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Abstract— In this paper, we propose an efficient coding scheme
for the binary Chief Executive Officer (CEO) problem under
logarithmic loss criterion. Courtade and Weissman obtained the
exact rate-distortion bound for a two-link binary CEO problem
under this criterion. We find optimal parameters of the binary
symmetric test-channel model for the encoder of each link by
using the given bound. Furthermore, an efficient coding scheme
based on compound low-density generator matrix (LDGM)–low-
density parity-check (LDPC) codes is presented to achieve the
theoretical rates. In the proposed encoding scheme, a binary
quantizer using LDGM codes and a syndrome generator using
LDPC codes are applied. The proposed decoder employs a
sum-product algorithm and a soft estimator to produce an
approximate a posteriori distribution of the source bits given
the data received through both links. Our numerical examples
verify a close performance of the proposed coding scheme to the
theoretical bound in several cases.

Index Terms— Binary CEO problem, logarithmic loss
(log-loss), test channel model, compound LDGM-LDPC codes,
soft CEO decoder.

I. INTRODUCTION

THE CHIEF EXECUTIVE OFFICER (CEO) problem is
defined by Berger et al. for distributed source coding

of multi-observation of a source corrupted by independent
noises [2]. By using the compressed observations, a fusion
center makes an estimation of the source at the receiver with an
acceptable distortion between original and estimated symbols.
In the last two decades, there has been an explosion of studies
on the theoretical bounds of the transmission rate in the CEO
problem in the case of noisy observations of a Gaussian source
corrupted by independent additive Gaussian noises [3]–[6].
This case is usually known as the quadratic Gaussian CEO
problem. The CEO problem empirically emerges in wireless
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sensor networks, where a particular phenomenon is mea-
sured by some separate and independent sensors in a noisy
environment.

A tight upper bound on the sum-rate-distortion function of
the quadratic Gaussian CEO problem and the optimal rate
allocation scheme are provided in [7]. Alternatively, studies
like [8]–[10] present various coding schemes to achieve any
point of the rate-distortion region of the quadratic Gaussian
CEO problem. Moreover, an optimal coding scheme based on
the successive Wyner-Ziv coding structure is applied to achieve
the bounds of the quadratic Gaussian CEO in [8].

The case of a binary source with observations corrupted by
binary noises, called the binary CEO problem, has been paid
less attention during these years. In general, the exact rate-
distortion bound of this case and its associated multi-terminal
source coding problem are open problems in information
theory. The most common criterion for measuring distortion in
the binary case is the Hamming distortion measure [11]. The
binary CEO problem appears in cooperative digital commu-
nication networks where some correlated remote sources are
being sent to a central receiver via paralleled channels with
independent noises.

A lower bound for the rate-distortion region of a two-
link binary CEO problem is established in [11] using the
Hamming distortion benchmark. The Berger-Tung inner and
outer bounds [12] are exploited for this case which are not
tight under the Hamming distortion criterion. Some useful
bounds on the rate-distortion performance of the binary CEO
problem under the Hamming distortion measure are given
in [13] and [14]. The prior studies on the binary CEO prob-
lem in [11], [13], [15], and [16] consider that the correlated
observations are transmitted through AWGN channels, and
hence their encoders apply a channel coding to protect the
transmitted data. Thus, the problem definition in those papers
differs from the standard CEO problem, defined in [2], for
which the transmission links are assumed to be noiseless and
the encoders employ source coding schemes, alternatively.
In contrast, we follow the lossy distributed source coding
framework in the binary CEO problem. Thus, our goal is
to achieve the maximum compression of the correlated noisy
observations for sending them through noiseless channels with
minimum distortion.

In recent years, the logarithmic loss (or simply log-loss)
has gained popularity as a distortion measure in lossy source
coding where the reconstructions are given in the form of
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probability distributions [17], [18]. Such soft reconstructions
are more suitable than hard reconstructions for applications
like classification, learning, data mining, and prediction.
Likewise, deep neural networks used for image classification
commonly output a distribution which assigns different
probabilities to different classes. In this paper, we focus on
the binary CEO problem under the log-loss criterion. One
of the advantages of considering the CEO problem under
the log-loss is that the corresponding rate-distortion region is
known [19]. Consequently, the rate-distortion performance of
a designed coding scheme relative to the fundamental limit
can be measured with more accuracy.

Although the CEO problem under the log-loss is a distrib-
uted source coding problem, it is closely related to the channel
coding problem (especially the compress-and-forward scheme)
for Cloud-Radio Access Networks (C-RANs) [20]. Indeed,
the results obtained in this work, when properly interpreted,
are applicable to C-RANs as well. Specifically, consider the
following scenario: in a C-RAN, a source sends an encoded
message using binary signaling to two base stations (BSs)
via two binary symmetric channels; the BSs compress their
respective observations and forward the compressed data to
the cloud center over fiber optic links which can be modeled
as bit pipes due to their low bit error rate performance;
finally, the cloud center decodes the transmitted message based
on the received data. It can be shown that, in a certain
sense, maximizing the end-to-end throughput of this C-RAN
is equivalent to minimizing the log-loss of the binary CEO
problem.

Our main contributions in this paper can be considered in
the contexts of both information theory and coding theory.
First, an exact rate-distortion bound is presented for a two-
link binary CEO problem under the log-loss distortion. Next,
we adopt a binary symmetric test channel model for each
encoder in the binary CEO problem and compute the corre-
sponding optimal parameters. Finally, efficient encoding and
decoding schemes are proposed by utilizing the compound
LDGM-LDPC codes and iterative message-passing algorithms.
We show that the rate-distortion performance of the proposed
coding scheme is close to the theoretical bounds.

The organization of this paper is as follows. In Section II,
the problem definition, preliminaries, and notations are pro-
vided. Information theoretic aspects of the binary CEO prob-
lem under the log-loss are described in Section III. Optimal
parameters of the binary symmetric test channel model are also
presented in this section. Next in Section IV, we provide the
designed encoding and decoding schemes in details. Numerical
results and discussions are presented in Section V. Finally,
Section VI draws the conclusion.

II. PRELIMINARIES

In this paper, we use uppercase letters for denoting a random
variable like one used in [19]. The realization of random
variables are denoted by lowercase letters and the alphabet
sets of random variables are denoted by calligraphic letters.
Throughout this paper, the logarithm is to base 2. In the Tanner
graph representation of codes, first subscript shows the index

Fig. 1. Block diagram of the two-link binary CEO problem.

of each associated link for any length, rate, distortion, and etc.
Some other used notations are as follows: p ∗ d = p(1− d) +
d(1−p) is binary convolution of d and p, for 0 ≤ p, q ≤ 1 and
[x]+ = max{0, x}. Let hb(x) = −x log x− (1−x) log(1−x)
be the binary entropy function where its first and second
derivatives are, respectively, h′

b(x) = log
(

1−x
x

)
and h′′

b (x) =
− log e

x(1−x) , where e ≈ 2.7182. The functions hb(x), h′
b(x), and

h′′
b (x) are, respectively, increasing, decreasing, and increasing

functions in x ∈ (0, 0.5].

