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Abstract—We consider asynchronous Slepian-Wolf coding
where the two encoders may not have completely accurate
timing information to synchronize their individual block code
boundaries, and propose LDPC code design in this scenario.
A new information-theoretic coding scheme based on source
splitting is provided, which can achieve the entire asynchronous
Slepian-Wolf rate region. Unlike existing methods based on
source splitting, the proposed scheme does not require common
randomness at the encoder and the decoder, or the construction
of super-letter from several individual symbols. We then design
LDPC codes based on this new scheme, by applying the recently
discovered source-channel code correspondence. Experimental
results validate the effectiveness of the proposed method.

Index Terms—Belief propagation, low density parity check
codes, Slepian-Wolf coding, source splitting.

I. INTRODUCTION

IN the seminal work [1], Slepian and Wolf showed that
it is possible to compress two dependent sources in a

distributed manner, at rates no larger than those needed when
they are compressed jointly. More precisely, when two discrete
memoryless sources 𝑋 and 𝑌 , jointly distributed as 𝑄𝑋𝑌

in the alphabets 𝒳 and 𝒴 , are separately compressed using
block codes of length-𝑛 at rates 𝑅1 and 𝑅2, respectively, both
sources can be reconstructed with asymptotically diminishing
error probability at a central decoder, using any rates (𝑅1, 𝑅2)
such that

𝑅1 > 𝐻(𝑋 ∣𝑌 ), 𝑅2 > 𝐻(𝑌 ∣𝑋), 𝑅1 +𝑅2 > 𝐻(𝑋,𝑌 ). (1)

This rate region is illustrated in Fig. 1.
This result has been generalized in various ways [2]–

[5], one of which is the asynchronous Slepian-Wolf (A-SW)
coding scenario considered by Willems [4]. This consideration
is practically important, because although we can assume
perfect synchronization in the simplistic Slepian-Wolf setting
such that the length-𝑛 block codes can be applied on each
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Fig. 1. The achievable rate region for Slepian-Wolf coding.

corresponding block pair, in practice the two encoders may
not have such a perfectly accurate global clock to synchronize
their block code boundaries. It was shown in [4] that even in
this case, the rate region result (1) still holds, as long as the
decoder is aware of this asynchronism. Thus, the restriction
on the synchronization is in fact unnecessary and can be
effectively removed, when the system is properly designed.

In this work, we consider the code design in the A-SW
setting. Formally, the encoders are associated with an integer
delay pair (𝑑𝑥, 𝑑𝑦), each in the range of 0 to 𝑛 − 1. The
values of 𝑑𝑥 and 𝑑𝑦 are unknown to the encoders but known
to the decoder. Thus the 𝑞-th block of the source 𝑋 consists
of {𝑋(𝑡)}𝑡=𝑞𝑛+1+𝑑𝑥,...,(𝑞+1)𝑛+𝑑𝑥

and the 𝑞-th block of the
source 𝑌 consists of {𝑌 (𝑡)}𝑡=𝑞𝑛+1+𝑑𝑦,...,(𝑞+1)𝑛+𝑑𝑦

. It is easy
to see that for the two corner points of the achievable rate
region, this problem is not very different from that in the
synchronous case. Thus our focus is on the general rate pairs,
i.e., rate pairs on the dominant face of the rate region.

Previous works on the synchronous Slepian-Wolf (S-SW)
code design mostly focus on the corner points of the rate
region [7]–[10], with only a few exceptions [11][12]. The
code design at the corner points is reasonably well understood,
particularly with the recent development [13], where it was
shown that when encoding 𝑌 𝑛 with side information 𝑋𝑛 at the
decoder, the error probability of any single linear coset code
is exactly the decoding error probability of the same channel
code on a corresponding channel under optimal decoding or
belief propagation decoding. Thus the linear Slepian-Wolf
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code design problem at a corner point can be conveniently
converted into the code design problem for a specific channel.
Though this connection was mentioned in earlier works [14],
[15], it was made precise in [13] for general (non-symmetric
non-binary) sources.

The code design for the S-SW problem cannot be applied
directly to the asynchronous case. One may wonder if the
information-theoretic coding scheme given in [4] can be
used for such a purpose, however, it unfortunately requires
optimization of the auxiliary random variable and complex
joint typicality encoding usually seen in quantization modules,
thus not convenient for practical code design. The usual time-
sharing approach to achieve general rate pairs in S-SW coding
also does not apply in the asynchronous setting. In [16],
an information-theoretic scheme based on source splitting
was given to overcome this difficulty due to asynchronism,
by introducing common randomness at one encoder and the
decoder. However, common randomness is not desirable in
practical systems and should be avoided if possible.

