the entropy power
inequality has to be applied twice in the proof.

Before proceeding to the Proof of Theorem 2, we illustrate the equiv-
alence of the D-R and the R-D characterizations. The inequalities in
(22)–(24) are clearly equivalent to (27) and the two inequalities in (28).
Thus we only need to establish that with them, the region of triples
(R2; R3; d̂4) characterized by (25) and that characterized by (29) are
equivalent for any valid and fixed (R1; R4; d1; d2; d3). This is illus-
trated geometrically in Fig. 3. It is seen that the same region above
the surface can be described either in two regimes as in the D-R char-
acterization, or in three regimes as in the R-D characterization. The
functions given in Theorem 2 and Theorem 20 specifying the regions

can be shown to be equivalent with some amount of algebra (see [11]
and [12] for a brief discussion on this algebraic computation in the MD
problem). Note that the same argument is true for the MD problem,
simply by taking R1 = R4 = 0.

Proof: [Theorem 2]: Converse: The following bounds are
straightforward by conventional rate-distortion theory

d1 � �
2
x
exp(�2R1)

d2 � �
2
x
exp[�2(R1 +R2)]

d3 � �
2
x
exp[�2(R1 +R3)]: (31)

We also have

I(Xn; X̂n

4 )
(a)

� I(Xn;�1�2�3�4) � H(�1�2�3�4)

= H(�1) +H(�2 j�1) +H(�3 j�1)

� I(�2;�3 j�1) +H(�4 j�1�2�3)
(b)

� n(R1 +R2 +R3 +R4)� I(�2;�3 j�1)

where (a) is because X̂n

4 is determined by the encoding functions
(�1; �2; �3; �4), and (b) is because conditioning reduces entropy as
H(�3 j�1) � H(�3); H(�2 j�1) � H(�2) and H(�4 j�1�2�3) �
H(�4), and because of the cardinalities of the encoding functions. By
converse to the source coding theorem

d4�D
1

n
I X

n; X̂n

4

��2
x
exp[�2(R1+R2+R3+R4)] exp

2

n
I(�2;�3 j�1) : (32)

Because X̂n

2 and X̂n

3 are functions of �1; �2 and �1; �3, respectively,
it is seen that

I(�2;�3 j�1) � I X̂
n

2 ; X̂
n

3 j�1 : (33)
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As in the proof by Ozarow [6] for the MD problem, let Y = X+N ,
whereN is zero mean Gaussian with variance � and independent ofX .
Because of the following identity

I X̂
n

2 ; X̂
n

3 Y
n j�1

= I X̂
n

2 ; X̂
n

3 jY
n
�1 + I X̂

n

2 ;Y
n j�1

= I X̂
n

2 ; X̂
n

3 j�1 + I X̂
n

2 ;Y
n j X̂n

3 �1

= I X̂
n

2 ; X̂
n

3 j�1 + I X̂
n

2 X̂
n

3 ; Y
n j�1 � I X̂

n

3 ;Y
n j�1

we have

I X̂
n

2 ; X̂
n

3 j�1

� I X̂
n

2 ;Y
n j�1 + I X̂

n

3 ;Y
n j�1

� I X̂
n

2 X̂
n

3 ;Y
n j�1

= h(Y n j�1)� h Y
n j X̂n

2 �1 + h(Y n j�1)

� h Y
n j X̂n

3 �1 � h(Y n j�1)

+ h Y
n j X̂n

2 X̂
n

3 �1

= h(Y n j�1)� h Y
n j X̂n

2 �1 � h Y
n j X̂n

3 �1

+ h Y
n j X̂n

2 X̂
n

3 �1

= I Y
n; X̂n

2 �1 + I Y
n; X̂n

3 �1 � 2h(Y n)

+ h(Y n j�1) + h Y
n j X̂n

2 X̂
n

3 �1

� I Y
n; X̂n

2 + I Y
n; X̂n

3 � 2h(Y n)

+ h(Y n j�1) + h Y
n j X̂n

2 X̂
n

3 �1 : (34)