A. System Model and Definitions

Consider a communication system consisting of an inde-
pendent and identically distributed (i.i.d.) binary symmetric
source (BSS) and its two noisy observations being transmitted
via two parallel links as depicted in Fig. 1. Let Xn, Y1

n, and
Y2

n denote a sequence of the BSS and two noisy observa-
tions of it, on the first and the second links with length n,
respectively. Observation noises Nn

1 and Nn
2 are independent

from each other and are i.i.d. binary sequences generated
by Bernoulli distributions with crossover parameters p1 and
p2 associated to the first and the second links, respectively.
Consider Y1

n and Y2
n are encoded to C1 and C2, and then

they are sent to the CEO joint decoder. Note that C1 ↔ Y n
1 ↔

Xn ↔ Y n
2 ↔ C2 form a Markov chain. At the decoder,

the binary sequence X̂n is reconstructed in the joint decoder
of CEO by using (C1, C2).

Each encoder consists of a function fi, i = 1, 2, which
compresses the observation as follows:

fi(Y n
i ) = Ci, where Y n

i ∈ Yn
i = {0, 1}n and Ci ∈ Ci,

for i = 1, 2. (1)

The CEO decoder is a function g which maps the ordered pair
(C1, C2) to the reconstruction X̂n,

g(C1, C2) = X̂n, where (C1, C2) ∈ C1 × C2. (2)

In the lossy source coding theory, Hamming distance is a
prevalent and a classic criterion for measuring the average
number of flipped bits between the estimated binary sequence
X̂n compared to the original binary sequence Xn, and is
denoted by dH(Xn, X̂n) � 1

n

∑n
j=1[xj ⊕ x̂j ], where ⊕ means

the binary sum operation. If the estimated sequence may not
necessarily be binary, another criterion is needed to mea-
sure the distance between these two sequences with different
alphabets. In this case, an efficient conditional entropy-based
distortion measure is used where probability distributions of
the original source alphabet, binary in this paper, is the same as
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the one that will be used in the reconstructed source alphabet.
This distortion measure is called log-loss.

Definition 1: Symbol-wise log-loss between a source sym-
bol xj and its reconstruction x̂j is defined as follows:

d(xj , x̂j) = log
( 1
x̂j(xj)

)
, j = 1, 2, · · · , n. (3)

where x̂j(xj) generally depends on (c1, c2). The total value of
log-loss distortion between xn and x̂n is obtained by averaging
over all the symbols, i.e.,

d(xn, x̂n) =
1
n

n∑

j=1

log
( 1
x̂j(xj)

)
. (4)

Definition 2: A rate distortion vector (R1, R2, D) is called
strict-sense achievable for a distortion measure d(·, ·), if there
exist functions f1, f2, and g according to (1) and (2) such that
for length n,

Ri ≥ 1
n

log
∣∣Ci

∣∣, for i = 1, 2;

D ≥ Ed(Xn, X̂n), (5)

where E(·) denotes expectation function.
Definition 3: The closure of the set of all strict-sense achiev-

able vectors (R1, R2, D) is called achievable rate-distortion
region of the binary CEO problem and is denoted by RD�

CEO.
Furthermore, RDi

CEO and RDo
CEO denote inner and outer

bounds of the rate-distortion region, respectively.

B. Message-Passing Algorithms

In our proposed coding scheme, we apply different types of
message-passing algorithms depending on their applications.
The Bias-Propagation (BiP) algorithm [21] is applied for
lossy compression of a given binary source. It maps each
output sequence of the source to a codeword of a given
low-density generator matrix (LDGM) code which has the
nearest Hamming distance to the source output. It achieves
the rate-distortion bound of the BSS, and hence it is usually
known as a binary quantizer in the context of source coding.
Specifically, we can approach a target binary rate-distortion
pair (R, D) = (1 − hb(d), d) by employing LDGM codes.
In each round of this algorithm, a bias value for each variable
node is calculated and then it is compared with a threshold.
Regarding this comparison, the values of at least one of the
variable nodes is determined in the quantized sequence. This
process continues until values of all the variable nodes are
fixed. Details of the BiP algorithm including update equations
and damping process are presented in [21] and [22].

Another useful message passing algorithm is the Sum-
Product (SP) algorithm [23] that is basically a decoding
technique for low-density parity-check (LDPC) codes with an
specified code rate and a degree distribution. In distributed
lossless source coding, this algorithm is widely used as a syn-
drome decoder for finding the nearest sequence to a particular
sequence called side information using the given syndrome
(see [24] and [25]). The iterative routine for executing this
algorithm is given in [26]. This algorithm can asymptotically
achieve zero bit-error-rate (BER) for a target code rate equal

to the capacity of a virtual channel between the original source
and the side information.

III. THE INFORMATION-THEORETIC ASPECT

In this section, we investigate the information-theoretic
aspect of the binary CEO problem. We review existent bounds
on the rate-distortion performance of this problem and then
find optimal parameters of the binary symmetric test channel
model. The Berger-Tung inner and outer bounds [12] are
not generally tight, especially in the binary CEO problem
case with Hamming distortion measure. If there exists a gap
between the inner and the outer bounds, then measuring and
comparing the rate-distortion performance of designed codes
are inaccurate. Therefore, the existence of a tight bound seems
crucial for the performance analysis of a code design. Because
of this, the Berger-Tung coding scheme is not optimal for the
binary CEO problem under the Hamming loss in the sense of
achieving the exact rate-distortion bound [12]. In our proposed
coding scheme, the total distortion is measured by using the
log-loss definition (4).