It is clear that a new coding approach is needed for the
A-SW code design, and since Slepian-Wolf coding is well
understood for the corner points of the rate region, it is also
desirable to utilize these existing results. Indeed, in this work
we first present an information-theoretic scheme based on
source splitting, which does not require common randomness
(or the construction of a threshold function which operates
on multiple source symbols as a super-letter [12]). Then
based on this coding scheme, we utilize the source-channel
correspondence result in [13] to design good LDPC codes.
Experimental results confirm the effectiveness of the proposed
design. Moreover, the proposed method does not significantly
increase either system design or system implementation com-
plexity compared to those of synchronized systems, and the
performance is also comparable to state of the art design for
synchronized systems in the literature.

It should be clarified at this point that the asynchronism
here only refers to the mismatch in the block code boundaries
of the two encoders, but not the timing mismatch in the
sampling process. When sampling a continuous process, such
timing inaccuracy may incur uncertainty in the probability
distribution 𝑃𝑋𝑌 , and this problem is usually considered in
the framework of universal Slepian-Wolf compression [5][6],
thus is beyond the scope of this work.

II. A NEW SOURCE SPLITTING SCHEME FOR A-SW
CODING

In this section, we first briefly explain the difficulty of using
time-sharing in the asynchronous setting and then review how
source splitting together with common randomness can be
used to overcome this difficulty, as proposed in [16]. Then
a new information-theoretic scheme based on source splitting
is proposed, which does not require common randomness. An
overview of the proposed LDPC code design in the context of
this new scheme will be subsequently discussed.

A. Time-sharing and Source Splitting With Common Random-
ness

It is easy to see that a simple time-sharing can be used
to achieve any general rate pair in the achievable rate region
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Fig. 2. The difficulty of time-sharing in the asynchronous setting.

for the S-SW problem. Essentially we only need to use the
following two kinds of coding alternately: 1) first encode 𝑋
directly, then encode 𝑌 with 𝑋 as decoder side information,
and 2) first encode 𝑌 directly, then encode 𝑋 with 𝑌 as
decoder side information. When the first kind of code is used
with a proportion 𝑝, and the second is used with proportion
1− 𝑝, it is clear that the following rate pair is achieved.

𝑅1 = 𝑝𝐻(𝑋) + (1− 𝑝)𝐻(𝑋 ∣𝑌 )

𝑅2 = 𝑝𝐻(𝑌 ∣𝑋) + (1− 𝑝)𝐻(𝑌 ). (2)

An example makes clear the difficulty of using this approach
in the asynchronous setting. Let us assume 𝑝 = 0.5 and the
two kinds of codes used in timesharing both are of length-𝑛.
Thus in the synchronous setting, the first kind of code is used
in the even block, i.e., the (2𝑚)-th block, and the second kind
of code is used in the odd block, i.e., the (2𝑚+ 1)-th block.
Now consider the asynchronous setting, and let 𝑑𝑥 = 1

2𝑛 and
𝑑𝑦 = 0, which are unknown to the encoders but known to the
joint decoder. When the original time-sharing codes are used,
it is clear that at the first half of the even blocks, source 𝑌
is encoded assuming 𝑋 at the decoder, yet the source 𝑋 is
also encoded assuming 𝑌 at the decoder. This clearly results in
decoder failure. Another way to see this is that in this portion,
the sources are encoded with sum rate 𝐻(𝑌 ∣𝑋) +𝐻(𝑋 ∣𝑌 ),
which is less than 𝐻(𝑋,𝑌 ), and thus it is impossible to ensure
reliable communication; see Fig. 2 for an illustration.