TakingY as a Gaussian source, the distortion between Y n and X̂n

2 is
upper bounded by n(d2+�), by the converse to source coding theorem

I Y
n; X̂n

2 � nRY (d2 + �) =
n

2
log

�2x + �

d2 + �
(35)

where RY (D) is the rate distortion function for source Y . Similarly

I Y
n; X̂n

3 �
n

2
log

�2x + �

d3 + �
: (36)

The following steps in our converse proof are different from Ozarow’s,
and it is worth noting the complication introduced by the coding func-
tion �1. We apply the conditional entropy power inequality [27] on the
term h(Y n j�1), which gives

h(Y n j�1) �
n

2
log exp

2

n
h(Xn j�1) + 2�e� : (37)

However, notice that

h(Xn j�1) = h(Xn)� I(Xn;�1) �
n

2
log 2�e�2x � nR1

which gives

h(Y n j�1) �
n

2
log exp

2

n

n

2
log 2�e�2x � nR1 + 2�e�

=
n

2
log 2�e �

2
x exp(�2R1) + � : (38)

Applying the entropy power inequality again on the term
h(Y n j X̂n

2 X̂
n

3 �1), we have

h Y
n j X̂n

2 X̂
n

3 �1 �
n

2
log exp

2

n
h X

n j X̂n

2 X̂
n

3 �1 + 2�e� :

It follows that

h X
n j X̂n

2 X̂
n

3 �1

= h(Xn j�1)� I X
n; X̂n

2 X̂
n

3 j�1

(a)
= h(Xn j�1)�H X̂

n

2 X̂
n

3 j�1

= h(Xn)� I(Xn;�1)�H X̂
n

2 j�1

�H X̂
n

3 j�1 + I X̂
n

2 ; X̂
n

3 j�1

(b)

� h(Xn)� I(Xn;�1)�H(�2 j�1)

�H(�3 j�1) + I X̂
n

2 ; X̂
n

3 j�1

�
n

2
log 2�e�2x

� n(R1 +R2 +R3) + I X̂
n

2 ; X̂
n

3 j�1

where (a) follows from the fact that X̂n

2 and X̂n

3 are functions of
Xn, and (b) from the fact X̂n

2 and X̂n

3 are functions of (�1; �2) and
(�1; �3), respectively. This leads to

h Y
n j X̂n

2 X̂
n

3 �1 �
n

2
log 2�e�+ exp

2

n

n

2
log 2�e�2x

�n

3

i=1

Ri + I X̂
n

2 ; X̂
n

3 j�1

=
n

2
log 2�e �

2
x exp �2

3

i=1

Ri

� exp
2

n
I X̂

n

2 ; X̂
n

3 j�1 + � :

(39)
Define

t
�
= exp

2

n
I X̂

n

2 ; X̂
n

3 j�1 (40)

and summarize all the bounds in (34), (35), (36), (38) and (39), and we
thus have

t �
d�1 + �

(d2 + �)(d3 + �)
[td�1 exp[�2(R2 +R3)] + �]: (41)

Isolating t we have

t �
�(d�1 + �)

(d2 + �)(d3 + �)� (d�1 + �)d�1 exp[�2(R2 +R3)]
(42)

notice that because d2 � d�1 exp(�2R2) and d3 � d�1 exp(�2R3)
from (31), the denominator is always positive, as long as � is positive.