A. Binary CEO Problem Bound Under the Log-Loss

Theoretical rate-distortion bound of the binary CEO prob-
lem is unknown when distortion measure is the Hamming
distance, however, the inner and the outer bounds are only
available for this case. Alternatively, if the log-loss criterion
being used to measure distortion, the rate-distortion region
is exactly established. Specifically, the classical Berger-Tung
scheme yields the following inner bound of RD�

CEO according
to [19, Definition 3 and Th. 1]. Let (R1, R2, D) ∈ RDi

CEO,
if and only if, there exists a joint distribution of the form

p(x)p(y1|x)p(y2|x)p(u1|y1, q)p(u2|y2, q)p(q), (6)

where |Ui| ≤ |Yi| for i = 1, 2, and |Q| ≤ 4, which satisfies

R1 ≥ I(Y1; U1|U2, Q),
R2 ≥ I(Y2; U2|U1, Q),

R1 + R2 ≥ I(Y1, Y2; U1, U2|Q),
D ≥ H(X |U1, U2, Q). (7)

Furthermore, an outer bound is provided for the binary CEO
problem under the log-loss according to [19, Definition 4 and
Th. 2]. Let (R1, R2, D) ∈ RDo

CEO, if and only if, there exists
a joint distribution of the form (6) satisfies the following
inequalities,

R1 ≥ [I(Y1; U1|X, Q) + H(X |U2, Q) − D]+,

R2 ≥ [I(Y2; U2|X, Q) + H(X |U1, Q) − D]+,

R1 + R2 ≥ [I(Y1; U1|X, Q) + I(Y2; U2|X, Q)
+ H(X)− D]+,

D ≥ H(X |U1, U2, Q). (8)

The most important result in [19], related to our work,
is Theorem 3 and its extension. It states that the bounds in (7)
and (8) are the same, yielding a computable characterization
of the rate-distortion region under the log-loss. We shall focus
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on the two-link binary CEO problem,1 for which it suffices
to have |Q| ≤ 4 and |Ui| ≤ |Yi| = 2, i = 1, 2. To find a
complete characterization of the sum-rate-distortion function
for this problem, we should solve the following optimization
problem:

min
p(u1|y1,q)p(u2|y2,q)p(q)

I(U1, U2; Y1, Y2|Q),

s.t. H(X |U1, U2, Q) = D0, (9)

where H(X |Y1, Y2) ≤ D0 ≤ 1. This optimization problem
can be written in the following unconstrained form:

min
p(u1|y1,q)p(u2|y2,q)p(q)

H(X |U1, U2, Q)

+ μI(U1, U2; Y1, Y2|Q), (10)

where μ is the Lagrangian multiplier. Note that

H(X |U1, U2, Q) + μI(U1, U2; Y1, Y2|Q)

=
∑

q∈Q
p(q)[H(X |U1, U2, Q = q)

+ μI(U1, U2; Y1, Y2|Q = q)]
≥ min

q∈Q
H(X |U1, U2, Q = q)

+ μI(U1, U2; Y1, Y2|Q = q). (11)

Assume that the minimum in the above expression is achieved
at q∗. Now, we define U∗

1 , U∗
2 , and Q∗ joint distributed with

X , Y1, and Y2 according to

pX,Y1,Y2(x, y1, y2)
× pU∗

1 |Y1,Q∗(u∗
1|y1, q

∗)pU∗
2 |Y2,Q∗(u∗

2|y2, q
∗)pQ∗(q∗). (12)

If we set pU∗
1 |Y1,Q∗ = pU1|Y1,Q, pU∗

2 |Y2,Q∗ = pU2|Y2,Q,
pQ∗(q∗) = 1, and pQ∗(q) = 0 for q 	= q∗, then

H(X |U1, U2, Q) + μI(U1, U2; Y1, Y2|Q)
≥ H(X |U1, U2, Q = q∗) + μI(U1, U2; Y1, Y2|Q = q∗)
= H(X |U∗

1 , U∗
2 , Q∗) + μI(U∗

1 , U∗
2 ; Y1, Y2|Q∗). (13)

Therefore, this newly constructed (U∗
1 , U∗

2 , Q∗) achieves the
lower bound. In summary, we should assign all weights to
a particular realization of Q that achieves the minimum, and
consequently for the purpose of characterizing the sum-rate-
distortion function, there is no loss of generality in assuming
that Q is a constant, which leads to the following simplified
optimization problem:

min
p(u1|y1)p(u2|y2)

H(X |U1, U2) + μI(U1, U2; Y1, Y2) � F.

(14)

B. Binary Symmetric Test Channel Model for the Encoders

We shall assume2 that p(ui|yi) is a binary symmetric
channel with crossover probability di, i = 1, 2. Consequently,

1The extension to the m-link case is straightforward.
2Although we have not been able to find an analytical proof, extensive

numerical results suggest that this assumption incurs no loss of optimality for
the purpose of solving (14).

after some calculus manipulations in (7), the rate-distortion
bounds are expressed by:

R1 ≥ hb(p ∗ d) − hb(d1),
R2 ≥ hb(p ∗ d) − hb(d2),
R � R1 + R2 ≥ 1 + hb(p ∗ d) − hb(d1) − hb(d2),
D ≥ hb(p1 ∗ d1) + hb(p2 ∗ d2) − hb(p ∗ d), (15)

where p � p1∗p2 and d � d1∗d2. In this case, the optimization
problem (14) is equivalent to:

min
0≤d1,d2≤0.5

[
hb(p1 ∗ d1) + hb(p2 ∗ d2) − hb(p ∗ d)

+ μ
(
1 + hb(p ∗ d) − hb(d1) − hb(d2)

)]
, (16)

for any μ. The following example indicates that setting d1 =
d2 is not necessarily an optimal choice even if p1 = p2.

Example 1: Let consider p1 = p2 = 0.1 and also assume
that the minimum achievable sum-rate R is fixed to 0.6,
i.e., 1 + hb(p ∗ d)− hb(d1)− hb(d2) = 0.6. First, let d1 = d2.
By a simple calculation, d1 = d2 = 0.177 is obtained, and
then the minimum achievable distortion D will be equal to
0.6474. Alternatively, let presume that the total information
is only sent over the first link, i.e., d2 = 0.5. Thus, d1

and D are calculated as 0.0795 and 0.6428, respectively.
Consequently, the distortion value by using only one of the
links is unexpectedly smaller than the case that both of them
are used, and hence finding optimum values of d1 and d2

is interesting. Optimality in this case means achieving the
minimum achievable log-loss distortion subject to a given
minimum achievable sum-rate. First of all, we show that
the optimization problem (9) is not convex even with the
restriction to the binary symmetric test channel model.

Theorem 1: The lower bounds of the sum-rate R and
distortion D in (15) are neither convex nor concave in terms
of variables (d1, d2).

Proof: For ease of notation, we denote these lower bounds
by R and D. From (15) we have:

∂2R

∂d2
i

= (1 − 2p ∗ d3−i)2h′′
b (p ∗ d) − h′′

b (di),

∂2R

∂d1∂d2
= (1 − 2p ∗ d1)(1 − 2p ∗ d2)h′′

b (p ∗ d)

− 2(1 − 2p)h′
b(p ∗ d),

∂2D

∂d2
i

= (1 − 2pi)2h′′
b (pi ∗ di)

− (1 − 2p ∗ d3−i)2h′′
b (p ∗ d),

∂2D

∂d1∂d2
= −(1 − 2p ∗ d1)(1 − 2p ∗ d2)h′′

b (p ∗ d)

+ 2(1 − 2p)h′
b(p ∗ d). (17)

The Hessian matrices of the rate and distortion are, respec-
tively, HR = [ ∂2 R

∂di∂dj
] and HD = [ ∂2 D

∂di∂dj
], for i, j = 1, 2.