To overcome this difficulty, common randomness was in-
troduced in [16] such that source splitting can be applied.
Let {𝑇 (𝑡)}𝑡=1,...,∞ be a binary discrete memoryless pro-
cess distributed in {0, 1} such that at each time instance,
Pr[𝑇 (𝑡) = 1] = 𝑝; it is independent of the sources (𝑋,𝑌 ).
Let this process be available at both the encoder observing
𝑋 and the decoder. Without loss of generality, let us assume
𝒳 = {1, 2, . . . , ∣𝒳 ∣}. Now define two new sources

𝑍 = 𝑋 ⋅ 𝑇, 𝑊 = 𝑋 ⋅ (1− 𝑇 ). (3)

In other words, {𝑍(𝑡)}𝑡=1,...,∞ is {𝑋(𝑡)}𝑡=1,...,∞ with cer-
tain position assigned to zero, while {𝑊 (𝑡)}𝑡=1,...,∞ is
{𝑋(𝑡)}𝑡=1,...,∞ with the complement positions assigned to
zero. Thus the source 𝑋 is split into two sources 𝑍 and 𝑊 .
Notice that by definition 𝑇 is a deterministic function of 𝑍 ,
since 𝑇 is only zero when 𝑍 is zero.

With these two new sources, the original problem is trans-
formed into Slepian-Wolf coding of sources (𝑍,𝑊 ) and 𝑌 .
The encoding can now be performed in a sequential order as
follows:

1) Encode the source 𝑍 conditioned on 𝑇 ;
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2) Encode source 𝑌 assuming 𝑍 at the decoder;
3) Encode 𝑊 assuming (𝑍, 𝑌 ) at the decoder.

The rates at the two encoders are

𝑅1 = 𝐻(𝑍∣𝑇 ) +𝐻(𝑊 ∣𝑍, 𝑌 )

𝑅2 = 𝐻(𝑌 ∣𝑍) = 𝐻(𝑌 ∣𝑍, 𝑇 ). (4)

Observe that

𝑅1 +𝑅2 = 𝐻(𝑍∣𝑇 ) +𝐻(𝑊 ∣𝑍, 𝑌 ) +𝐻(𝑌 ∣𝑍)

= 𝐻(𝑋,𝑌 ∣𝑇 ) = 𝐻(𝑋,𝑌 ). (5)

The rate pair in (4) is on the dominant face of the achievable
rate region. By varying 𝑝 from 0 to 1, all the rate pairs on the
dominant face can be achieved, at least for the S-SW case.

A moment of thought should convince the readers that
by applying the above block codes consecutively, the coding
scheme can also be used in the asynchronous case without
any change. Although this scheme can indeed achieve all rate
pairs in the A-SW setting, it requires common randomness
at one encoder and the decoder, which is not desirable in
practice because the common randomness essentially requires
the system to be more flexible in order to handle a large
number of the side information erasure patterns. This problem
is exacerbated in practice since pseudo-randomness must be
used to replace this common randomness, which introduces the
possibility that certain pseudo-random erasure pattern blocks
may incur large decoding error probability and it may occur
periodically. Next we propose a new scheme which does not
require the common randomness (or pseudo-randomness) and
thus avoids this problem; this new method only requires the
system to handle a few side information erasure patterns, and
it can be understood as an efficient de-randomized version of
the afore-given scheme using common randomness.

B. A Source Splitting Scheme Without Common Randomness

From the source splitting scheme with common randomness
afore-given, we can make the following two observations:

1) In the second coding step, for each length-𝑛 block of
source 𝑌 , there are approximately 𝑝⋅𝑛 source 𝑋 samples
available at the decoder; furthermore, the exact positions
of these 𝑋 samples are known at the decoder.

2) Though the random sequence 𝑇 (𝑡) can potentially split
𝑋(𝑡) at each time instance into two random variables
𝑍(𝑡) and 𝑊 (𝑡), the overall effect is in fact to split the
length-𝑛 source 𝑋 sequence in the time domain, such
that the first item above can be made true.

Based on these two observations, we propose the following
information-theoretic scheme, which does not require common
randomness. Instead of the random sequence 𝑇 (𝑡), let us
consider a deterministic one

𝑇 (𝑡) =

{
1 ⌊𝑡⌋𝑛 − 𝑑𝑥 = 1, . . . , 𝑘

0 otherwise
(6)

where ⌊⋅⌋𝑛 is modulo-𝑛 operation. In other words, the first
𝑘 positions in a block aligned with the length-𝑛 source 𝑋
block are assigned 1, while the remaining 𝑛− 𝑘 positions are
assigned 0. After we apply the first coding step in the original
source splitting scheme, a partial 𝑋 sequence is available
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Fig. 3. Illustration of the new scheme without common randomness.

at the decoder. Such a choice of 𝑇 (𝑡) indeed approximately
satisfies the first observation discussed above, regardless the
exact value of 𝑑𝑥; see Fig. 3 for an illustration. At this point,
the second coding step in the original source splitting scheme
still cannot be directly applied, since now there is no explicit
source 𝑍 to simplify the coding module.

