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Successive Wyner–Ziv Coding Scheme and Its
Application to the Quadratic Gaussian CEO Problem

Jun Chen, Member, IEEE, and Toby Berger, Fellow, IEEE

Abstract—In this paper, we introduce a distributed source
coding scheme called successive Wyner–Ziv coding. We show
that every point in the rate region of the quadratic Gaussian
CEO problem can be achieved via successive Wyner–Ziv coding.
The concept of successive refinement in single source coding is
generalized to the distributed source coding scenario, which we
refer to as distributed successive refinement. For the quadratic
Gaussian CEO problem, we establish a necessary and sufficient
condition for distributed successive refinement, where the succes-
sive Wyner–Ziv coding scheme plays an important role.

Index Terms—CEO problem, contra-polymatroid, rate splitting,
source splitting, successive refinement, Wyner–Ziv coding.

I. INTRODUCTION

THE problem of distributed source coding has assumed re-
newed interest in recent years. Many practical compression

schemes have been proposed for Slepian–Wolf coding (e.g., [1],
[2] and the reference therein) and Wyner–Ziv coding (e.g., [3]
and the reference therein), whose performances are close to the
fundamental theoretical bounds [4][5]. Therefore it is of interest
to reduce the general distributed source coding problem to these
well-studied cases.

Given independent and identically distributed (i.i.d.) dis-
crete sources , the Slepian–Wolf rate region is
the union of all the rate vectors satisfying

nonempty set

where and . The
Slepian–Wolf reigon is a contra-polymatroid1 with ver-
tices [7][8]. Specifically, if is a permutation on , define the
vector by

Then is a vertex of the
Slepian–Wolf region for every permutation . It is known
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1See [6] for the definition of polymatroid and contra-polymatroid.

that vertices of the Slepian–Wolf region can be achieved with
complexity which is significantly lower than that of a general
point. It was observed in [9] that by splitting a source into two
virtual sources one can reduce the problem of coding an arbi-
trary point in an -dimensional Slepian–Wolf region to that of
coding a vertex of a -dimensional Slepian–Wolf region.
The source-splitting approach was also adopted in distributed
lossy source coding [10]. In the distributed lossy source coding
scenario, we shall refer to source splitting as quantization
splitting, since it is the quantization output, not the source, that
gets split. Finally, we point out that the source-splitting idea has
a dual in the problem of coding for multiple access channels,
that is referred to as rate-splitting [11]–[14].

The portion of this paper following this introductory sec-
tion is divided into three sections numbered II, III, and IV.
In Section II, we introduce a low complexity successive
Wyner–Ziv coding scheme and prove that any point in the rate
region of the quadratic Gaussian CEO problem can be achieved
via this scheme. The duality between superposition coding in
multiaccess communication and successive Wyner–Ziv coding
is briefly discussed. The concept of distributed successive
refinement is introduced in Section III. The quadratic Gaussian
CEO problem is used as an example, and the necessary and
sufficient condition for distributed successive refinement is
established. We conclude the paper in Section IV.

We use boldfaced letters to indicate ( -dimensional) vectors,
capital letters for random objects, and small letters for their real-
izations. For example, we let and

. Calligraphic letters are used to indicate a set
(say, ). We use to denote the vector with index
in increasing order and use to denote .2 For ex-
ample, if , then and

. Here and can be random vari-
ables, constants or functions. We let be a constant if is
an empty set. We use to denote the set for
any positive integer , and use to denote the set of -di-
mensional vectors with nonnegative entries. Throughout this
paper, the logarithm function is to the base unless specified
otherwise.

II. SUCCESSIVE WYNER–ZIV CODING SCHEME

A. The CEO Problem and Successive Wyner–Ziv Coding

We adopt the model of the CEO problem which has been
studied for many years [15]–[17]. However, some of our results
also hold for many other distributed source coding models. Here
is a brief description of the CEO problem (also see Fig. 1).

2Here the elements of A and B are assumed to be nonnegative integers.
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Fig. 1. The CEO problem.

Fig. 2. Berger–Tung coding.