By defining qi � p ∗ d3−i, obviously qi ≥ pi. After some
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calculations, we have:

∂2R

∂d2
i

=
log e qi(1 − qi)

qi ∗ di(1 − qi ∗ di)di(1 − di)
≥ 0,

∂2D

∂d2
i

=
log e [pi(1 − pi) − qi(1 − qi)]

pi ∗ di(1 − pi ∗ di)qi ∗ di(1 − qi ∗ di)
≤ 0. (18)

For fixed values of di, sum-rate R and distortion D are,
respectively, a convex and a concave single-variable functions
in terms of d3−i, for i = 1, 2 according to (18). We show that
the determinant of the Hessian matrices for R and D are not
positive with a counter-example.

det
[
HR

]
=

∂2R

∂d2
1

∂2R

∂d2
2

− ( ∂2R

∂d1∂d2

)2

=
( log e q1(1 − q1)
p ∗ d(1 − p ∗ d)d1(1 − d1)

)

×( log e q2(1 − q2)
p ∗ d(1 − p ∗ d)d2(1 − d2)

)

− (
2(1 − 2p) log

[1 − p ∗ d

p ∗ d

]

+
log e (1 − 2q1)(1 − 2q2)

p ∗ d(1 − p ∗ d)
)2

. (19)

Let calculate det
[
HR

]
for d1 = d2 = 0.1 where p1 → 0

and p2 → 0. In this case, d = 0.18, p → 0, q1 → 0.1, and
q2 → 0.1. Hence,

det
[
HR

]
=

(0.1298
0.0133

) × (0.1298
0.0133

) − (
4.3752 + 6.2555

)2

= −17.7659 < 0. (20)

This counter-example shows that R is neither convex nor
concave in general. Similarly, for distortion D, we have:

det
[
HD

]
=

∂2D

∂d2
1

∂2D

∂d2
2

− ( ∂2D

∂d1∂d2

)2

=
( log e [q1(1 − q1) − p1(1 − p1)]
p ∗ d(1 − p ∗ d)p1 ∗ d1(1 − p1 ∗ d1)

)

×( log e [q2(1 − q2) − p2(1 − p2)]
p ∗ d(1 − p ∗ d)p2 ∗ d2(1 − p2 ∗ d2)

)

− (
2(1 − 2p) log

[1 − p ∗ d

p ∗ d

]

+
log e (1 − 2q1)(1 − 2q2)

p ∗ d(1 − p ∗ d)
)2

. (21)

Now we calculate det
[
HD

]
for p1 = p2 = 0.1 when d1 → 0

and d2 → 0. In this case, p = 0.18, d → 0, q1 → 0.18, and
q2 → 0.18. Hence,

det
[
HD

]
=

( 0.083
0.0133

) × ( 0.083
0.0133

) − (
2.8002 + 4.0036

)2

= −7.3465 < 0. (22)

This counter-example also shows that D is neither convex nor
concave in general. �

Regarding the above theorem, the objective function
F (μ) � D +μR in (16), which is a two-dimensional function
of (d1, d2), is not convex in general. For a fixed value of μ,
solution of (16) is an ordered pair denoted by (d∗1, d∗2) which
achieves minimum value of F . If p1 = p2, only pairs that
satisfy d∗1 ≤ d∗2 will be considered as an acceptable solution

due to the symmetry. Now, the solution of the problem (16)
is found via a brute-force search on the plane (d1, d2) with
sufficiently small step-sizes.

There exist two definite boundary points in F (μ). First,
it arises in μ = 0 where the objective function equals distor-
tion, and hence the minimum value Dmin equals H(X |Y1, Y2)
for (d∗1, d

∗
2) = (0, 0). Second, it occurs in μmax by which the

minimum value of the objective function equals to H(X) = 1
for all μ values equal or greater than μmax, i.e., Fmin(μ) = 1 for
∀μ ≥ μmax. In the latter boundary point, the solution is located
in (d∗1, d

∗
2) = (0.5, 0.5) and the sum-rate R = 0. Thus, it is

sufficient to study behavior of the objective function between
these two boundary points, i.e., 0 ≤ μ ≤ μmax. Our results
show that location of the solutions depends on the value of
noise parameters p1 and p2 whether they are equal or not.
In Fig. 2, location of the solution points (d∗1, d

∗
2) are depicted

for several cases. When p1 = p2, as it is seen in these curves,
there exist two threshold values for parameter μ, denoted by
μt1 and μt2 , related to non-smooth critical points of the curves.
These critical points are used to categorize location of the
optimum solutions. In Region 1, 0 ≤ μ ≤ μt1 , the optimum
points (d∗1, d

∗
2) are located on the line d∗1 = d∗2. In Region 2,

μt1 ≤ μ ≤ μt2 , the optimum points are located on a curve
such that d∗1 < d∗2 < 0.5. In Region 3, μt2 ≤ μ ≤ μmax,
the solutions are located on the boundary points. However,
when p1 	= p2, there is only one threshold value for μ denoted
by μt corresponding to the critical point of the curve. In Region
1, 0 ≤ μ ≤ μt, the solutions are located on a curve such that
d∗1 < d∗2 < 0.5, and in Region 2, μt ≤ μ ≤ μmax, the optimum
points are located on the boundary points. As it is seen
in Fig. 2, one of the links becomes useless for sending encoded
observations to the decoder when the difference p2−p1 slightly
increases. To confirm these solutions, all roots of the gradient
equation ∇F = [ ∂F

∂d1
, ∂F

∂d2
] = [0, 0] are calculated. These roots

give all possible optimum points except the boundary points,
hence:

(1 − 2pi)h′
b(di ∗ pi)−μh′

b(di)+(μ−1)(1−2qi)h′
b(d ∗ p)=0,

(23)

for i = 1, 2. This non-linear system of equations does not
have any closed-form solution and it is generally solved by
using numerical methods such as Newton’s method [27]. Next,
the Hessian matrix HF = HD + μHR is calculated in these
roots to check whether a possible point is exactly an optimum
point or not.