We can now focus on the second coding step of encoding
source 𝑌 using a length-𝑛 block code, where 𝑘 out of 𝑛 of the
corresponding 𝑋 source samples are available at the decoder,
whose positions are unknown to the encoder, but known to
the decoder. These 𝑘 positions of source 𝑋 samples can be
from a single length-𝑛 source 𝑋 coding block, or two separate
length-𝑛 source 𝑋 coding blocks, which are illustrated in Fig.
3(a) and Fig. 3(b), respectively.

The following (random) coding scheme for the second step
is the key difference between the one in [16] and the one
proposed in this work. For convenience, let us denote the set
of positions (indexed) within this length-𝑛 block for which
source 𝑋 samples are available at the decoder as 𝒜, where
𝒜 ⊆ {1, 2, . . . , 𝑛}. Consequently the set of the remaining
positions within this block is denoted as 𝒜𝑐.

∙ Random binning: each of 𝑦𝑛 sequence is uniformly and
independently assigned to one of 2𝑛𝑅2 bin indices;

∙ Encoding: the encoder sends the bin index of the 𝑌
source sequence;

∙ Decoding: if the known length-𝑘 source 𝑋 sequence
from 𝒜 is 𝛿1-typical, we then find a length-𝑛 source
𝑌 sequence in the corresponding bin, such that the
following two typicality conditions hold (i) the length-
𝑘 vector by collecting the 𝑌 samples at the positions
corresponding to 𝒜 is jointly 𝛿1-typical with the known
length-𝑘 𝑋 sequence, and (ii) the length-(𝑛−𝑘) vector by
collecting the 𝑌 samples at the positions corresponding
to 𝒜𝑐 is 𝛿2-typical by itself.

In the above procedure, we have used the (weak) typicality
definition in [22] (p. 51 and pp. 384-385). It is easier to
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bound the decoding error if we view a single length-𝑛 source
𝑌 sequence as the combination of a length-𝑘 and a length-
(𝑛 − 𝑘) sequence. When both 𝑘 and 𝑛 − 𝑘 are sufficiently
large, it is clear that with high probability, the original source
sequence 𝑦𝑛 indeed satisfy the two typicality conditions with
high probability; we shall denote the probability of such error
event that a source sequence fails one of the two conditions
as 𝑃 ′

𝑒. We only need to bound the probability that another 𝑌
sequence is decoded instead of the correct one. By the well-
known properties of the typical sequences (see [22] pp. 51-53
and pp. 385-387), we see there are less than 2𝑘(𝐻(𝑌 ∣𝑋)+2𝛿1)

length-𝑘 source 𝑌 sequences that are jointly 𝛿1-typical with
the known 𝛿1-typical length-𝑘 source 𝑋 , and there are less
than 2(𝑛−𝑘)(𝐻(𝑌 )+𝛿2) 𝛿2-typical length-(𝑛 − 𝑘) source 𝑌
sequences. Thus the decoding error in this step is bounded
by

𝑃𝑒 ≤ 𝑃 ′
𝑒 + 2−𝑛𝑅22𝑘(𝐻(𝑌 ∣𝑋)+2𝛿1)2(𝑛−𝑘)(𝐻(𝑌 )+𝛿2) + 𝛿1

= 𝑃 ′
𝑒 + 2−𝑛[𝑅2− 𝑘

𝑛 (𝐻(𝑌 ∣𝑋)+2𝛿1)−𝑛−𝑘
𝑛 (𝐻(𝑌 )+𝛿2)] + 𝛿1, (7)

where the last term 𝛿1 accounts for the error event that the
known 𝑋 sample sequence at the decoder is in fact not typical.
Thus if we choose sufficiently small 𝛿1 and 𝛿2, as long as

𝑅2 >
𝑛− 𝑘

𝑛
𝐻(𝑌 ) +

𝑘

𝑛
𝐻(𝑌 ∣𝑋)

≈ (1 − 𝑝)𝐻(𝑌 ) + 𝑝𝐻(𝑌 ∣𝑋),

the decoding error vanishes as 𝑛 → ∞. This solves the second
step in the source splitting scheme without any common
randomness. It should be noted that the scheme inherently
requires both 𝑘 and 𝑛− 𝑘 to be large.