To get the tightest bound, we maximize the lower bound on t over �.
When d2 � d�1 and d3 � d�1 , define

�� = 1�
d2

d�1
1�

d3

d�1

�� =
d2d3

d�21
� exp[�2(R2 +R3)]: (43)
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Then we choose the following value of �:

� =
d
p
�p

� �
p
� ;

�� � ��

1; otherwise:
(44)

After some algebraic calculation, we have for the case �� � ��

t � 1

1� (
p
�� �p��)2

(45)

and subsequently using (32), (33), (40) and (45)

d4 � �2x exp[�2(R1 +R2 +R3 +R4)]

1� (
p
�� �p��)2

: (46)

For the case �� < ��, we have t � 1, which gives the trivial bound of

d4 � �
2
x exp[�2(R1 +R2 +R3 +R4)]: (47)

This is not yet the bound given in Theorem 2 since the definitions of �
and � are not the same as those of �� and ��, which are only defined
when d2 � d�1 and d3 � d�1 . To close this gap, note that if d2 � d�1 (or
d3 � d�1), we may trivially write the lower bound (47), which coincides
with (25) for this case, due to the fact � = 0 by the definition of d̂2 (or
d̂3). Thus the lower bound in Theorem 2 is established.
Forward: Now we shall use the general achievable region given in
Theorem 10 to derive an inner bound for the Gaussian source, and show
it coincides with the outer bound.

Construct the following random variables:

U1 = X +N1; X
0 = X � (X jU1); U2 = X

0 +N2 (48)

U3 = X
0 +N3; U4 = X

0 +N4; (49)

where N1; N2; N3; N4 are zero mean jointly Gaussian, independent of
X , and having the covariance matrix

�21 0 0 0

0 �22 ��2�3 0

0 ��2�3 �33 0

0 0 0 �24

(50)

It can be seen that X 0 is essentially the innovation of X given U1. The
decoding functions are

X̂1 = f1(U1) = (X jU1) = �2x

�2x + �21
U1 (51)

X̂2 = f2(U1; U2) = X̂1 + (X 0 jU2) (52)

X̂3 = f3(U1; U3) = X̂1 + (X 0 jU3) (53)

X̂4 = f4(U1; U2; U3; U4) = X̂1 + (X 0 jU2U3U4): (54)

We have that the following rate R1 is achievable:

R1 � I(X;U1) =
1

2
log

�2x + �21

�21
: (55)

Choose �1 such that the above inequality holds with equality. Then we
have

d1 = (X 02) =
�21�

2
x

�21 + �2x
= �

2
x exp(�2R1) = d

�
1: (56)

We have also

d2 = [X � X̂2]
2 = [X 0 � (X 0 jU2)]2 = d1�

2
2

d1 + �22
(57)

d3 = [X � X̂3]
2 = [X 0 � (X 0 jU3)]2 = d1�

2
3

d1 + �23
: (58)

Note that for optimal distortion quadruples, d2 � d�1 and d3 � d�1
should be chosen, i.e., d̂2 = d2 and d̂3 = d3.

Notice also

I(X;U2 jU1) = I(X 0;X 0 +N2 jU1)
(a)
= I(X 0;X 0 +N2)

=
1

2
log

d1 + �22

�22
(59)

where (a) is true because U1 is independent of X 0 and N2. Choose �22
such that

R2 � 1

2
log

d1 + �22

�22
(60)

which can always be done because the function is continuous. Similarly
choose �23 such that

R3 � 1

2
log

d1 + �23

�23
: (61)

From (17), the sum rate satisfying the following bound is achievable:

R1 +R2 +R3

� I(X;U1) + I(X;U2U3 jU1) + I(U2;U3 jU1)
= R1 + I(X 0;U2U3 jU1) + I(X 0 +N2;X

0 +N3 jU1)
= R1 + I(X 0;U2U3) + I(U2;U3)

= R1 � h(N2N3) + h(U2) + h(U3)

which gives

R2 +R3 � 1

2
log

d1 + �22 d1 + �23

(1� �2)�22�
2
3

=
1

2
log

d21

d2d3(1� �2)
: (62)

When � � �, we may choose

� = � 1� d21 exp[�2(R2 +R3)]

d2d3
: (63)

Then

I(X;U4 jU1U2U3) = I(X 0;U4 jU2U3)
= h(U4 jU2U3)� h(N4)

=
1

2
log

�24 + d�4
�24

where

d
�
4
�
= (X 0 � E(X 0 jU2U3))2

=
d1�

2
2�

2
3(1� �2)

d1�
2
2�

2
3(1� �2) + d1 (�22 + �23)� 2�d1�2�3

: (64)

