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Successive Refinement for Hypothesis Testing and
Lossless One-Helper Problem
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Abstract—We investigate two closely related successive refine-
ment (SR) coding problems: 1) In the hypothesis testing (HT)
problem, bivariate hypothesis �� � ��� against �� � ���� , i.e.,
test against independence is considered. One remote sensor collects
data stream � and sends summary information, constrained by
SR coding rates, to a decision center which observes data stream �

directly. 2) In the one-helper (OH) problem,� and � are encoded
separately and the receiver seeks to reconstruct � losslessly.
Multiple levels of coding rates are allowed at the two sensors, and
the transmissions are performed in an SR manner. We show that
the SR-HT rate-error-exponent region and the SR-OH rate region
can be reduced to essentially the same entropy characterization
form. Single-letter solutions are thus provided in a unified fashion,
and the connection between them is discussed. These problems
are also related to the information bottleneck (IB) problem, and
through this connection we provide a straightforward operational
meaning for the IB method. Connection to the pattern recognition
problem, the notion of successive refinability, and two specific
sources are also discussed. A strong converse for the SR-HT
problem is proved by generalizing the image size characterization
method, which shows the optimal type-two error exponents under
constant type-one error constraints are independent of the exact
values of those constants.

Index Terms—Entropy characterization, error exponent,
hypothesis testing, image size characterization, information bot-
tleneck, one-helper problem, successive refinement.

I. INTRODUCTION

I N conventional successive refinement (SR) source coding, a
source stream is encoded into more than one description in

a progressive order such that the later descriptions can be used
to refine the early ones, resulting in progressive reconstructions
of improving qualities. As such, it can be conveniently formu-
lated as a rate-distortion problem. In addition to the fundamental
problem of characterizing the rate-distortion region, also of in-
terest is the condition under which such a progressive coding
requirement does not cause any performance loss, compared to
a single stage coding system. These questions were the focus
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Fig. 1. Hypothesis testing with one remote sensor.

of early works [1]–[3]. The rate-distortion problem with var-
ious extensions has subsequently been thoroughly researched,
among which are the notable works by Effros [4], [5] and by
Tuncel and Rose [6]–[8].

The successive refinement coding structure is clearly ap-
pealing in multimedia delivery systems, since such a framework
allows a single copy of the multimedia content on the server to
satisfy the requirement by users with different communication
capabilities. However, the importance of successive refinement
coding goes well beyond this single specific application, and
in the present work we investigate several such cases which
deviate from the traditional rate-distortion setting. In the re-
mainder of this section, we review related previous work on
the hypothesis testing (HT) problem and the one-helper (OH)
problem; the successive refinement version of these problems
in consideration and our contribution are also outlined. Formal
problem definitions are given in Section II.

A. The Hypothesis Testing Problem

The information theoretic formulation of the hypothesis
testing problem under communication constraint first appeared
in the award-winning article by Ahlswede and Csiszár [9], and
the problem can be described as follows (see also Fig. 1). Source
stream is observed by a remote sensor who communicates to
the receiver under certain rate constraint , and the
receiver, which observes another dependent source stream ,
wishes to distinguish between the two hypotheses
and . The problem is to characterize the exponent
of the type-two error ( is true but the detector judges oth-
erwise), when the type-one error ( is true but the detector
judges otherwise) is less than a pre-specified probability .

For the case that , i.e., testing against inde-
pendence, a single letter characterization of the error exponent
was given in [9] for an arbitrary . This is the equiv-
alence of the “strong converse” result encountered in Shannon
theory as pointed out by Ahlswede and Csiszár, in comparison
to the “weak converse” for which only the case is con-
sidered. For a general alternative hypothesis , single letter
lower and upper bounds were provided, yet a complete charac-
terization was not found. Many subsequent works extended or
strengthened the results in [9], for example, when both sensors
are remote, or when the type-one error is constrained to satisfy
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Fig. 2. Lossless one-helper problem.

certain error exponent requirement. The review article by Han
and Amari [10] provides a comprehensive summary of literature
on this topic.

In this work we consider the same distributed setting as in
[9] with one remote sensor, however, the receiver, instead of
waiting for the completion of the rate transmission to make a
single decision in the end, wishes to form a preliminary decision
based on a subset of the description, and may (or may not) wait
for the completion of the transmission to form a final decision.
The remote sensor encoder thus has to take this requirement
into consideration. This problem clearly has practical meaning
in distributed hypothesis testing system with delay constraint,
and will be referred to as the successive refinement hypothesis
testing (SR-HT) problem.