For the third coding step, the decoding may have to wait
until the next 𝑌 block is decoded; see Fig. 3(a) for an
illustration. Nevertheless, it is not difficult to see that the third
coding step in the original source splitting scheme can be used
without much change. Thus we only need

𝑅1 >
𝑘

𝑛
𝐻(𝑋) +

𝑛− 𝑘

𝑛
𝐻(𝑋 ∣𝑌 )

≈ 𝑝𝐻(𝑋) + (1− 𝑝)𝐻(𝑋 ∣𝑌 ). (8)

For sufficiently large 𝑛, by adjusting 𝑘, all rate pair on
the dominant face of the Slepian-Wolf rate region can be
effectively approached.

We have shown that for a fixed set 𝒜, there indeed exists a
sequence of codes that can approach the Slepian-Wolf limit.
However, one key requirement in the A-SW problem is that
a single code has to guarantee small error probability for all
the possible cyclic shifts of 𝒜 induced by the asynchronism.
By refining the probability bound for decoding error given
above, we can indeed show that such a sequence of codes
exists. However instead of proving this more technical result
here, in the appendix we provide a proof for an even stronger
and relevant result that linear codes under the same source
splitting paradigm can achieve the A-SW limit. This serves
as a more rigorous proof, as well as the theoretical basis for
designing the LDPC codes, which are indeed linear.

The following two observations are now worth noting.
Firstly, the position of 𝑇 (𝑡) being 1 does not need to be
the first 𝑘 positions. In fact, any pattern can be used with

𝑘 positions assigned 1, as long as the pattern is repeated for
all the blocks. More specifically, for 𝑘/𝑛 = 𝑘′/𝑛′ where 𝑘′

and 𝑛′ are coprime of each other, we can choose 𝑇 (𝑡) to be a
sequence alternating between 𝑘′ ones, and 𝑛′ − 𝑘′ zeros; this
choice gives the smallest number of side information erasure
patterns that need to be considered among all (𝑛, 𝑘) pairs of
the same ratio. In the simulations given in Section IV, this
kind of 𝑇 (𝑡) sequences will always be assumed. Secondly
the proposed scheme has the advantage that decoding errors
do not propagate across blocks, because a single encoding
(and decoding) step is essentially isolated to two consecutive
blocks. The overall decoding procedure restarts when the first
decoding step is used in each cycle.

C. Overview of the LDPC Code Design

In each step of the proposed source splitting scheme, with
a given LDPC code, the encoding and decoding procedure
is well known (see [10]), and thus we only need to focus
on finding good codes. The overall code design consists of
finding the following three codes.

1) A lossless code for encoding length-𝑘 source 𝑋 se-
quences. This is a well understood module, and any
good lossless compression algorithm can be used.

2) An LDPC code of rate approximately 𝑝𝐻(𝑌 ∣𝑋)+ (1−
𝑝)𝐻(𝑌 ) to encode the length-𝑛 source 𝑌 block, with
length-𝑘 source 𝑋 samples at the decoder, the positions
of which are unknown to the encoder but known to the
decoder. This step is discussed in more details in Section
III.

3) An LDPC code of rate approximately 𝐻(𝑋 ∣𝑌 ) to
encode the rest 𝑛 − 𝑘 samples in the source 𝑋 block,
with 𝑌 block as side information at the decoder. This
step is similar, and in fact simpler than the second step.
We also discuss this design step using the result of [13]
in Section III.

III. EQUIVALENT CHANNEL MODEL AND CODE DESIGN

IN THE A-SW SETTING

LDPC code in conjunction with belief propagation has
shown extremely good performance in channel coding, which
can in fact approach the capacity of many classes of channels
[17]. The application of LDPC codes to the Slepian-Wolf
problem was first suggested in [18] and further investigated
in [10]. These results on S-SW coding mostly focus on the
case that the (symmetric) source 𝑋 and 𝑌 can be understood
as connected by a symmetric channel, and sources with
general distribution structure were largely overlooked.

Recently, a link between Slepian-Wolf coding and channel
coding, referred to as source-channel correspondence, has
been established in [13]. Through this link, coding for a
corner point of the Slepian-Wolf rate region, i.e., the prob-
lem of source coding with decoder side information, can be
transformed to a channel coding problem with the same error
probability; consequently, given an arbitrary source 𝑌 and
side information 𝑋 , capacity-achieving LDPC codes for the
equivalent channel can be designed using existing algorithms,
which also approach the Slepian-Wolf limit of the source. In
this section, we discuss the code design problems of step two
and step three in our source splitting scheme using this link.
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Fig. 4. The equivalent channel for source coding with decoder side
information, where the channel input is 𝑈 and the channel output is (𝑉1, 𝑉2).