Let be a temporally memo-
ryless source with instantaneous joint probability distribution

on , where is the common
alphabet of the random variables for , and

is the common alphabet of the random
variables for . is the target data
sequence that the decoder is interested in. This data sequence
cannot be observed directly. encoders are deployed, where
encoder observes . The data rate at
which encoder may communicate informa-
tion about its observations to the decoder is limited to nats
per second. The encoders are not permitted to communicate
with each other. Finally, the decision is computed
from the combined data at the decoder so that a desired fidelity
constraint can be satisfied.

Definition 2.1: An -tuple of rates is said to be -ad-
missible if for each , there exists an such that for all

there exist encoders

and a decoder

such that

where and
is a given distortion measure. We use to

denote the set of all -admissible rate tuples.

Definition 2.2 (Berger–Tung Rate Region): Let

nonempty set (1)

where form a Markov
chain for all . The Berger-Tung rate region with respect
to distortion is

where is the set of all satisfying the following
properties:

1) form a Markov chain
for all .

2) There exists a function

such that , where .

Remark: The auxiliary random variable can be in-
terpreted as a quantized version (or a description) of

. The coding scheme associated with the
Berger–Tung rate region is depicted in Fig. 2.

It was shown in [18]–[20] that . The
Berger–Tung rate region is the largest known achievable rate
region for the general CEO problem although it was shown by
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Fig. 3. Successive Wyner–Ziv coding.

Körner and Marton [21] that it is not always tight. Computing
the Berger–Tung rate region involves complicated optimization
and convexification. Hence, we shall focus only on .
We will see that for the quadratic Gaussian CEO problem,
the properties of the Berger-Tung rate region are determined
completely by those of .

It was proved in [22][23] that is a contra-polyma-
troid with vertices. Specifically, if is a permutation on ,
define the vector by

Then is a vertex of for every permutation .
The dominant face of is the convex polytope con-
sisting of all points such that

. Every rate tuple on the dominant face of
has the property that

where means for all . It is easy to
verify that the vertices of are on the dominant face. For
each vertex , there exists a low-complexity successive
Wyner–Ziv coding scheme which can be roughly described as
follows.

1) Encoder employs conventional lossy source coding.
Encoder employs Wyner–Ziv
coding with side information at the
decoder.

2) The decoder first decodes the codeword from
encoder , then successively decodes the codeword

from encoder with
side information .

Rate tuples on the dominant face other than these vertices
were previously known to be attainable only by one of two
methods. The first method known to achieve these difficult rate

tuples is time sharing between vertices. This approach can re-
quire as many as successive decoding schemes,3 each scheme
requiring decoding steps. The second approach to achieve
these rate tuples is joint decoding. This is quite difficult to im-
plement in practice since random codes have a decoding com-

plexity of the order of , where
is the block length.

We will show that any rate tuple in can be achieved
by a low-complexity successive Wyner–Ziv coding scheme with
at most steps. Without loss of generality, we only need
to consider rate tuples on the dominant face of . Before
proceeding to prove this result, we shall first give a formal de-
scription of the general successive Wyner–Ziv coding scheme
(see Fig. 3). The main idea of successive Wyner–Ziv coding is
as follows: Encoder forms several descriptions of and bins
these descriptions separately; the bin index of each description
is sent to the decoder, and the decoder recovers the descriptions
from all the encoders successively according to a prescribed de-
coding order.

Let be jointly dis-
tributed with the generic source variables such
that
form a Markov chain for all . Let be a permutation
on (where

) such that for all
is placed before if (we refer to this type of

permutation as the well-ordered permutation). Let
denote the set of random variables that appear before in
the permutation .

Random Binning at Encoder : In what follows we shall
adopt the notation and conventions of [25]. Let -vectors

be drawn independently according
to a uniform distribution over the set of -typical

-vectors, where . That is,
, if ,

3By Carathéodory’s fundamental theorem [24], any point in the convex clo-
sure of a connected compact set A in a d-dimensional Euclidean space can be
represented as a convex combination of d+1 or fewer points in the original set
A.
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and otherwise. Distribute these vectors into bins:
, such that

where and
denotes the number of -vectors in .