HF =
[ ∂2F

∂di∂dj

]
; i, j ∈ {1, 2}. (24)

If HF is a positive definite matrix in a root of ∇F = [0, 0],
then it is a solution. Otherwise, since there is not such a point,
the solution is only located on the boundary points, i.e., at least
one of the d∗i s equals 0 or 0.5. Due to the non-convexity of
the optimization problem and the non-linearity of the rate and
distortion expressions, we give an asymptotic analysis of the
problem (16). In this regard, we consider a high-resolution
regime.

Lemma 1: Assume K = (1 − 2p) log
(

1−p
p

)
and Ki =

(1−2pi) log
(

1−pi

pi

)
for i = 1, 2. For x → 0, through applying
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Fig. 2. Location of the optimum points (d∗1 , d∗2).

the Taylor expansion we have

hb(x) = −x log(x) + x + O(x2),
hb(x ∗ p) − hb(p) = Kx + O(x2). (25)

Theorem 2: Location of the solution points of (16), when
d1 → 0 and d2 → 0, is as follows:

d2 ≈ 2
K(K2−K1)

(K1−K) d
K2−K
K1−K

1 . (26)

Proof: Let R0 = 1 + hb(p) and D0 = hb(p1) +
hb(p2)−hb(p) be sum-rate and distortion at (d1, d2) = (0, 0).
According to (25), if (d1, d2) → (0, 0), then we have:

R − R0 = hb(p ∗ d) − hb(p) − hb(d1) − hb(d2),
= Kd + d1 log d1 − d1 + d2 log d2 − d2

+ O(max{d2, d2
1, d

2
2})

= (K − 1)(d1 + d2) + d1 log d1 + d2 log d2

+ O(max{d2
1, d

2
2}), (27)

D − D0 = hb(p1 ∗ d1) − hb(p1) + hb(p2 ∗ d2)
− hb(p2) − hb(p ∗ d) + hb(p)

= K1d1 + K2d2 − Kd + O(max{d2, d2
1, d

2
2}

= (K1 − K)d1 + (K2 − K)d2 + O(max{d2
1, d

2
2}).
(28)

By ignoring the high-order terms, the following convex opti-
mization problem is obtained:

min
0≤d1,d2≤0.5

(K − 1)(d1 + d2) + d1 log d1 + d2 log d2

s.t. (K1 − K)d1 + (K2 − K)d2 = D − D0. (29)

The Lagrangian L of the above minimization problem for the
Lagrangian multiplier λ is given by:

L = (K − 1)(d1 + d2) + d1 log d1 + d2 log d2

+ λ[(K1 − K)d1 + (K2 − K)d2 − D + D0]. (30)

The gradient equation implies:

∂L

∂di
= K + log di + λ(Ki − K) = 0, for i = 1, 2. (31)

Finally, by canceling λ in the above two equations, it is
concluded that:

K(K2 − K1) + (K2 − K) log d1 − (K1 − K) log d2 = 0

⇒ d2 = 2
K(K2−K1)
(K1−K) d

K2−K

K1−K

1 . (32)

�
Corollary 1: In general, without assuming the test channels

to be symmetric, one can still show that R−R0 can be approxi-
mated by a convex function while D−D0 can be approximated
by a linear function, in the high-resolution regime. As a con-
sequence, computation of the rate-distortion function can be
approximately formulated as a convex optimization problem.
A direct implication of this convex optimization formulation
is that the binary symmetric test channel is asymptotically
optimal in the high-resolution regime.

Corollary 2: The slope of the tangent lines to the curve
of location of optimum points in (d∗1, d

∗
2) = (0, 0) are,

respectively, 1, ∞, or 0 when p1 = p2, p1 < p2, or p1 > p2.
In the following figure, location of the optimum points in

a high-resolution regime3 and the curve (26) for Fig. 2(b) are
depicted. As it is obvious, these curves are approximately the
same. By the following lemma, the asymptotic analysis of the
problem is investigated around (d∗1, d∗2) = (0.5, 0.5).

Lemma 2: The maximum value of the parameter μ occurs
in (R, D) = (0, 1) when (d∗1, d

∗
2) = (0.5, 0.5) and it equals:

μmax = max{(1 − 2p1)2, (1 − 2p2)2}. (33)

Proof: Consider the rate and distortion of (15) are denoted
by Re = 0 and De = 1 if (d∗1, d

∗
2) = (0.5, 0.5). Calculation

of the following fraction limit, which equals the slope of the
tangent line to the sum-rate-distortion curve, is desired;

lim
(d1,d2)→(0.5,0.5)

De − D

R − Re

= lim
(d1,d2)→(0.5,0.5)

1 + hb(p ∗ d) − hb(p1 ∗ d1) − hb(p2 ∗ d2)
1 + hb(p ∗ d) − hb(d1) − hb(d2)

=
0
0
! (34)

By applying L’Hopital’s rule and differentiation with respect
to d1, the limit (34) equals (35), as shown at the top of

3d1 and d2 are O(10−4).
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lim
(d1,d2)→(0.5,0.5)

(1 + � − 2d2 − 2�d1)(1 − 2p)h′
b(p ∗ d) − (1 − 2p1)h′

b(p1 ∗ d1) − �(1 − 2p2)h′
b(p2 ∗ d2)

(1 + � − 2d2 − 2�d1)(1 − 2p)h′
b(p ∗ d) − h′

b(d1) − �h′
b(d2)

, (35)

the next page, where � = ∂d2
∂d1

. The above fraction is again
ambiguous, therefore we need another differentiation with
respect to d1 from both the numerator and the denominator.
After differentiation and letting (d1, d2) → (0.5, 0.5),

lim
(d1,d2)→(0.5,0.5)

De − D

R − Re
= lim

(d1,d2)→(0.5,0.5)

0 − (1 − 2p1)2h′′
b (p1 ∗ d1)−�2(1 − 2p2)2h′′

b (p2 ∗ d2)
0 − h′′

b (d1)−�2h′′
b (d2)

=
−(1 − 2p1)2h′′

b (0.5) − �2(1 − 2p2)2h′′
b (0.5)

−h′′
b (0.5) − �2h′′

b (0.5)

=
(1 − 2p1)2 + �2(1 − 2p2)2

1 + �2
� g(�). (36)

In the curve of the sum-rate-distortion bound, the value of (34)
is maximized. Hence, the maximum of g(�) is desirable.

g′(�) =
∂g(�)
∂�

=

(
2�(1−2p2)2

)
(1+�2)−2�

(
(1−2p1)2+�2(1−2p2)2

)

(1+�2)2

= 0 ⇔ � = 0 or � = ∞. (37)

Therefore, the maximum value of the parameter μ is obtained
from (37) as in (33). �

Corollary 3: According to (37), the slope of the tangent line
to the curve of location of the optimum points is 0 if p1 < p2,
and it is ∞ if p1 > p2. For the case p1 = p2, both 0 and ∞
are acceptable as the slope of the tangent line to the curve of
location of the optimum points due to the continuity of the
rate and the distortion functions.