Choose �24 such that

R4 =
1

2
log

�24 + d�4
�24

: (65)

We further have (and after some simplification)

d4 = (X 0 � (X 0 jU2U3U4))2 (66)

=
exp(�2R4)d1�

2
2�

2
3(1� �2)

d1�
2
2�

2
3(1� �2) + d1 (�22 + �23)� 2�d1�2�3

(67)

=
�2x exp[�2(R1 +R2 +R3 +R4)]

1� (
p
��p�)2

: (68)
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Thus if � � �, i.e., d1 + d1 exp[�2(R2 +R3)] � d2 + d3, then this
achievable region matches the outer bounds.

When � < �, i.e., d1 + d1 exp[�2(R2 +R3)] < d2 + d3, we can
find some d0

2 � d2 and d0

3 � d3, where at least one of the inequalities
is strict, such that d1 + d1 exp[�2(R2 +R3)] = d0

2 + d0

3. To see this,
let us first consider choosing d0

m 2 [d12
�2R ; dm]; m = 2; 3. By a

continuity argument, d02 + d03 such chosen can take any real value in
[d1 exp(�2R2) + d1 exp(�2R3); d2 + d3]. It is obvious that d1[1 +
exp(�2(R2 + R3))] 2 [d1 exp(�2R2) + d1 exp(�2R3); d2 + d3],
and it follows there always exists at least a pair of (d02; d

0

3) such that
d02 + d03 = d1 + d1 exp[�2(R2 + R3)], i.e., �0 = �0. Thus we
can conclude the distortion quadruple (d1; d02; d

0

3; exp(�2(R1+R2+
R3 + R4))) is achievable by (68), which implies that the quadruple
(d1; d2; d3; exp(�2(R1+R2+R3+R4))) is achievable.5 Therefore
for both the case � � � and � < � the achievable region indeed
matches the outer bounds.

B. Fixed Channel Configuration and the Performance Loss

One case of interest is that the good channel and the bad channel
used to transmit are fixed as R1=R2 = R3=R4, and we will consider
the performance loss in this case. SupposeR2 = �R1 andR4 = �R3.

Consider the cases where only the first layer performance or only
the second layer performance is in consideration. For the former case,
i.e., the first layer, user 1 has description of rate R1 while user 2 has
joint description of rate (1 + �)R1, which results in minimum distor-
tions �2x exp(�2R1) and �2x exp[�2(1 + �)R1]. For the latter case,
i.e., optimized only for the second layer, user 1 has description of rate
R1 + R3 while user 2 has joint description of rate (1 + �)(R1 +
R3), which results in minimum distortions �2x exp[�2(R1+R3)] and
�2x exp[�2(1 + �)(R1 + R3)].

Now for an MSR system to achieve the same minimum second layer
distortions as if only the second layer is in consideration. Then by the
result from the previous section, we see that � � �, which gives

d2 + �2x exp[�2(R1 +R3)] � d�1[1 + exp[�2(R2 +R3)]]

which further gives

d2 � d�1[1 + exp(�2(�R1 +R3))� exp(�2R3)]: (69)

For a single layer system optimized for the first layer, distortion d�1 =
�2x exp(�2R1) and d�2 = �2x exp[�2(1 + �)R1] are achievable, thus
the loss on d2 can be as large as

d2
d�2

=
[1 + exp(�2(�R1 +R3))� exp(�2R3)]

exp(�2�R1)

= exp(2�R1) + exp(�2R3)� exp[2(�R1 �R3)]:

Thus we see that as R1 ! 1, the performance loss compared to
a single layer system can be unbounded. However, the distortion d1
is not jeopardized by the progressive encoding requirement. In other
words (d1; d3; d4) can be matched to an optimal coding system with
coding rate (R1; R1 +R3; (1+ �)(R1 +R3)), with the distortion d2
being quite large. If d2 is of little importance, then such a system can
be utilized; otherwise, the performance loss needed to improve d2 is
large, and can hardly be compensated by the added functionality.