Successively from , to , for each vector
with , , let

be drawn i.i.d. according to a uniform distribution over
the set of
conditionally -typical -vectors, conditioned on

, and distribute them
uniformly into bins: such that

Here
. Note:

are positive numbers of the same order as which can be made
arbitrarily close to zero as . Furthermore, we require

for all .
Encoding at Encoder : Given a , find, if possible, a

vector such that

Then find bins such that
contains . Send

to the decoder. If no such ex-
ists, simply send .

We can see the resulting transmission rate of encoder is

(2)

Decoding: Given for all , if
for some , declare a decoding

failure. Otherwise decode as follows:
Let denote the th element in permutation . Let

be the first and second subscript of , re-
spectively. For example, if , then

. The decoder first finds
in . Note: . Since

contains at most one vector, we have

. Successively from ,

to , if in , there exists a

unique such that

decode ; other-
wise declare a decoding failure. Note: is of the same order as

which can be made arbitrarily close to zero as .
By the standard technique, it can be shown that

as . Furthermore, by the
Markov Lemma [18], we have

as . Hence for any function ,
we have

where is the th entry of
and is of the same order as which

can be made arbitrarily close to zero as .
It is easy to see that if we let

, and replace by in (2), is unaffected. Hence
there is no loss of generality to assume that

form a Markov chain for all .
We can view as descriptions of ; more-
over, along the direction specified by the Markov chain, the de-
scription gets finer and finer.

The above coding scheme has the following intuitive
interpretation:

Encoder first splits into pieces:
. Then succes-

sively from , to , it uses a Wyner–Ziv
code with rate to convey to the decoder which
has the side information . The decoder recovers

successively according to the
order in the permutation . We can see that this scheme
requires Wyner–Ziv coding steps. Thus we call
it a -successive Wyner–Ziv coding scheme. A
similar successive coding strategy was developed in [26] for
tree-structured sensor networks.

The successive Wyner–Ziv encoding and decoding struc-
ture of the above scheme significantly reduces the coding
complexity compared with joint decoding or time sharing and
makes the existing practical Wyner–Ziv coding techniques
directly applicable to the more general distributed source
coding scenarios. Furthermore, the successive Wyner–Ziv
coding scheme possesses a certain robust property which is
especially attractive in some applications. In the successive
Wyner–Ziv coding scheme, encoder essentially transmits its
codeword in packets. Each packet contains a sub-codeword
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. If a packet, say packet is lost in trans-
mission, the decoder is still able to decode packets .
In contrast, the joint decoding scheme does not have this robust
property since any corruption in the transmitted codewords
may cause a complete failure in decoding.

We need to introduce another definition before giving a
formal statement of our first theorem.

Definition 2.3: For any disjoint sets ( is
nonempty), let

nonempty set

where
form a Markov chain for all .

It is easy to verify that is a contra-polyma-
troid with vertices. Specifically, if is a permutation on ,
define the vector by

Then is a vertex of for every
permutation . The dominant face of

is the convex polytope consisting of all
points such that

. We have
, where is the dimension of

. The equality holds when the vertices are
all distinct. Every rate tuple has the
property that

Theorem 2.1: For any rate tuple ,
there exist random variables jointly dis-
tributed with satisfying the following:

1) (i.e., and are just two
different names for the same random vector);

2) and
for all ;

3)
form a Markov chain for all

;
and a well-ordered permutation on such that

(3)

Proof: The theorem can be proved in a similar manner as
in [13]. The details are omitted.

When and , Theorem 2.1 says that if is
available at the decoder, then encoders can convey

to the decoder via a -successive Wyner–Ziv
coding scheme as long as .

It is noteworthy that is just an upper bound; for a rate
tuple on the boundary of , the coding complexity
can be further reduced. For example, consider the case where

. Let be the vertex corresponding to permutation
, i.e.

Let be the vertex corresponding to permutation
, i.e.,

For any rate tuple on the edge connecting and ,
we have . Hence encoder 1
can use a Wyner–Ziv code to convey to the decoder if

are already available at the decoder. Since
is on the dominant face of , by

Theorem 2.1, encoder 2 and encoder 3 can convey
to the decoder via a -successive Wyner–Ziv coding scheme if

is available to the decoder. Thus, overall it is a -successive
Wyner–Ziv coding scheme as opposed to a -successive one.