We shall focus on the testing against independence case in
this work, and provide a single letter characterization of the
rate-error-exponent region. Furthermore, it is shown that the
result holds independent of the exact value of the constant
type-one error constraints, i.e., the strong converse result is es-
tablished. Interestingly, when the type-one error constraints are
sufficiently large, it can be shown that the progressive encoding
requirement does not cause any performance loss compared to
single stage coding, in terms of type-two error exponent. It is
worth mentioning that the proof for the strong converse is not
a trivial generalization of the proof in [9]. It appears that the
covering lemma in [11], which is an important tool in proving
the strong converse for the single stage case, is not sufficient for
the successive refinement setting. To circumvent this difficulty,
we generalize the image size characterization method [12] to
provide the desired proof.

B. The One-Helper Source Coding Problem

The lossless one-helper (OH) source coding problem was
considered independently by Wyner [13] and by Ahlswede and
Körner [14], which can be described as follows (see also Fig. 2).
Two correlated sources and observed by two sensors are
encoded separately into descriptions of rate and , re-
spectively. The decoder wishes to reconstruct losslessly based
on information received from both sensors. A conclusive result
was provided in [13], [14] for the achievable rate region of this
problem. The lossy version of the one-helper problem is more
difficult, for which the only solved special case is the Gaussian
source problem under the quadratic distortion measure [15].

We extend the above lossless one-helper problem to the suc-
cessive refinement setting (referred to as the SR-OH problem).
Note that in this extension the requirement on the reconstruction
is still lossless, but the encoding is done in an SR fashion, and
thus the decoder receives SR information regarding the source

from either of the two encoders; we believe this is a natural gen-
eralization of the SR notion from the conventional rate-distor-
tion setting. Though in this work we mainly use this problem as
an “enabler” to the hypothesis testing problem, it is indeed well
motivated in practice. Observe that in the original problem, the
two sources are encoded and transmitted separately to the re-
ceiver. As such one particular sensor encoder might not have
accurate information as to what the capacity of the communi-
cation link is between the receiver and the other sensor, or even
whether the other link is reliable or not. If the link between one
sensor and the receiver fails after certain amount of data is suc-
cessfully transmitted, the data from the other sensor will not be
sufficient for the receiver to recover from this failure, when the
existing coding scheme for the OH problem [13], [14] is used.
One solution is that instead of fixing one final operating point

, the sensors choose several possible operating rate
pairs and the information is transmitted progressively, such that
as long as the received information from both sensors is suffi-
cient jointly, the decoding procedure can be performed. In the
situation described above, the refinement information from the
other sensor with working communication link can then com-
pensate for the lost information. This approach is also applicable
when one of the communication links suffers unexpected delay
or degradation of quality, and the other sensor with working link
can help reduce this delay by sending additional information. In
a sense, this successive refinement coding structure makes the
system more robust to communication link failure; problems in a
similar vein can be found in [16] and [17]. In this work, we shall
show that the achievable rate region for the SR-OH problem has
essentially the same entropy characterization form as that of the
SR-HT problem, and also provide a conclusive single-letter so-
lution for this problem.

C. Motivation and Structure of the Paper

In addition to the clear application of the two problems which
have not been treated before in the literature, one of our main
motivations is that these problems are closely related and it is
beneficial to make a unified investigation of them. The connec-
tion has been recognized for the single stage case in [9], and
we show that it continues to hold for the successive refinement
case. In fact, it appears difficult to establish the forward half of
the hypothesis testing problem directly, but through this relation
the proof is rather straightforward, which is exactly the approach
taken in [9]. It will also be shown that a single codebook exists
which is good for these problems. Furthermore, existing results
in one problem can be readily applied to the other problem to
give rather nontrivial results. For example, the successive refin-
ability of the doubly symmetric binary source for the hypothesis
testing problem can be derived directly from a result by Wyner
[18].

These two problems are related to the pattern recognition
problem [19]–[23] and the information bottleneck problem
[24]. In fact, the entropy characterization problem extracted
from the problems being considered also readily provides
an operational meaning for the information bottleneck (IB)
method [24]. Though several attempts were made to formalize
and clarify the operational meaning of the IB function [25],
[26], our approach is more straightforward and intuitive. This
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shows the importance of the IB method, as it is not merely
useful as a classification tool [27], but has roots in many
information theoretic problems.

The Gaussian source is given special consideration, and it
is shown that lattice encoding together with an approximation
to the Neyman–Pearson detector, namely the weighed distance
difference detector, is asymptotically optimal for this problem.
Large deviation technique is used to establish this result.

The rest of the paper is organized as follows. In Section II
we provide formal definitions for the problems. In Section III
the main results are presented. In Section IV the concept of
successive refinability is defined, and sufficient and necessary
conditions are provided. The doubly symmetric binary source
is investigated in this context. In Section V the Gaussian source
is considered and we provide a lattice approach for this case.
Section VI gives the strong converse proof for the hypothesis
testing problem. Finally Section VII concludes the paper.