C. MD Coding Versus Wyner–Ziv Coding

The coding approach proposed in [1] is based on the Wyner-Ziv
(WZ) coding, which treats the reconstruction X̂1 and X̂2 as side in-
formations at the decoder. In this section we compare the performance

5This degenerate region was not treated by Ozarow in [6], and it sometimes
causes certain confusion.

by the WZ-based coding approach with that by the MD-based coding
approach.

To compare the two coding schemes, fix d1 = d�1 = �2x exp(�2R1)
and d2 = d�2 = �2x exp[�2(R1 + R2)]. For the WZ-based approach,
since the �3 and �4 are successive refinement by definition, the
WZ-based coding is in fact the successive Wyner–Ziv problem with
degraded side information at the decoder considered by Steinberg and
Merhav in [28]. Though X̂1 and X̂2 are not necessarily physically
degraded, as pointed out in [28], the achievable region is only de-
pendent on the pairwise distribution between the source and the side
information, thus statistical degradedness and physical degradedness
have no essential difference. It is known that the Gaussian source and
side informations can always be taken as statistically degraded, and
thus the general result in [28] can be readily used. The rate-distortion
region for the Gaussian source was given explicitly in [15], and can
be (modified accordingly and) written as follows. Choose �21 and �22
such that

d�1 =
�2x(�

2
1 + �22)

�2x + �21 + �22
; d�2 =

�2x�
2
2

�2x + �22
(70)

and define 
�
=

�

� +�
, then the achievable distortions using WZ-based

coding are given by

d03 � exp(�2R3)d
�

3 = �2x exp[�2(R1 +R3)] (71)

d04 � exp[�2(R3 +R4)]

� �2x�
2
1�

2
2

(�2x + �21 + �22) ((1� )2min(d03; d
�

1) + �21)
: (72)

On the other hand, the MD-based coding approach can achieve

d3 � �2x exp[�2(R1 +R3)] (73)

d4 � �2x exp[�2(R1 +R2 +R3 +R4)]

1� ( j p��p� j+)2 (74)

where we have for this special case

� = 1� d�2
d�1

1� d3
d�1

= [1� exp(�2R2)] 1� d3
d�1

(75)

as well as

� =
d�2d3
d�21

� exp[�2(R2 +R3)]

= exp(�2R2)
d3
d�1
� exp(�2R3) : (76)

A set of typical tradeoff curves of (d3; d4) for the WZ-based
approach and MD-based approach are given in Fig. 4 for fixed
rates (R1; R2; R3; R4), and we can see the gap is non-zero. As
such, the WZ-based approach is suboptimal except two extreme
operating points: one point is when d3 = d�1 and the other one is
d3 = �2x exp[�2(R1 + R3)], which correspond to description �3
is either completely useless for decoder 3, or maximally useful for
decoder 3, respectively. This in fact illustrates the role of side informa-
tions at only the decoders or at both the encoder and the decoders are
quite different: it is known that for the Gaussian source there is no loss
between the cases when a single Gaussian side information is available
at both the encoder and the decoder, or at the decoder only, however
when there are multiple side informations at different decoders, they
are no longer equivalent. This observation perhaps was firstly made
explicit in [9]. Though the Wyner–Ziv coding based approach is
suboptimal in this problem, it does have certain advantage, particularly
when the second round of transmission is not encoded together with
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Fig. 4. Comparison of the distortion regions (d ; d ) of the two coding ap-
proaches at R = R = 1:0 nat and R = R = 0:5 nat with fixed d = d

and d = d . The range of d is [� exp[�2(R + R )]; d ].

Fig. 5. The system diagram for the EDSI problem.

the first round descriptions, but is made possible when certain network
resource becomes available after an initial transmission.