In general we can imitate the approach in [27]. For
, define the hyperplane

and let . If
is a telescopic sequence of subsets, then
is a face of . Conversely, every face of

can be written in this form. Let
, where we set and . Let

be the set of permutations on such that

Each permutation is associated with a vertex of
and vice versa. Hence,

has totally vertices. Moreover, we have
, where the equality

holds if these vertices are all distinct. For any rate tuple
, it is easy to verify that

is on the dominant face of

. Hence by successively applying Theorem 2.1,
we can conclude that an -successive Wyner–Ziv coding
scheme is sufficient for conveying to the decoder if it has
the side information , where
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Corollary 2.1: Every rate tuple on the dominant face of
can be achieved via a -successive Wyner–Ziv coding

scheme for some .
Proof: Apply Theorem 2.1 with being a deterministic

vector.

B. Duality With Successive Superposition Coding

The successive Wyner–Ziv coding scheme has a dual in mul-
tiple access channel coding, which we refer to as the successive
superposition coding scheme.

Consider an -user discrete memoryless multiple access
channel. This is defined in terms of a stochastic matrix

with entries describing the probability that the
channel output is when the inputs are .

Now we give a brief description of the successive superposi-
tion coding scheme. Let be inde-
pendent random vectors, i.e.,

where for all . Let be a well-ordered
permutation on the set .

Encoder : Let -vectors be drawn
independently according to the marginal distribution ,
where . Successively
from , to , for each vector

with ,
let
be drawn i.i.d. according to the marginal condi-
tional distribution , con-
ditioned on .
Here . Only

’s will be transmitted. Hence the re-
sulting rate for encoder is

(4)

Decoder: Suppose , are trans-
mitted, which generate channel output . Decoder first
finds a such that and
are jointly typical. If there is none or more than one such

, declare a decoding failure. Otherwise, proceed as
follows.

Successively from to , if there
exists a unique such that

decode , other-
wise declare a decoding failure.

By the standard technique, it can be shown that
as .

It is easy to see that if we let
, and replace by in (4), is unaffected. Hence

there is no loss of generality to assume that
form a Markov chain

for all . Intuitively, along each link of this Markov chain,
a higher rate codebook is successively generated via superpo-
sition on a lower rate codebook. We refer to the above coding
scheme as -successively superposition coding.

Our successive superposition coding scheme is similar to the
rate-splitting scheme introduced in [13]. Actually every rate-
splitting scheme can be converted into a successive superpo-
sition scheme. To see this, for each user , let be a split-
ting function such that and let

. Then

form a Markov chain for all . In [13]
are required to be independent4; if we remove this condition,
then every successive superposition coding scheme can also be
converted into a rate-splitting scheme simply by setting

and .
Let

nonempty set

Ahlswede [28] and Liao [29] proved that

where is the capacity region of the synchronous multiple ac-
cess channel.

It can be shown that if
, then is a polymatroid with

vertices [30], [31]. Specifically, if is a permutation on ,
define the vector by

Then is a vertex of for every permutation .
The dominant face of is the convex polytope consisting
of all points such that .
Every rate tuple on the dominant face of has the
property that

4This independence condition is unnecessary sinceU ;U ; . . . ; U are
all controlled by user i. But this condition facilitates the codebook construc-
tion and storage, since now the high-rate codebook at each user is essentially a
product of low-rate codebooks.
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The following corollary is a dual result of Corollary 2.1. The
proof is similar to that of Corollary 2.1 and thus omitted.

Corollary 2.2: Every rate tuple on the dominant face
of can be achieved via a -successive superposition
coding scheme for some .

C. Application to the Quadratic Gaussian CEO Problem

Although we assumed discrete-alphabet sources and bounded
distortion measure in the previous discussion, all our results
can be extended to the Gaussian case with squared distortion
measure along the lines of [32]–[34]. Now we proceed to
study the quadratic Gaussian CEO problem [35], for which
some stronger conclusions can be drawn. Let be
i.i.d. Gaussian random variables with mean zero and variance

. Let for all ,
where are i.i.d. Gaussian random variables in-
dependent of with mean zero and variance .
Also, the random processes and are
independent for . For each , let ,
where is independent of .
Moreover, let

(5)

It was computed in [23] and [37] that

nonempty set

(6)

Furthermore, it was shown in [36][37] that

(7)

where

(8)

Definition 2.4: Let denote the boundary of ,
i.e.