II. NOTATION AND PRELIMINARIES

Let and be two finite sets. Let be the set of all -vec-
tors with components in . Denote an arbitrary member of
as , or alternatively as . Upper case is
used for random variables and vectors. A discrete memoryless
source (DMS) is an infinite sequence of in-
dependent copies of a random variable in with a generic
distribution and . Similarly, let

be a discrete memoryless two-source with generic
distribution ; the subscript will be dropped when it is clear
from the context as . Without loss of generality, we as-
sume for any and similarly for . The
cardinality of a set is denoted as .

In this work, only two stage systems will be considered. To
distinguish between the two problems when necessary, the sub-
scripts “ht” and “oh” are used for “ Hypothesis Testing” and “
One-Helper”, respectively.

A. Successive Refinement for Hypothesis Testing

Let the two hypotheses be given as follows:

where and are the marginal distributions of . In
other words, we are to test against independence.

Definition 1: An SR-HT code
consists of two encoding functions

(1)

where and two detectors specified by the
decision set and as:

otherwise

otherwise

such that the type-one errors at the two stages do not exceed
fixed , respectively; i.e.

and the type-two errors at the two stages do not exceed ,
respectively; i.e.

Definition 2: (Achievable rates-error exponents) A rate
and type-two error exponent quadruple
is said to be -achievable with fixed ,
if for any and sufficiently large , there exists an

SR-HT code such that

Denote the set of all the -achievable quadruple as
, and this is the region we seek to characterize.

Clearly, we have if , ,
and thus the following limit is well defined.

Definition 3: The weakly achievable rate-error-exponent re-
gion is

In Section VI we show that the strong converse holds true
that is essentially independent of , and thus
a characterization of is almost a sufficient characterization
of .

For convenience, define the error-exponent-rate function
as the single-stage optimal error exponent with rate no

larger than , which was shown in [9] to be

(2)

As shown in [9], is independent of the type-one error
constraint taken value in .

B. Successive Refinement for the One-Helper Problem

Definition 4: An SR-OH
code for source consists of four encoding func-
tions
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and two decoding functions

such that

Definition 5: A rate quadruple
is said to be SR-OH achievable, if for any and sufficiently
large , there exists an SR-OH
code, such that

Denote the set of SR-OH achievable rate quadruples as ,
and we seek to characterize this region for this problem. For
easier comparison with the other problem, the last component
of the rate vector is written as the sum-rate, instead of the in-
dividual rate . However it is straightforward to verify that

is sufficient to provide a complete characterization if we
were to define an achievable rate quadruple as the vector of

.
For the single stage system, denote the minimum achievable

rate at the encoder for a given encoder rate as ,
which is shown in [13] and [14] to be

(3)

From (2) and (3), it is clear that

(4)

This suggests there is an intimate connection between the single
stage hypothesis testing problem and the one-helper problem,
and we shall explore this connection in the successive refine-
ment coding case.

III. MAIN RESULTS

In the remainder of the work, for a given region to be char-
acterized, we shall use to denote its single letter characteri-
zation form, and to denote its entropy characterization form.
Our plan to characterize the regions and is as follows.
First we provide an entropy characterization form of , then
give two equivalent forms of : one is a single letter char-
acterization while the other is in the entropy characterization
form. Through the entropy characterization form, the SR-HT
problem and SR-OH problem are shown to have intimate con-
nection, by which a single letter characterization is established.
Further connections between the problems, the new interpreta-
tion of the operational meaning of the information bottleneck
method, and the relationship to the pattern recognition problem
investigated in [19] and [21] are subsequently discussed.

A. Entropy Characterization Form of

It is convenient to introduce the set as the collection of
functions with domain . First, we define the set as shown in
the equations at the bottom of the page, where is the
Kullback–Leibler information divergence. Note that
is not necessarily a closed set, and thus we take its closure, de-
noted by .

We can now follow the approach taken by Ahlswede and
Csiszár and use Stein’s lemma [28] to establish a relation be-
tween and , which leads to a characterization of

as a corollary.

Theorem 1:
a) , for all ;
b) .

This theorem is a generalization of the one given in [9], and
the proof is thus omitted; interested readers can refer to [29] for
more details. With Theorem 1 and the definition of , it is
straightforward to see that the following corollary is true.

Corollary 1: .

Note further that

where

where
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and

Thus, it follows that

B. Two Equivalent Characterizations of

Next two equivalent characterizations of are given. One
of them is in a single letter form, while the other is in an entropy
characterization form. Through the latter form, it will be clear
that there is an intimate connection between and .

Define the region to be the set of all rate quadruples
for which there exist random vari-

ables in finite alphabets such that the following con-
ditions are satisfied:

1) is a Markov string.
2) The nonnegative rates , , , and satisfy

3) The alphabets , satisfy

Note that the region is a closed set since entropy and
mutual information are both continuous functions of each argu-
ment. We have the following theorem.

Theorem 2: .