The MSR problem in fact has a more subtle connection with the
encoder/decoder side information (EDSI) problem considered in [9]
(see also [29]), which is depicted in Fig. 5. The connection is through
one particular special case for the EDSI problem, when the source and
side informations are physically degraded as X $ Y $ Z , and in the
Gaussian case we may write without loss of generality Y = X + N1

and Z = Y +N2 where N1 and N2 are independent Gaussian noise.
Now if we take X̂1 and X̂2 in MSR as the side informations Z and
Y , respectively, and let R4 = 0, then MSR can be considered as a
relaxed version of the EDSI problem, because in MSR the codeword
X̂1 and X̂2 do not have to be generated by any marginal distribution as
specified in the EDSI problem, but we can indeed choose them to have
such structure with single-letter distribution PZY ; furthermore, in the
MSR problem, decoder one always has X̂1 (corresponding toZ), rather
than only X̂2 (corresponding to the better side informationY ). As such,
if in the MSR system we set R1 = I(X;Z) and R2 = I(X;Y jZ);
D1 = [X� (X jZ)]2 andD2 = [X� (X j Y )]2, an outer bound
for the EDSI problem can be found; it is an outer bound since we can
use PXZY as PXU U in the minimization for the MSR problem, but
the chosen (R1; R2; D1; D2) also allows for other choices of random
variables. As shown in [9], this outer bound is indeed achievable by
using a hybrid conditioning/binning scheme. 6

V. A VARIATION OF THE MD PROBLEM: THE MDCR PROBLEM

As aforementioned, whenR1 = 0, the problem being considered re-
duces to the MD problem with central refinement (MDCR), and the six-
tuple of rates and distortions are to be characterized. Again we focus on

6The (same) outer bound for this case given in [9] was derived by applying
the conditional version of the results of [30], which is indeed closely related to
the MD problem.

the Gaussian case; we will continue to use the notations (R2; R3; R4)
and descriptions �2; �3; �4 and assuming R1 = 0 and no description
�1 exists.

El Gamal and Cover constructed an MD scheme for general sources
based on the MDCR method in [7]. More precisely, the description �4
of rate R4 is split and combined into the existing two descriptions �2
and �3, and the resulting two descriptions are of ratesR0

2 = R2+�R4

and R0

3 = R3 + (1 � �)R4 for some 0 � � � 1. It is known that
in the Gaussian MD problem, there is no need for the central refine-
ment coding to achieve the complete distortion region; i.e., R4 = 0 is
sufficient to achieve the complete distortion region given the two de-
scription rates R0

2 and R0

3. A natural question to ask is whether it is
possible to construct an optimal Gaussian MD system using an MDCR
system with nonzero rate R4.

The answer to the above question in fact negative, which is implied
by Theorem 2. To see this, assume the distortion ~d2 and ~d3 in both an
MDCR-based system and an optimal MD system, such that ~d2 < d�1
and ~d3 < d�1 . By Theorem 2, we see that for an MDCR system with
nonzero R4

d4 � �2x exp[�2(R2 +R3 +R4)]

1� (
p
��p�)2

(77)

where

� =
~d2 ~d3
�4x

� exp[�2(R2 +R3)]

� = 1�
~d2
�2x

1�
~d3
�2x

: (78)

For an optimal MD system, the distortion resulting from the joint de-
scription can be

d04 � �2x exp[�2(R0

2 +R0

3)]

1� (
p
�0 �p�0)2

(79)

where

�0 =
~d2 ~d3
�4x

� exp[�2(R0

2 +R0

3)]

�0 = 1�
~d2
�2x

1�
~d3
�2x

: (80)

To keep the rates of the two system equal, we have R0

2 = R2 + �R4

and R0

3 = R3 + (1 � �)R4 for some 0 � � � 1; further assume
~d2 and ~d3 are chosen such that �0 � �0, i.e., the MD system does
not operate in the degenerate region. It is now seen that the MDCR
approach with non-zero R4 is suboptimal because d4 > d04, due to the
fact that �0 > � and �0 = �. This is a stronger result than the known
one that it is sufficient for R4 = 0 to achieve optimality: it is in fact
necessary for R4 to be zero in order to be optimal in the Gaussian
MD case in general.