Clearly, any rate tuple inside is dominated by some rate
tuple in . Therefore is no loss of generality to focus on

.
Now we proceed to compute for the quadratic

Gaussian CEO problem. The closed-form expression of
is hard to get. Instead, we shall characterize the sup-

porting hyperplanes of , since the upper envelope of their
union is exactly . The supporting hyperplanes of
have the following parametric form:

where is a unit ( -norm) vector in and

Since is a contra-polymatroid, by [31, Lemma 3.3], a
solution to the optimization problem

subject to

is attained at a vertex where is any permutation
such that . That is

Hence we have
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(9)

subject to

(10)

Let be the minimizer of the above optimization problem.
Since we can decrease to make the constraint in (10) tight
and keep the sum in (9) decreasing at the same time,5 we must
have

(11)

Introduce Lagrange multipliers for the inequality
constraints and a multiplier for the equality
constraint (11). Define

5If r attains 0 but the constraint in (10) is still not tight, then apply the
same procedure to r and so on.

The Karush–Kuhn–Tucker conditions [38] yield

Solving these equations, we get the expressions of
shown at the bottom of the page, where

and should be chosen so that the distortion
constraint (11) is satisfied. Suppose they are given by
and respectively. If , by the complementary
slackness condition (i.e., ), one can readily
show (12) and (13) at the bottom of the next page, where

. Leveraging (12) and (13), we can
compute successively from to
for any given . Note that if , then given
in (12) and (13) are monotone increasing functions of for

; therefore, can be uniquely determined by
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substituting (12) and (13) into the distortion constraint (11);
moreover, the inequality

must hold. If the above inequality is not satisfied, then we
must have , which implies and fur-
ther implies . Now apply the same argument to

. Continue this procedure until is
determined.

In the above we have assumed that for all .
Now suppose

. We can let . If

(14)

then we have and correspondingly
. Otherwise, use the method in the previous para-

graph to compute with the distortion con-
straint (11) replaced by

(15)

Let with be a supporting
hyperplane of . By (7), we have

If for some , then we
must have , where
is the vertex of associated with permutation . Now
it follows from the aforederived Lagrangian optimization result
that . Therefore, we have

Clearly, is a subface of the dominant face
of . Let be a partition of such that

for any and for any
. Let be the set of permutations

on such that

has totally vertices,
each of which is associated with a permutation . Further-
more, , where the equality
holds if these vertices are all distinct. It is worth noting that
if , then is the minimum
sum-rate region of [23].

Corollary 2.3: For the quadratic Gaussian CEO problem,
every rate tuple can be achieved via a -suc-
cessive Wyner–Ziv coding scheme for some .

Proof: Since , for any rate
tuple , there exists a vector such
that . Furthermore, by Definition 2.4, it is easy
to see that must be on the dominant face of . The
desired result now follows from Corollary 2.1.

Remark: To get more detailed information about the coding
complexity of a rate tuple , we can proceed
as follows. Let be the supporting hyperplane of

such that . Use the La-
grangian optimization method to find with
such that . Let

be the lowest dimensional face
of that contains . We can conclude that is
achievable via an -successive Wyner–Ziv coding
scheme.

III. DISTRIBUTED SUCCESSIVE REFINEMENT

In the previous section, we have shown that the successive
Wyner–Ziv coding scheme suffices to achieve any rate tuple on
the boundary of the rate region for the quadratic Gaussian CEO
problem. We shall extend this result to the multistage source
coding scenario.

Definition 3.1: For and
, we say the -stage source coding

(12)

(13)
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is feasible if for each , there exists an such that for
there exist encoders:

and decoders:

such that

where

Here we assume .
The following definition can be viewed as a natural gen-

eralization of successive refinement in single source coding
[39]–[42] to the distributed source coding scenario.

Definition 3.2 (Distributed Successive Refinement): Let
. For

, we say there exists an -stage distributed
successive refinement scheme from to , to ,
to if the -stage source coding

is feasible.