In the proof of this theorem, we only outline the random
coding argument for the achievability of the region; the converse
is by generalizing the proof for the single stage case in [30], and
thus it is omitted (see [29] for details). It is worth pointing out
that the achievability is proved by strategically combining the
coding schemes for the original one-helper problem [13], [14],
the incremental Slepian-Wolf coding approach (see [31]–[34]),
and the successive refinement source coding problem [2], [3].

Proof: Let , be small positive quantities. Fix a
probability distribution . First gen-
erate codewords single-letter-wise according to
the distribution , and denote the codebook as . For each

of these codewords, generate codewords ac-
cording to , and denote the codebook as for
each . This will be the codebook for the encoder ob-
serving source . For the encoder observing , first construct
a two-level nested binning structure, such that each coarser bin
contains finer bins, with a total of
coarser bins; this induces a total of finer bins.
Assign each uniformly at random into one of the finer bins.
The codebooks are revealed to both the encoders and decoders.

During encoding, with high probability the encoder observing
can find a codeword that is jointly typical with

, and the index is sent to the decoder as the first stage de-
scription; for the given codeword, again with high prob-
ability there exists a that is jointly typical
with and . The index is sent as the second stage in-
formation. At the encoder observing , the coarse bin index
to which belongs is sent as the first stage information, while
the finer bin index within the coarser bin is sent as the second
stage information. The first decoder, with indices , de-
codes if it finds a unique sequence in the th finer bin
that is jointly typical with ; the second decoder, with in-
dices , decodes if it finds a unique sequence in the

th coarser bin that is jointly typical with and .
Using a similar argument as for the original one-helper problem
(see for example [30]), it can be shown that the above coding
scheme succeeds with probability arbitrarily close to .

Next we give another characterization of . Define the fol-
lowing set:

where

We have the following theorem.

Theorem 3:
Proof: To prove , we can either apply the

(incremental) Slepian–Wolf coding scheme [31] on the super-
source with two degraded side information and

, or apply Heegard–Berger coding theorem
[33] on the super-source; note here are
independent and identically distributed (i.i.d.) random variables
across blocks. The details are omitted.

To see , we write
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where is by applying Fano’s inequality. The other condition
on the sum rate can be proved similarly.

C. Connection Between the SR-HT and SR-OH Problems

Define the partially skewed reflection operator as follows.

Definition 6: For a real quadruple , its
partially skewed reflection operation under a two-source

is given by

The partially skewed reflection of a set of quadruples is given
by

Since is clearly a bijection and preserves Euclidean dis-
tance, it is an isometry. From Theorem 1, Theorem 3 and the cor-
responding entropy characterization expressions, we have the
following corollary.

Corollary 2: .

The isometry implies the two regions are congruent. Since
is convex, is also convex. This fact does not directly

follow from the time-sharing argument as often seen in source
coding, because the time-sharing argument does not directly
apply in the SR-HT problem. Furthermore, since a single
letter characterization of is available, we thus readily find
a single-letter characterization for ; for convenience we
denote it as .

The connection among the two problems can be further
strengthened. For an arbitrary point on the boundary of ,
by the isometry of , there is one point on the boundary of

. Using the entropy characterization form, it is clear that
there exists an optimal sequence of functions , in
the sense that the values of

approach the particular operating points for SR-HT, as well as
the corresponding point for SR-OH problem. Denote the con-
catenation of these functions with such -blocks as and

. It is seen that when is sufficiently large (with the se-
quence of code ), the sequence of codes

is indeed approaching optimum. Thus, we have the fol-
lowing theorem.

Theorem 4: For any particular point in and the corre-
sponding point , there exists a sequence of optimal
coding functions , where as , in
the sense that they approach , and there exists a corresponding
sequence of coding functions , such that the
sequence of these four coding functions approaches the point

.
It is now clear that the two problems are closely related and

can be treated together. In Section IV, we consider the notion of

successive refinability in the two settings together, and derive
necessary and sufficient conditions; a binary source example
will also be considered in this context.

D. The Strong Converse Result For the SR-HT Problem

Though can be characterized in a single-letter form as
above, this is not sufficient to characterize with ar-
bitrary . As it turns out is almost inde-
pendent of . We have the following strengthened result,
the converse part of which is proved in Section VI using the
method of types.

Theorem 5: For any such that ,
. On the other hand, for any

such that , we have

(5)

Note the case is not included. This is similar to
the source-channel separation results when the entropy rate is
exactly equal to the channel capacity, the behavior is not known.
The achievability result for the case is implied by
Theorem 1, and next we give the achievability proof for the other
case.

Proof of Achievability for Theorem 5: Since and
are achievable type-two error exponents with

coding rate and for single stage coding, respec-
tively, it follows that there exist encoding functions and ,
and the corresponding detectors and to approach this
performance. Denote the acceptance regions as and , and
type-two errors by and as and , respectively; note
that the type-one errors and can be made arbitrarily small
when is sufficiently large.