In practical applications, parameters of the observation
noises are small values. Hence, we investigate our problem
with more details when at least one of the noise parameters
is a very small value. Thus, we may assume without loss of
generality that p1 → 0, then from continuity:

R ≈ 1 + hb(p2 ∗ d) − hb(d1) − hb(d2),
D ≈ hb(d1) + hb(p2 ∗ d2) − hb(p2 ∗ d)

≈ 1 − R + hb(p2 ∗ d2) − hb(d2). (38)

The behavior of low noise case is expressed by the following
theorem.

Theorem 3: If p1 → 0, then only two cases can occur: either
(i) d∗2 = 0.5, or (ii) d∗1 → 0. Proof: [Proof] It is sufficient
to prove that if 0 ≤ d∗2 < 0.5, then d∗1 → 0. First, we shall
declare that hb(q ∗ x) − hb(x) is a positive and a decreasing
function in terms of x, where 0 ≤ x ≤ 0.5 and 0 < q ≤ 0.5.
Therefore, it takes its maximum value in x = 0 for any q.
Now compute the objective function in the case p1 → 0. Due
to (38), we have:

F (μ) = D + μR ≈ 1 + (μ − 1)R + hb(p2 ∗ d2) − hb(d2).
(39)

Assume that 0 ≤ d∗2 = c < 0.5, where c is a constant value.
The latter optimization problem becomes as follows:

min
0≤d1≤0.5, d2=c

[
(μ − 1)

(
1 + hb(p2 ∗ d) − hb(d1) − hb(d2)

)

+ hb(p2 ∗ d2) − hb(d2)
]
≡ min

0≤d1≤0.5
(μ − 1)

(
hb(q ∗ d1)

−hb(d1)
) ≡ max

0≤d1≤0.5

(
hb(q ∗ d1) − hb(d1)

)
, (40)

where 0 < q = p2 ∗ c ≤ 0.5. Obviously, solution of the
above problem is d∗1 = 0 and due to the approximations in
our calculations, we shall have d∗1 → 0. �

Corollary 4: If p2 is sufficiently larger than p1, then p =
p1 ∗ p2 ≈ p2 and the same situation of Theorem 3 occurs.
Similarly, if p2−p1

p2
= α → 1, then p = p1 ∗ p2 = (1 −

α)p2 + p2 − 2(1 − α)p2
2 ≈ p2, and hence Theorem 3 is used

again, as depicted in the case of Fig. 2(c). In order to have
more intuition to the result of Theorem 3, some other cases
are provided in the Fig. 4.

IV. THE PROPOSED CODING SCHEME

In this section, a practical coding scheme is introduced
to achieve the calculated rate-distortion bounds. In Fig. 5,
values of the theoretical bound of sum-rate versus distortion
are displayed for several noise parameters to evaluate per-
formance of the designed codes. The value of gap between
the achieved point and the theoretical bound is employed as
a performance criterion. The structure of the designed code
significantly differs whether only one of the links or both of
them are engaged in information sending. Obviously, when
only one link sends information, our problem reduces to a
point-to-point lossy source coding problem. Furthermore, for
any (d1, d2), there exists a particular achievable rate region
which is characterized by the corner and intermediate points
in its boundary. In the following, the proposed encoding and
decoding schemes are separately illustrated for achieving the
corner points and the intermediate points of the bound in the
achievable rate region.

A. Coding Scheme for the Corner Points

According to the exact rate-distortion bound (7), we have
the following bound for the rate of i-th link and the
sum-rate:

Ri ≥ I(Yi; Ui|U3−i) = H(Ui|U3−i) − H(Ui|Yi, U3−i)
(a)= H(Ui|U3−i) − H(Ui|Yi)
= hb(d ∗ p) − hb(di), for i = 1, 2,

R1 + R2 ≥ I(Y1, Y2; U1, U2) = H(U1, U2)
−H(U1, U2|Y1, Y2)

(a)= 1 + H(U1|U2) − H(U1|Y1) − H(U2|U2)
= 1 + hb(p ∗ d) − hb(d1) − hb(d2), (41)
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Fig. 3. Comparison of the location of optimum points and curves of (26).

Fig. 4. Location of the optimum points (d∗1 , d∗2).

Fig. 5. The sum-rate-distortion function of the binary CEO problem for
some noise parameters.

where (a) follows since U1
d1↔ Y1

p1↔ X
p2↔ Y2

d2↔ U2

from a Markov chain. Since a conventional rate-distortion
quantizer can asymptotically achieve the compression rate
1 − hb(di) for distortion being assumed di, it is impossible
to get close to (41) by only using the rate-distortion quantizer.
Hence, another lossless source encoder should be utilized
after the conventional rate-distortion quantizer for achieving
the rate (41) in the i-th link. We use an LDGM quantizer
concatenated with a Syndrome-Generator (SG), inspired by
the “quantize-and-bin” idea in the context of information
theory. The dominant face of the rate region is a line segment

connecting two end points (R′
1, R

′
2) and (R′′

1 , R′′
2 ), where

(R′
1, R

′
2) =

(
hb(p ∗ d) − hb(d1), 1 − hb(d2)

)
, (42)

and

(R′′
1 , R′′

2 ) =
(
1 − hb(d1), hb(p ∗ d) − hb(d2)

)
. (43)

We consider a coding scheme for achieving (R′
1, R

′
2). A sim-

ilar method can be applied for achieving (R′′
1 , R′′

2 ). Encoder 1
quantizes yn

1 to un
1 using an LDGM code of rate R1,1 = m1

n ,
then it computes the syndrome sk1

1 = un
1HT

1 , where H1 is the
parity-check matrix of an LDPC code of rate R1,2 = m1−k1

n .
We do this process of quantize and bin by employing a
compound LDGM-LDPC code. It is notable that the total
length of the obtained syndrome equals n−m1+k1, where its
first n−m1 bits are zero because the LDPC code is nested with
the LDGM code [22]. Hence, only k1 non-zero bits are sent
to the decoder and the total rate is R1 = R1,1 − R1,2 = k1

n .
Encoder 2 quantizes yn

2 to un
2 using an LDGM code of rate

R2,1 = m2
n , then un

2 is sent to the decoder. In the second link,
the total rate is R2 = m2

n . The block diagram of the proposed
scheme is shown in Fig. 6.