Theorem 3.1: For and
, the -stage source coding

is feasible if there exist random variables jointly dis-
tributed with the generic source variables such that

where satisfy the following properties:
1)

form a Markov chain for
all ;

2) for each , there exists a function
such that .

Here is assumed to be a constant vector.
Proof: By Theorem 2.1, we can see that each stage can be

realized via a -successive Wyner–Ziv scheme.

The -stage source coding, if realized by concatenating
versions of -successive Wyner–Ziv coding schemes,
is essentially a -successive Wyner–Ziv coding
scheme. But it is subject to more restricted conditions since a
general -successive Wyner–Ziv scheme (satisfying
the rate constraints and the distortion constraint )
may not be decomposable into versions of succes-
sive Wyner–Ziv scheme with the rate and distortion constraints
satisfied at each stage.

In the remaining part of this section, we shall focus on the
quadratic Gaussian CEO problem.

Lemma 3.1: For and
, the -stage source coding

is feasible if there exist , satisfying
1) for all ;
2) for all

;
such that

nonempty set

Here we assume .
Proof: Let and

, where ,
are mutually independent and also independent of . Let

(16)

and for all , i.e.,

By Theorem 3.1, for any
with

(17)
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the -stage source coding

is feasible. We can compute (17) explicitly as follows:

nonempty set

The proof is complete.

Lemma 3.2 ([34, Lemma 1]): Let

, where is the abbreviation of

. If there exist functions
, such that

with , then

The next lemma is a direct application of [37, Lemma 3.1]
(see also [36, Lemma 3]) with and

.

Lemma 3.3: Let .
We have, for all

(18)

where are constant functions and
.

Lemma 3.4: For and
, if the -stage source coding

is feasible, then there exist ,
satisfying

1) for all ;
2) for all

;
such that

nonempty set

Here .
Proof: Let . It is

clear that for all . Substituting
into (18), we get

where the last inequality follows from Lemma 3.2.

Furthermore, we have

(19)
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where (19) follows from Lemma 3.2 and Lemma 3.3. Now the
proof is complete.

Lemma 3.5: For any , there exists a unique
satisfying

1) Constraint 1:

(20)

2) Constraint 2: for any nonempty set

(21)

Denote this by . We have

(22)

and

(23)

Proof: See the Appendix.

Now we are ready to prove the main result of this section.

Theorem 3.2: For , there ex-
ists an -stage distributed successive refinement scheme from

to , to , to if and only if

(24)

and

nonempty set (25)

Here .
Proof: For every , let in Lemma

3.4. Suppose the vector sequence sat-

isfies all the constraints in Lemma 3.4. By Lemma 3.5, we must
have

So the constraints in Lemma 3.4 imply the conditions in Lemma
3.1. Therefore, the conditions in Lemma 3.1 are necessary and
sufficient. Furthermore, by Lemma 3.5, , if it exists, must
be equal to . The proof is complete.

Remark: Applying (23) and then (22), we get

(26)

Hence in (25) the constraints on
are tight.

The sequential structure of (24) and (25) leads straightfor-
wardly to the following result.

Corollary 3.1: For , there
exists an -stage distributed successive refinement scheme
from to , to , to if and only if there
exist a sequence of 2-stage distributed successive refinement
schemes from to .

Corollary 3.1 shows that for the quadratic Gaussian CEO
problem, we only need to focus on two-stage distributed suc-
cessive refinement.

By (16), each monotone increasing vector sequence
is associated with a unique

and thus a unique .
We shall let denote the that is associated
with , and let
be a deterministic vector. Now we state Theorem 3.2 in the
following equivalent form, which highlights the underlying
geometric structure.

Corollary 3.2: For ,
there exists an -stage distributed successive refinement
scheme from to , to , to if and
only if , and

, where is the domi-
nant face of .
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Proof: It is easy to verify that (25) is equivalent to

nonempty set

which, by Definition 2.3, is equivalent to

Furthermore, (26) is equivalent to

which means is on the dominant face of
.

Remark: Let be the lowest dimensional face of
that contains

. By the discussion in the preceding section, we can see
that if an -stage distributed successive refinement scheme ex-
ists, then it can be realized via an -suc-
cessive Wyner–Ziv coding scheme.