We now construct a two-stage system using these functions.
Given fixed and such that , we partition the
space into two nonintersecting sets and , such that

and ; with sufficiently large such a
partition is always possible. Note that .
The encoding is performed as follows. In the first stage, if

, then is used; if , then send the first bits of
. In the second stage, if , we send a fixed codeword of

length ; if , then we send the remaining bits of
. An additional prefix bit is added to indicate which set is in,

and this induces a negligible rate increase for long block codes.
With this prefix bit, the first stage decoder uses the following
decision set, which indeed utilizes only bits (plus the one
prefix bit) of the description

For the second stage detector, the following decision region is
used

It remains to show the error probabilities are as claimed. Note
that and the inequality

is strict, thus by applying the union bound
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when is sufficiently large, i.e., is sufficiently small. Simi-
larly for the second stage

when is sufficiently large since . For the
type-two errors, we have

This indeed implies the claimed result and the proof is complete.

E. Connection to the Pattern Recognition Problem

The successive refinement pattern recognition (SR-PR)
problem was formulated independently by Tuncel [19] and by
Westover and O’Sullivan [23]. In this setting, a two-source

is an environment for a pattern recognition
system. The pattern domain is and the noisy observation
domain is . We provide a brief problem definition below,
and more details can be found in [19]–[23].

Definition 7: An instance of the environment
consists of -length sequences in , labeled as

.

Definition 8: An SR-PR
code consists of two encoders

and two classifiers

We denote and ;
furthermore denote the collection of codewords as and for
an instance of the environment, i.e.

In the recognition phase of the system, the pattern occurs uni-
formly at random in the pattern pool given in the enrollment
phase. More precisely, a random pattern occurs ei-
ther uniformly at random in the given patterns where the
first level description will be used, or a random pattern

occurs uniformly at random in the given
patterns where both levels of descriptions will be used. For a
given system, the error probability for the first level and
that for the second level satisfy, respectively

Note that both and are random quantities.

Definition 9: A rate vector is
SR-PR achievable, if for any and sufficiently large there
exists an code such that

Denote the set of achievable rate quadruples for SR-PR as
, and a characterization was given in [19], [23]. By com-

paring the expression provided there, it is not difficult to see
. In fact, the entropy characterization approach

given in this work provides a simple alternative proof for the
pattern recognition rate region.

F. An Interpretation of the Information Bottleneck Method

The information bottleneck function was given in [24] as

(6)

which is exactly the definition of the inverse function of
in (2) if we ignore the cardinality bound. This similarity moti-
vates the following definition of an information bottleneck code,
extended to its successive refinement version.

Definition 10: An SR-IB
code for source consists of two classification functions

such that

Definition 11: A rate quadruple is said
to be SR-IB achievable, if for any and sufficiently large

, there exists an SR-IB code, such
that

Denote the set of achievable rate quadruples for SR-IB as ,
and thus this is the region of interest. The following theorem is
immediate.

Theorem 6: .
Proof: We only need to show that . The in-

clusion is rather trivial by the definitions. For the
inclusion in the other direction, observe that for any fixed-rate
SR-IB code of length , by taking its -fold product codes, we
can easily show that

Thus we have , which establishes .
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The above formalization of the operational meaning of the
IB function essentially states that we can understand the IB
problem as a source coding problem subject to a constraint on
the normalized mutual information between the codeword and
the remote source vector , instead of the usual single-letter
distortion measure familiar in the rate-distortion theory. More-
over, the IB problem is not uncommon in multiterminal systems,
though it might appear in certain disguise, as shown by the prob-
lems in consideration.

IV. SUCCESSIVE REFINABILITY IN SR-HT AND SR-OH

A. Successive Refinability

Similar to the notion of successive refinability in the rate-dis-
tortion setting, we can introduce the following notions for the
two problems considered in this work. These notions capture
whether the progressive coding requirement causes loss of per-
formance with respect to single-stage coding.

Definition 12: A source is successively refinable for hypoth-
esis testing (with ) and one-helper coding, respectively,
with rate and if

Note we can also define weak successive refinability for
SR-HT as . This weaker
notion will be useful when Gaussian source is considered, for
which Theorem 5 does not apply because of its reliance on the
method of types. Using the characterization of , we
have the following theorem for the SR-HT problem.

Theorem 7:
1) If such that , a two-source

is successively refinable for SR-HT with rate
and , if and only if there exist random variables

and in finite alphabets and such that
a) is a Markov string;
b) and ;
c) and .

2) If such that , a two-source
is always successively refinable for SR-HT

with rate and .
Proof: Note that part 2) follows directly from Theorem 5,

and thus we only consider part 1). Because of the relation
for this case, is sufficient to

characterize the region. Note that in the definition of we
can always add in the Markov string condition
by letting , which does not change any involved
information quantities. This necessitates increasing the car-
dinality bound of , and it is trivial to see that a size of

suffices. This observation alone
provides the following alternative definition of as the set
of quadruples for which there exist random
variables in finite alphabets , such that

1) is a Markov string.
2) The nonnegative rate quadruple satisfies:

3) , and .
Now the necessity and sufficiency both follow directly from

this characterization.