This result suggests any system based on the MDCR approach when
the refinement rate is not zero is not optimal for the Gaussian source:
one such example is the system constructed with dithered lattice quan-
tizers in [31].

A. The High-Rate Asymptotics for Balanced Descriptions

We consider balanced MDs in this subsection, and further assume
�2x = 1. Suppose in an MD system, the rate of two descriptions are at
equally high rate of R0 each, and the side distortions are both d02 =
d03. It can be shown that if the side distortion is of the form d02 =
b2�2(1��)R , where 0 � � < 1 and b � 1, the central distortion
of an MD system can asymptotically (at low distortion) achieve

d04 � 2�2R =2(b+
p
b2 � 1) � = 0

2�2R (1+�)=4b 0 < � < 1:
(81)
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Notice the condition 0 < � < 1 in fact corresponds to the condi-
tion that 1 � d0

2 and d0

2 � d0

4 at high rate. In this case, the central
and side distortions’ product remains bounded by a constant at fixed

rate, which is d0

4d
0

2 � 2
4

, independent of the tradeoff between
them. This product has been used as the information theoretical bound
to measure the efficiency of quantization methods [32], [33]. Below,
the performance of the optimal MD system is compared with that of an
MDCR-based system in this high-rate and high-refinement-rate case.

For an MDCR-based MD system, R4 is allocated to the refinement
stage, and thus each of the first stage descriptions is of rate R0�R4=2.
Keeping the side distortion of this system d2 = d0

2 = b2�2(1��)R

for an easier comparison, consider the case 1 > � > 0, and let R4 =
2�1R

0, where 1 � �1 is the ratio between R2 and R0

2. Then it can be
shown (through some algebra) that using the MDCR approach, we can
achieve

d4 � 2�2R (1+�)=2(b+
p
b2 � 1); �1 = �

2�2R (1+�)=4b; 0 � �1 < �:
(82)

This implies that if the first stage has sufficient excess marginal rate,
i.e., �1 < �, then the performance loss from the optimal MD system
by the MDCR approach with nonzero R4, in terms of the distortion
product, is asymptotically zero in the range of 1 � d2 and d2 � d4.
However, as the rate allocated to the refinement stage increases, the
excess marginal rate in the first stage decreases. When �1 = �, the
performance loss is a factor of 2b

(b+
p
b �1)

. If the first stage is without

excess marginal rate, which means �1 = � and b = 1, then the loss
is a factor of 2 comparing to the MD system without taking such an
MDCR approach.

This discussion suggests that the MDCR approach is appealing for
the high-rate case, if 1 � d2 and d2 � d4 is the desired operating
range. However, the first stage should reserve sufficient excess marginal
rate in order to avoid the performance loss. Taking the MD system in
[31] as an example, using certain suboptimal lattices for �2 and �3 is
potentially able to achieve (asymptotic) optimal performance, but using
two good lattices as �2 and �3 will not be, because the excess marginal
rate is diminishing as the dimension increases.

VI. CONCLUSION

We considered the problem of multiuser successive refinement.
An achievable region is provided, which is shown to be tight for the
Gaussian source under MSE measure. It is shown that different from
the single user case, the MSR coding necessitates performance loss,
which can be unbounded. The results rely on the recognition that a
multiple description system is embedded inside the MSR system. The
MSR system also includes a variation of the MD system, namely the
MDCR problem. This problem is treated with some depth, which
reveals some interesting implications in designing the MD coding
system.