Now we proceed to compute . In view of (7) and
Lemma 3.5, it is easy to show that is the maximizer
to the following optimization problem:

(27)

subject to

nonempty set (28)

and

(29)

This problem essentially amounts to finding the contra-poly-
matroid that contains and has the minimum
achievable distortion

.

We shall first consider the case where
and . For this

symmetric case, it is easy to show that

where is the unique solution to the equation

(30)

Moreover, it follows from Lemma 3.5 that

Therefore, we have the equation at the bottom of the page. Let
and

with . In view of (30), one can readily show
that . It is also easy to verify that

. Therefore,
by Corollary 3.2, there exists a distributed successive refinement
scheme from to .

For small , it is relatively easy to get a parametric expres-
sion of via the following approach: first characterize

for by studying the supporting hyper-
planes of for fixed , and then vary to get
for all . To obtain a concrete understanding, we shall study
the special case . It is easy to see that is either a
vertex of or an interior point of the dominant face
(which is a line segment) of . For the first case,

is completely determined. For the second case,
must be on the minimum sum-rate line of . Hence
we need to study only one supporting line of , namely,

, which has been charac-
terized for all in [23].

Without loss of generality, we assume . Let

where

Let be the unique solution to the following equation:
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Fig. 4. Distributed successive refinement for the quadratic Gaussian CEO problem.

Let

We have the following:
1) if

(31)

then

(32)

(33)

2) if

(34)

then

(35)

(36)

3) otherwise .
The above three conditions essentially divide into three re-
gions. Define

Typical shapes of , and are plotted in Fig. 4. Every
rate pair is a vertex of and thus
is associated with a -successive Wyner–Ziv coding scheme.
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Every rate pair strictly inside is an interior point of
the dominant face of and thus is associated with a

-successive Wyner–Ziv coding scheme. Hence, there is a clear
distinction between and . It will be seen that this
difference has interesting implications on distributed successive
refinement.

Henceforth we shall assume .

Claim 3.1: .
Proof: If both and are in or both and

are in , the claim can be easily verified by checking
the (32), (33), (35) and (36). Since and are monotone in-
creasing functions of , the claim is also true when both

and are in .

Now consider the general case when and
are in different regions, say, and .
Suppose the line segment connecting and in-
tersects the boundary of and at point . We have

since both and are in ,
and since both and are in

. Hence . The other cases can be
verified in a similar way.

Remark: Note that is given as a
condition in Theorem 3.2 and Corollary 3.2. However, we see
that for the case , this condition is redundant since it is
implied by the fact that . We conjecture that this
condition is also redundant for general .

Claim 3.2: If both and are in , then there exists
a distributed successive refinement scheme from to
if and only if or .

Proof: If , by (32) we have
. It is easy to verify that the conditions in Theorem

3.2 are all satisfied. If , by (32) and (33), we have
. Again, it is easy to verify that the conditions in

Theorem 3.2 are all satisfied.

Now suppose there exists a distributed successive refinement
scheme from to . Since both and are in

, by (32) and (33)

By Theorem 3.2, we must have

which, after some algebraic manipulation, is equivalent to
. Then we have

either or , which further
implies . Hence, by (32) and (33), we
have or .

The following claim follows by symmetry.

Claim 3.3: If both and are in , then there exists
a distributed successive refinement scheme from to
if and only if or .

Remark: Claims 3.2 and 3.3 imply that there exists a dis-
tributed successive refinement scheme from to if

and are on the -axis or and are on
the -axis. Actually in this case, distributed successive refine-
ment reduces to conventional successive refinement in single
source coding6 [41]. Furthermore, it is clear from Fig. 4 that
if and , a distributed suc-
cessive refinement scheme from to always exists
when is sufficiently large since both and must
be in ; likewise, if and ,
a distributed successive refinement scheme from to
always exists when is sufficiently large since both
and must be in . Note that for the extreme case where

(or ),
the CEO problem reduces to the Wyner–Ziv problem, and this
result has been derived in [43].