The results can clearly be extended to SR-OH with virtually
no change (without the second part); we thus omit the statement
of such a theorem.

B. The Doubly Symmetric Binary Source

Consider the following hypothesis: and

For , the probability distribution can essentially be un-
derstood as there is a binary symmetric channel (BSC) with
crossover probability with input and output , and the
input is of distribution Bernoulli (denoted as Bern ).

In [18], Wyner showed that the optimal forward test channel
for the single stage one-helper problem is given by ,
where is modulo- addition and is a Bern
random variable, independent of everything else; here
denotes the inverse of the binary entropy function with

, and is the coding rate at encoder observing . It
is seen that when successive refinement coding is used, we can
choose and , where is
of Bern and is a Bernoulli random
variable such that is of Bern ; such an

always exists since .
and are independent of each other and everything else.

By the optimality of this forward test channel shown in [18],
clearly satisfies the conditions in Theorem 7, and thus

for the SR-HT problem (as well as successive refinement pattern
recognition problem and the information bottleneck problem),
it is indeed successively refinable with any rate and .

This example highlights the power of treating these problems
together. In [19], the same result was given for the pattern recog-
nition problem, and the derivation is rather nontrivial. By rec-
ognizing the relation among these problems, we simply invoke
the existing result in [18] to avoid such difficulty.

V. THE GAUSSIAN SOURCE

Until this point, we have only considered discrete memo-
ryless sources. The results however can be extended to other
sources such as the Gaussian source. It is not difficult to
verify that the converse proof for the SR-HT problem can
be established using the almost identical line of derivation
as in the SR-OH problem by bounding and

directly. Next we provide an achiev-
ability proof using a lattice strategy for the SR-HT problem; one
can also invoke the result on the pattern recognition problem
directly to obtain such a proof, however the method below is
more constructive. For , let the distribution be given
as , where and
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Fig. 3. Encoder based on ECDQs.

are independent; for , and are independent with the
distributions given by the marginal distribution of .

Before considering the lattice strategy, let us derive an explicit
outer bound for . We have that

where is by applying the conditional form of the entropy
power inequality [35] and is because . Simi-
larly, we have

The construction relies on the entropy-coded dithered quanti-
zation (ECDQ), the details of which can be found in [36]–[38].
An -dimensional lattice quantizer is formed by a lattice .
The quantizer maps each vector into the lattice
point that is nearest to . The region of all -vectors
mapped into a lattice point is the Voronoi region

The dither is an -dimensional random vector, independent of
the source, and uniformly distributed over the basic cell of
the lattice which is the Voronoi region of the lattice point . The
dither vector is assumed to be available to both the encoder and
the decoder. The normalized second moment of the lattice
characterizes the second moment of the dither vector

where denotes the volume of . Both the entropy encoder
and the decoder are conditioned on the dither sample ; further-
more, the entropy coder is assumed to be ideal. The dithered
lattice quantizer represents the source vector by the vector

.

Now we describe the coding system using ECDQs, which is
essentially a two-stage quantization system, with the additional
detectors at the decoder. Note that instead of the distortion of
each length- block, we are interested in the detection perfor-
mance using multiple such length- blocks. The system consists
of two stages. The first stage takes input and passes it through
an ECDQ module. The output is
scaled by and added with . The resulting vector

is passed through another ECDQ whose output is given
as , where and are indepen-
dent. Note here we slightly abuse the notations by allowing
to be a lattice quantizer scaled by different constant, which are
reflected by the variance of and , denoted as and ,
respectively. The system is depicted in Fig. 3. The detectors do
not make a decision on one block of length- , but do so after
receiving many such blocks.

Under the reconstruction using ECDQ, the output is dis-
tributed as , and the noise vector is distributed uni-
formly over the basic cell of . If was a Gaussian vector,
we would be able to explicitly derive the Neyman–Pearson
detector, and analyze its performance. Though this is not the
case, the lattice quantization noise is nevertheless quite close
to Gaussian for high-dimensional quantizers, thus it is likely
the Neyman–Pearson detector derived assuming Gaussian
distribution will provide near optimal performance, which turns
out to be indeed the case. Next we use large deviation method
to analyze the performance of such an approximation. Some
necessary notations and results from [39], [40] are reviewed
first. For simplicity the single stage case is investigated first,
after which the generalization to the two-stage case is straight-
forward.

For a lattice , the covering radius is the radius of the
smallest -dimensional ball to cover the Voronoi region . The
effective radius is the radius of a sphere having the same
volume as . We will need the following quantity:

where is the normalized second moment of an -sphere. It
was shown by Rogers [41], [42] that there exist lattices which
satisfy
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as . This implies that for such lattices as
.