For the general problem with an arbitrary K > 2 rounds of trans-
mission, or K > 2 users, an achievable region can be derived using the
technique developed in [34] and [21]. However, even for the Gaussian
case, the problem is highly intractable, and a complete characteriza-
tion appears difficult. Given the results in the current work, we expect
the loss of performance for the general case to be more severe than the
K = 2 case.
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Construction of Even Length Binary Sequences With
Asymptotic Merit Factor

Tingyao Xiong and Jonathan I. Hall, Member, IEEE

Abstract—Starting with the family of Legendre sequences of length p,
Parker constructed a new family of binary sequences of length 2pwith good
negacyclic correlation properties. Computer calculations indicated that the
asymptotic merit factor of his family is 6. In this correspondence a simple
version of Parker’s construction is given and further applied to Jacobi and
modified Jacobi sequences. It is then proven that each of the families con-
structed, including Parker’s, has asymptotic merit factor 6.

Index Terms—Aperiodic correlation, Jacobi sequence, Legendre se-
quence, merit factor.

I. INTRODUCTION

A binary sequence x of length n is a sequence xj ; 0 � j � N � 1;
with values +1 or �1. The aperiodic autocorrelation function of x is
defined to be

Ax(i) =

N�i�1

j=0

xjxj+i; i = 1; . . . ; N � 1 (1)

and the merit factor of the sequence x, introduced by Golay [1], is
defined as

Fx =
N2

2 N�1
i=1 A2

x(i)
: (2)

Let Xn be the set of all binary sequences of length n. We define
Mn to be the optimal value of the merit factor for binary sequences of
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length n

Mn := max
x2X

(Fx):

One of the principal problems in the study of the merit factor is to deter-
mine the asymptotic behavior of Mn. Specifically [2] we are interested
in

M = lim sup
n!1

(Mn):

Høholdt, J. M. Jensen, and H. E. Jensen [3], [4] proved that the asymp-
totic merit factors for Legendre sequences and twin-prime sequences
under their optimal cyclic shifts are 6. Therefore M � 6. This is the
best lower bound on M that has been proven, although computer cal-
culations [5]–[7] strongly suggest that at least M > 6:34 (and in Sec-
tion VI below we exhibit calculations supporting M > 6:17), so it
seems unlikely that the value of M is 6. (Indeed it remains possible
that M = +1 [2].)

Starting from Legendre sequences of length p, Parker [8] constructed
a new family of binary sequences of length 2p and did computer calcu-
lations suggesting that the constructed sequences have merit factor 6.
The present correspondence was motivated by an effort to understand
Parker’s sequences.

Section II gives a general doubling construction for binary se-
quences of length 2N based upon a given binary sequence of length
N , and some fundamental properties of this construction are given.
In Section III, Legendre sequences are used as base sequences, and
the asymptotic merit factor of the resulting family is proven to be 6.
Section IV explains Parker’s construction and how it is included in the
present doubling construction. In Section V the doubling construction
is applied using certain Jacobi and modified Jacobi sequences as the
base sequences. Again it is proven that the asymptotic merit factor
of associated families is 6. In Section VI, sequences are constructed
through the concatenation of a segment of its negative to any of
Parker’s (or the present related) sequences. Computer calculations
suggest a family can be constructed in this way to have merit factor
greater than 6:17. Jedwab [2] reports that Parker has made similar
calculations.

II. CONSTRUCTION

Definition 2.1: Given two binary sequences � =
f�0; �1; . . . ; �N�1g and � = f�0; �1; . . . ; �N�1g, we define
the product sequence b = � � � by bi = �i�i, for i = 0; 1; . . . ; N � 1.

Definition 2.2: A binary sequence � = f�0; �1; . . . ; �N�1g of
odd length is symmetric if �i = �N�i, for 1 � i � N � 1, and
antisymmetric if �i = ��N�i, for 1 � i � N � 1.

Given a binary sequence � = f�0; �1; . . . ; �N�1g, we write ��
for f��0;��1; . . . ;��N�1g.

Definition 2.3: For � = 0; 1, let the four sequences ��(�) be given
by

�
(�)
j = (�1)( ) (3)

For instance

��(0) = �1;�1;+1;+1; . . . ;�1;�1;+1;+1; . . .

and

�
(1) = +1;�1;�1;+1; . . . ;+1;�1;�1;+1; . . .
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