At the decoder side, the syndrome sk1
1 with un

2 as a side
information are used to decode un

1 , denoted by ûn
1 , by applying

a SP algorithm. Finally, at the decoder, calculation of the soft
estimation x̂j = Pr{xj |û1,j, u2,j} completes the decoding
process. Here Pr{xj |û1,j , u2,j} � pX|U1,U2(xj |û1,j , u2,j),
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Fig. 6. The proposed coding scheme for achieving a corner point.

and the conditional distribution pX|U1,U2 can be deduced from
the joint distribution in (6) once d1 and d2 are given (assuming
Q is a constant).

A compound LDGM-LDPC code includes nested LDGM
and LDPC codes with the following parity-check matrices:

HLDPC =
[
HLDGM

ΔH

]
, (44)

where HLDPC and HLDGM are, respectively, parity-check matri-
ces of the LDPC and LDGM codes. Let assume their sizes are
(n−m+ k)×n and (n−m)×n, respectively. We have used
the compound LDGM-LDPC structure to achieve theoretical
bound of the Wyner-Ziv problem in [22]. We denote the
mentioned compound code by CHLDPC(n, m, k).

For achieving a corner point, we employ a compound code
C

H
(1)
LDPC

(n, m1, k1) in the first link, and a single LDGM code

with the generator matrix G(2) of size m2 × n in the second
link. The observation yn

1 is quantized to an LDGM codeword
un

1 by applying the BiP algorithm with the generator matrix
G(1). Hence, un

1H
(1)
LDGM = [0 · · · 0]

︸ ︷︷ ︸
n−m1

. Next, the syndrome

un
1H

(1)
LDPC = [0 · · · 0︸ ︷︷ ︸

n−m1

, un
1ΔHT

︸ ︷︷ ︸
s

k1
1

] is calculated and only sk1
1

is sent to the CEO decoder.

B. Coding Scheme for the Intermediate Points

Consider the following intermediate point located in the
dominant face of the achievable rate region,

(R∗
1, R

∗
2) =

(
hb(p ∗ d) − hb(d1) + δ, 1 − hb(d2) − δ

)
, (45)

where 0 < δ < 1 − hb(p ∗ d). Obviously, R∗
1 ≤ 1 − hb(d1)

and R∗
2 ≤ 1 − hb(d2). Therefore, a lossless compression is

needed in each link. In the i-th link, we use a compound
code C

H
(i)
LDPC

(n, mi, ki), for i = 1, 2. First step of encoding
includes quantizing the observations yn

i to un
i by using the

BiP algorithm on the LDGM codes associated with the parity-
check matrices H

(i)
LDGM. In the second step, the syndromes

un
i H

(i)
LDPC = [0 · · · 0︸ ︷︷ ︸

n−mi

, un
i ΔH(i)T

︸ ︷︷ ︸
s

ki
i

] are calculated, then only

sk1
1 and sk2

2 are sent to the CEO decoder.
In the decoder, we propose a Joint Sum-Product (JSP) algo-

rithm which is a modified version of the SP algorithm. In this

algorithm, the received syndromes sk1
1 and sk2

2 are respectively
located in the check nodes of the LDPC codes with parity-
check matrices H

(1)
LDPC and H

(2)
LDPC. The JSP includes r rounds

and each round includes l iterations. At the starting point of
the JSP, initial LLRs in the variable nodes are set based on a
random side information in each SP. At the end of each round,
which includes update equations in the check and variable
nodes, the bit values of the variable nodes are calculated
according to the decision rule of the SP algorithm, where it
maps the non-negative LLRs to bit 0 and the negative LLRs to
bit 1. In the next round, these updated bit values in the variable
nodes are used as a new side information for calculating
new initial LLR values. Finally, after r rounds, ûn

1 and ûn
2

are decoded based on the decision rule of the SP algorithm
in the variable nodes of the LDPC codes. An EXIT chart
analysis is presented in [28] for a similar JSP decoder which
shows the capacity approaching property with two parallel and
collaborative SP decoders. Similar to the decoding scheme of
the corner points, the soft estimation x̂j = Pr{xj |û1,j, û2,j}
accomplishes the decoding process.

In the joint decoding scheme, the received sequences sn
1 and

sn
2 are simultaneously decoded. If we look at this situation like

two point-to-point lossy source coding problems, then we have
to recover the noisy observations yn

1 and yn
2 , each of which

is received with compression rates R1 and R2 and acceptable
distortions, respectively. As a case, let these distortions be d1

and d2, respectively. A major part of distortions d1 and d2

arises from the LDGM quantization and a negligible part is
from the syndrome-decoding. Let assume the LDPC code rate
in the i-th link is denoted by Ri,2, for i = 1, 2. Furthermore,
consider the associated distortion of each link, i.e., BER of
the syndrome-decoding part, is denoted by di,2, for i = 1, 2.
Using the compound LDGM-LDPC structure, the total rate
and the distortion in each link are as follows:

di = di,1 ∗ di,2≈di,1, Ri = Ri,1 − Ri,2, for i = 1, 2. (46)

After reconstruction of the observations with distortions d1

and d2, denoted by ûn
1 and ûn

2 , the soft reconstruction of the
original binary source x̂n is estimated.

C. A Practical Analysis for the Proposed Coding Scheme

Some coding parameters are affected by the information
theoretical limits, that should be considered in the code
design procedure. In the following notations, any ε denotes
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Fig. 7. The proposed coding scheme for achieving intermediate points.

a sufficiently small positive value. In the coding scheme for a
corner point, the relation between the rate-distortion and the
block lengths of employed LDGM and LDPC codes are as
follows:

R1,1 =
m1

n
= 1 − hb(d1,1) + ε1,1,

R1,2 =
m1 − k1

n
= 1 − hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − ε1,2,

R2,1 =
m2

n
= 1 − hb(d2,1) + ε2,1, R2,2 = 0. (47)

From (46) and (47), it is simply concluded that:

R1 = R1,1 − R1,2 =
k1

n
= hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − hb(d1,1) + ε1,1 + ε1,2︸ ︷︷ ︸

ε1

(b)≈ hb(d ∗ p) − hb(d1) + ε1,

R2 = R2,1 − R2,2 =
k2

n
= 1 − hb(d2,1) + ε2,1

(b)≈ 1 − hb(d2) + ε2,1, (48)

where (b) follows from the continuity of the function hb(x).
The above approximation expresses that achieving the rate
bound (41) is possible by using our proposed method in each
link. In the decoding side, the SP algorithm of Fig. 6(b) uses
the LDPC code of rate R1,2, that is smaller than the capacity
of the virtual channel between the side information U2 and
the target sequence U1.4 Therefore, U1 is decoded with a low
BER, i.e., d1,2 ≈ 0, by using a good channel decoder. Clearly,
in this case d2,2 = 0 and d2 = d2,1.