Denote by a ball of radius and let be the second
moment per dimension of ; denote the variance of
per dimension as . The following lemma was proved in [39]
(Lemma 6 and Lemma 11).

Lemma 1: Let , then for Rogers-good
lattices, the density of the noise distribution and satisfy

(7)

Furthermore, we have

(8)

This lemma implies that the probability density of can
approximately be upper bounded by a Gaussian distribution,
whose variance is almost the same as that of the quantization
noise when is sufficiently large.

Let us assume indeed has an independent Gaussian dis-
tribution and derive the Neyman-Pearson detector under this as-
sumption. We have the likelihood ratio for length- sequences

Thus the Neyman–Pearson detector makes decision by thresh-
olding the following quantity

This quantity is essentially a weighted distance difference in the
Euclidean space. It is straightforward to verify that the expecta-
tion of this quantity under the two hypotheses is given by

Now we take blocks of -dimensional ECDQ, and con-
sider a length- source block. Choose the threshold as ,
where is a small positive quantity the meaning of which will

be clear later: if , hypothesis is accepted. To bound
the type-two error exponent, define the following new random
variable:

Using the Gaussian distribution approximation in Lemma 1
gives

which is straightforwardly seen because , and are mu-
tually independent, and so are , and under hypothesis

; furthermore the bound given in Lemma 1 is uniform.
The moment generating function of can be computed as

where we have defined

and is true because conditioned on , has a noncen-
tral Chi-square distribution; is true by recognizing again the
Chi-square distribution. The moment generating function exists
whenever

and (9)

By applying the Chernoff bound for , it follows that

This implies the error exponent satisfies

(10)

Optimizing over to maximize the second term in (10), we have
(11) shown at the bottom of the page, where

(11)
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Define the right-hand side of (11) as . It can be easily checked
that both the conditions in (9) are satisfied. We can choose suf-
ficiently small, as long as it is positive; furthermore, by Lemma
1, and by making sufficiently large, can be made arbi-
trarily small, and , thus we have

which is indeed the optimal value. It remains to show that the
type-one error can be made arbitrarily small. This is straightfor-
ward by observing that each length- ECDQ quantization is in-
dependent of the others, and by the law of large numbers, when

is sufficiently large, with high probability the sample average
concentrates near its expected value, which is zero under hy-
pothesis . It is clear that choosing a sufficiently small but
positive can drive the type-one error arbitrarily small when
is large.

The above method can be used to bound the second stage
error exponent by substituting quantization noise sim-
ilarly with an appropriate Gaussian random vector; the details
are thus omitted. We note that strictly speaking, a system based
on ECDQ is not a fixed-rate-coded deterministic system, thus
it is not within the problem definition. Nevertheless, this ran-
domized system can indeed be used to assert the existence of
a fixed-rate and deterministic system of the same performance;
see [29] for details.

VI. PROOF OF THE CONVERSE FOR THEOREM 5

In this section the converse proof of Theorem 5 is given by
generalizing the image size characterization approach taken by
Csiszár and Körner [12]. Since this proof relies heavily on the
methods of types, the blowing-up lemma and some related con-
cepts, we provide a brief review on these results in the Ap-
pendix. More details on the method of types can be found in
[12]. In the remainder of this section we assume the readers’
familiarity with [12, Secs. 1.2, 1.5, and 2.1]; familiarity with
Section III-C will also be helpful.

A. Two Lemmas

For a given probability distribution which induces the
channel , the set is called an -image
of the set over the channel if for
every (see [12, p. 101]). The collection of -images of
the set is denoted as . The following quantity is related
to the minimum type-two error probability associated with set

where is the alternative hypothesis distribution; for the test
against independence problem, since the alternative hypothesis
is independence, we have

In the sequel, only this case will be considered, and thus
is simply written as . Note that

is a generalization of the minimum cardinality
of the -images in [12], which was used to prove the channel
coding theorem.

The following two lemmas are important for the converse
proof. The first lemma essentially states that
is independent of for sufficiently large , while the second
lemma provides a way to bound this quantity. Denote the letter

with the minimum probability in as , which is
strictly positive as assumed, and define .

Lemma 2: For every , we have for any set

whenever .
Proof: Suppose . Clearly, we have

Let be an -image of which achieves . Then
by the blowing-up Lemma A-3, there exists a sequence with

such that for sufficiently large

where is the Hamming -neighborhood of (see (A-1)).
This means is an -image of , and it implies that

Take this sequence of as that in Lemma A-2, then for suffi-
ciently large , we have that

and it follows that

which completes the proof.