Claim 3.4: Suppose . Then there is no
distributed successive refinement scheme from to

6There is a slight difference since in the single encoder case, the CEO problem
becomes the noisy (single) source coding problem. But the generalization of
successive refinement in single source coding to noisy (single) source coding is
straightforward.
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if either and or and
.

Proof: We shall prove only the case in which
and . The other one follows by symmetry.

By (32) and (33), and implies
and , which further implies

by Claim 3.1. Now it follows from (32), (33),
(35), and (36) that

which is strictly less than

if and . Thus by Theorem 3.2, a
distributed successive refinement scheme cannot exist.

In Fig. 4, the arrows denote the possible directions for dis-
tributed successive refinement in and . For illustration,
we pick a point in . The dark region is the set of points to
which there exists a distributed successive refinement scheme
from . It can be seen that the possible directions for distributed
successive refinement are different in these three regions.

IV. CONCLUSION

We have discussed two closely related problems in dis-
tributed source coding: the first one is how to decompose a
high complexity distributed source code into low complexity
codes; the second one is how to construct a high rate distributed
source code using low rate codes via distributed successive
refinement. It turns out that, at least for the quadratic Gaussian
CEO problem, the successive Wyner–Ziv coding scheme gives
the answer to both problems. Successive Wyner–Ziv coding
has several desirable features such as low complexity and

robustness. Moreover, its concatenable chain structure seems
especially attractive in wireless sensor networks, where chan-
nels are subject to fluctuation. Indeed, by properly converting
a high-rate distributed source code to a multistage code via
successive Wyner–Ziv coding, one can adaptively match source
rates to fluctuating channel rates.

APPENDIX

PROOF OF LEMMA 3.5

For any and , define two set functions
and

Note that is a rank function and induces the contra-
polymatroid defined in (6). It can be verified that for any

satisfying and nonempty sets ,
if and , then

(37)

(38)

It was shown in [37] that

nonempty set (39)

where is defined in (8). Hence there must exist a vector
satisfying the constraints (20) and (21) in Lemma

3.5, i.e.

nonempty set

(40)

and

(41)
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Let . Note that (40) and (41) can be
reduced to the following inequalities:

nonempty set

and

Without loss of generality, we shall assume ; otherwise,
by restricting to the set , the following argument can still be
applied. Note that for any nonempty sets such that
the constraints on and are tight in (40), we
have

Therefore, it follows from (38) that either or .
Let , where are the sets for which
the constraints on are tight in (40). If there is no such

, let . Thus is always nonempty. Now suppose

(42)

Picking any , we can decrease to for some
so that all the constraints in (40) and (42) become nontight.

Then we can decrease to for some
without violating any constraints in (40) and (42). It follows
from (39) that , which is contradictory
to the definition of . Hence we must have

(43)

Now we proceed to show that must be unique. It is
easy to verify the following facts: 1)

is a strictly concave function of ; 2) for
any nonempty set is convex in .
Suppose both and satisfy the constraints (40)
and (41), and there exists some such that . We shall
first show that are both finite. If not, without loss of
generality suppose , which implies that .
Now construct a new vector such that if

, and otherwise. It is easy to check that
satisfies the constraints (40) and (41). But we have

which is contradictory to (43). Now let for
all . Note that is equal to neither nor since

and both are finite. It is obvious that .
Furthermore, we have

(44)

and

nonempty set

Hence satisfies the constraints (40) and (41). Since
is a strictly concave function of ,

the first inequality in (44) is strict, which results in a contradic-
tion with (43).

Note that (22) follows from (43). So only (23) remains to be
proved. We shall first show that implies .
Without loss of generality, suppose . Then it is
easy to see that (40) still holds if we set on its left
hand side. So if , we can increase by a small
amount without violating (40) and (41), which is contradictory
to the fact that is unique. Hence without loss of gen-
erality, we can assume for all ; otherwise,
by restricting to the set , the fol-
lowing argument can still be applied. Since (22) holds, the right-
hand side of (40) becomes . By (37), it can be
shown that if in (40) the constraints on and
are tight, then either or . Let ,
where are the sets for which the constraints on

are tight in (40). If there is no such , let .
If , the proof is complete. Otherwise, pick any

; we can increase to for some
without violating any constraints in (20) and (21), which

is contradictory to the uniqueness of .
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