In the coding scheme for an intermediate point (45),
the relation between the rate-distortion and the block lengths
of each employed LDGM and LDPC codes are as follows:

R1,1 =
m1

n
= 1 − hb(d1,1) + ε1,1,

R1,2 =
m1 − k1

n
= 1 − hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − δ − ε1,2,

R2,1 =
m2

n
= 1 − hb(d2,1) + ε2,1,

R2,2 =
m2 − k2

n
= δ − ε2,2. (49)

4This capacity equals 1 − hb(p ∗ d).

From (46) and (49), it is simply concluded that:

R1 = R1,1 − R1,2 =
k1

n
= hb(d1,1 ∗ d2,1 ∗ p1 ∗ p2) − hb(d1,1) + δ + ε1,1 + ε1,2︸ ︷︷ ︸

ε1

(b)≈ hb(d ∗ p) − hb(d1) + δ + ε1,

R2 = R2,1 − R2,2 =
k2

n
= 1 − hb(d2,1) − δ + ε2,1 + ε2,2︸ ︷︷ ︸

ε2

(b)≈ 1 − hb(d2) − δ + ε2, (50)

where (b) follows from the continuity of the function hb(x).
The above approximation expresses that achieving the rate
bound (41), for an intermediate point (45), is possible by
utilizing the proposed method. In the decoding side, the JSP
algorithm of Fig. 7(b) uses the LDPC codes of rates R1,2 and
R2,2. From (49) and 0 < δ < 1 − hb(p ∗ d),

R1,2 ≈ 1 − hb(d ∗ p) − δ − ε1,2 < 1 − hb(d ∗ p),
R2,2 = δ − ε2,2 < 1 − hb(d ∗ p). (51)

Therefore, the rates of LDPC codes in the SP1 and the SP2
algorithms are smaller than the capacity of the virtual channel
between the side information U1 and U2. This implies that
the SP algorithms can decode U1 and U2 with low BERs,
i.e., di,2 ≈ 0 for i = 1, 2, for sufficiently large n, r, and l.

For the empirical distortion Dem in (4) with x̂j(xj) =
Pr{xj |u1,j, u2,j}, we have

Dem =
1
n

n∑

j=1

log[
1

Pr{xj |u1,j , u2,j} ]

=
∑

x,u1,u2

Prem{x, u1, u2} log[
1

Pr{x|u1, u2} ], (52)

where Prem{x, u1, u2} is the empirical distribution induced
by (xn, un

1 , un
2 ). The theoretical distortion bound is given

by Dth = H(X |U1, U2). Clearly, we have Dem ≈ Dth if
Prem{x, u1, u2} is close to Pr{x, u1, u2}.

V. RESULTS AND DISCUSSIONS

In this section, some numerical results are given for indi-
cating the rate-distortion performance of the proposed coding
scheme at different regions. For all of the LDPC codes,
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TABLE I

NUMERICAL RESULTS OF THE PROPOSED ENCODING AND DECODING METHODS

Fig. 8. The sum-rate-distortion performance of the proposed coding scheme.

the optimized degree distributions over the binary symmet-
ric channel are employed.5 However, the check-regular and
variable-Poisson LDGM codes nested with the LDPC codes
are designed similar to the code design method in [22].
In order to achieve some target optimum crossover probability
pairs (d∗1, d

∗
2) by practical coding methods, we have applied

our proposed coding scheme with the lengths of n = 104, 105

for various cases of the noise parameters including (p1, p2) =
(0.15, 0.15) and (0.29, 0.3). We have also implemented our
proposed coding scheme for two low-noise cases (p1, p2) =
(0.01, 0.01) and (0.05, 0.1).

In the BiP algorithm, the parameters t = 0.8, γi ≈
2 Ri,1 = 2mi

n are selected for i = 1, 2. Maximum number
of iterations in each round of this algorithm is set to be 25.
In the SP algorithm, maximum number of iterations is set
to be 100. Also, in the JSP algorithm, r = 15 and l = 40.
All of the reported values for the empirical distortions are
averaged over 50 runs. Parameters of the employed codes
and their results are presented in Table I. The corner and
the intermediate points are indicated by symbols C and I in
the second column of the table, respectively. The gap value is
equal to difference between the empirical distortion Dem and
the theoretical distortion Dth and it evaluates performance of
the designed codes.

5These degree distributions are available in [29] for some rates.

For the case of equal noises (p1, p2) = (0.15, 0.15),
the gap values is about 0.03 to 0.06 for the block length 104,
as indicated in Table. I. It is obvious that by increasing the
target distortions, the gap values increase. As the block length
is set to 105, the gap value decreases in the range between
0.02 to 0.03. Performance of the sum-rate versus distortion
is depicted in Fig. 8(a) for the proposed coding scheme.
Simulation results confirm that performance of the sum-rate
in terms of distortion is very close to the theoretical bounds
for the empirically achieved points. The theoretical bounds are
asymptotically achievable by employing the proposed coding
scheme as well. For the case of unequal noise parameters
(p1, p2) = (0.29, 0.3), the achieved gaps are slightly more
than that one for the case of equal noise parameters with
approximately the same target distortions and block length.
This observation expresses that increasing noise parameters
p1 and p2 causes a higher gap values in distortion. Similarly,
by increasing the block length to 105, the gap value is
decreased by about less than half of the result for block length
104, as mentioned in Table. I. Performance of the sum-rate in
terms of distortion for the proposed coding scheme is depicted
in Fig. 8(b).

In the low-noise case, as it is seen in the Table. I,
the achieved gap depends on the value of the target
distortions, similar to the prior cases. The achieved gap
with our coding scheme is about 0.006 to 0.011 for the
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case (p1, p2) = (0.01, 0.01), and it is about 0.018 to 0.028
for the case (p1, p2) = (0.05, 0.1). Generally, the gap value
for the corner points is smaller than that of the intermediate
points. This gap can be reduced by increasing r and l.

VI. CONCLUSION

We have investigated the two-link binary CEO problem
under the log-loss from both information-theoretic and coding-
theoretic perspectives. A binary symmetric test channel model
is adopted for each encoder, and its optimal parameters are
computed numerically and analyzed in the asymptotic high-
resolution regime. We have also proposed a practical coding
scheme based on low-density graph codes and message-
passing algorithms. Specifically, the compound LDGM-LDPC
codes are utilized at each encoder for performing binary
quantization and syndrome-generation. The decoder employs
the SP algorithms based on the optimized LDPC codes for the
binary symmetric channel and outputs the final reconstruction
value in the form of a probability distribution. The effective-
ness of the proposed scheme is confirmed by the simulation
results.
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