Lemma 3: For any set , consider a random vector
distributed over and let the random

vector be connected with by the
channel , which is induced by . Then for
every , , we have

whenever .
Proof: In light of Lemma 2, we only need to show that

there exists an such that

if .
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Let be an -image of that achieves .
Then by the data-processing inequality for divergence, we have

where

Since is an -image of , we have

Thus, we have

(12)

where again is the binary entropy function.
Notice the following simple fact

where was defined before Lemma 2.
It follows from (12) that

By choosing an appropriate , e.g., , the following
inequality is satisfied:

whenever and the proof is complete.

B. Converse Proof of Theorem 5

Now we are ready to prove the converse of Theorem 5,
which establishes the complete characterization of .
We shall be considering several probability distributions in
this proof, and the region will be written as ,
in order to emphasize the dependence on the particular dis-
tribution in consideration. Only the case needs
to be considered, since for the other case the strong converse
result apparently follows from that in [9]. Let the channel

be that induced by . We will take the
Delta-convention in [12, p. 34] and suppress the dependence
of all the small quantities on . Note also that the sets defined

below such as , , , , are all in fact sequences of
sets indexed by , however we are suppressing it for simplicity.
In this subsection alone, we use for the time index, and and

for the encoding function values.
Proof of the Converse for Theorem 5: For any two encoding

functions with two sets and
such that

we may assume that

Define the following sets:

Since we have

it follows that

Similarly, we have that

This implies that

By the property of typical sequences given in Lemma A-1, it
follows that for any such that
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we have for any

whenever . Next we find a single type in the
intersection with the maximum probability,
and denote this type as . Since there are less than
types in total, it follows that

(13)

From this point on we essentially consider only this single type.
For simplicity, define . Furthermore, for
any , we have that

(14)

where as , it follows

(15)

where as .
The functions and clearly partition the set into

nonintersecting subsets; denote those sets as .
Assign a uniform distribution onto the set , and denote
the resulting random variable as ; similarly, denote

as . Let be connected with by the channel
. Apparently, forms a

Markov chain.
It is clear that we have

(16)

where we have used (15) in . Similarly, we have

(17)

Notice that is in fact a -image for the set
. We can now bound the type-two error at the first stage

as follows:

where the last step we used Lemma 3; note that conditioning is
needed here for the divergence term, however it is related only
to the term by limiting . It further follows:

where and are due to the fact that the set consists of
sequences of the same type and is a uniform distribution
on , and in we used the convexity of function . It is
worth noting that the bounding above turns out to be tight sug-
gests that the distribution of given is approximately
the same for each value of ; this in turn implies that the set
is partitioned in an approximately uniform fashion into sets of
similar structure by (and ). Now it follows:

where , and we used the fact
and (13). We continue the chain of inequalities

as follows:

(18)

Because is a product distribution, we have
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Resuming from (18) it follows that

where is due to the Markov string .
By a similar manner, we can get

(19)

Now introduce a random variable uniformly distributed
over the set , and independent of , , , . For conve-
nience introduce the following notations:

and it follows from (16) and (17) that

Furthermore, we have

where is because is in fact independent of , and is
because . Similarly

And it follows that

Clearly

(20)

and by the definitions, we have

Furthermore, it is straightforward to check the Markov string
.

So far we have proved the following:

(21)

for any and . The proof can be
completed by a continuity argument, if is sufficiently close
to .

By (20), and the fact that , we have

as well as . By the uniform continuity of involved
information quantities, it follows that if is sufficiently small,
for every point , there exists a
point that is arbitrarily close
to it (see [12, p. 322] for details). Note that here we need to
use again the positivity of for the continuity to hold for

. The proof is complete by asserting that such in-
deed exists for any sufficiently large .

VII. CONCLUSION

We investigated two closely related problems, namely the
successive refinement hypothesis testing problem and the suc-
cessive refinement lossless one-helper problem. It was shown
that the rate-exponent region of the former and rate regions of
the latter are congruent to each other. The unified approach fa-
cilitates the treatment and provides several nontrivial results.
We focus on the SR-HT problem, and a strong converse result
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is proved for this problem. Gaussian problem was investigated
in some depth for the SR-HT problem. Moreover, a new op-
erational meaning of the information bottleneck method was
revealed by its connection to the problems being considered,
which is more intuitive than previously given in the literature.

We believe the entropy characterization problem extracted
from these problems is fundamentally important, which has not
been fully explored. Future research along this direction may
provide results in other multiterminal information theoretical
problems.

APPENDIX

Definition A-1: Given a set , the Hamming -neigh-
borhood of is defined as the set

(22)

where denotes the Hamming metric between two sets
and by extending the usual Hamming distance of two se-

quences as

Lemma A-1: For any , there exists a sequence
depending only on so that for every distribution on

Lemma A-2: Given a sequence of positive integers
with and a distribution on with positive probabil-
ities, there exists a sequence depending only on ,

and such that for every

Lemma A-3: (Blowing up) To any finite sets and and
sequence , there exists a sequence of positive integers

with and a sequence such that for every
stochastic matrix and every , ,

implies
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