A. Source Coding With Decoder Side Information

We now briefly review the source-channel correspondence
result in [13]. This will provide an explicit code design for
the third step in the splitting scheme, i.e, encoding a block of
𝑋 samples with the corresponding side information 𝑌 block
at the decoder.

For notational simplicity, let us only consider the special
setting when the source 𝑋 is in certain finite field, but this
requirement is by no means necessary; see [13]. Let the two
sources in the alphabets (𝒳 ,𝒴) be distributed as 𝑄𝑋𝑌 , where
𝒳 is a certain finite field and 𝒴 = {1, 2, . . . , 𝐽}.

The equivalent channel [13] with input 𝑈 in the alphabet
𝒳 and output 𝑉 = [𝑉1, 𝑉2] is depicted in Fig. 4, where 𝑉1 =
𝑈 ⊕ 𝑋 and 𝑉2 = 𝑌 , with the addition ⊕ in the finite field
𝒳 . Here 𝑈 is independent of 𝑋 and 𝑌 . It can be shown that
the capacity of the channel is achieved when 𝑈 has a uniform
distribution [13], resulting in

𝐶 = log ∣𝒳 ∣ −𝐻(𝑋 ∣𝑌 ). (9)

The key result given in [13] is that when the same linear
codes are used, the decoding error probability of the channel
coding problem on this equivalent channel and that of the
source coding with decoder side information problem are
exactly the same, under maximum likelihood decoder or belief
propagation decoding. Because in the source coding with side
information problem, the compression rate using the linear
coset code is given as log ∣𝒳 ∣ − 𝑅𝑐, where 𝑅𝑐 is the rate
of the channel code, if we can design the LDPC code to
approach the capacity of this channel, then the same code
can be used to approach the Slepian-Wolf limit because of the
fact 𝐻(𝑋 ∣𝑌 ) = log ∣𝒳 ∣ −𝐶, with the same error probability.

The density evolution algorithm developed in [19] can be
used to design the parity check matrix for a given channel;
more precisely, the degree distribution of the variable nodes
and the check nodes in the bipartite graph [17] can be
designed this way. An improved density evolution based algo-
rithm, called discretized density evolution [20], was further
developed in order to reduce the design complexity. Thus
given a source and its side information structure, we can
first transform the problem into an equivalent channel coding

problem, then use the algorithm in [20] to design good LDPC
code. This will yield good codes for the original source coding
problem. We give a design example using this method in
Section IV.

B. Source Coding With Partial Decoder Side Information

In the previous subsection, we see that the source-channel
correspondence result [13] can be used to aid the design of
LDPC code for the third step in the splitting scheme. For the
second step, this method does not directly apply because only
a partial side information sequence is available for the length-
𝑛 source block.

To apply the source-channel correspondence result [13], an
explicit single-letter probability structure between the source
and the side information needs to be found. For this purpose,
we return to the original source splitting scheme with common
randomness. As we have discussed, the deterministic sequence
𝑇 (𝑡) in fact approximates the effect of the randomized one.
Due to this reason, we shall use the split source 𝑍(𝑡) defined in
(3) to replace the length-𝑘 partial side information sequence,
the positions of which are unknown to the encoder.

Now assume the alphabet is given by 𝒳 = {1, 2, . . . , ∣𝒳 ∣},
then the joint distribution 𝑄𝑌 𝑍 is clearly

𝑄𝑌 𝑍(𝑦, 𝑥) = 𝑝 ⋅𝑄𝑌𝑋(𝑦, 𝑥)

𝑄𝑌 𝑍(𝑦, 0) = (1− 𝑝) ⋅𝑄𝑌 (𝑦). (10)

With this explicit distribution between the source 𝑌 and the
side information 𝑍 , we can now again first apply the transform
to the equivalent channel, then use the design algorithm in
[20] to find good LDPC codes. This is turned into an almost
identical design problem as that for the third step, with the
only difference being the insertion of erasure symbol 0 into the
original problem. In Section IV, we give a detailed example
on the design of such codes.

IV. DESIGN EXAMPLES AND NUMERICAL RESULTS

In this section, we give several code design examples and
results. We start with the third and the second steps in the
splitting scheme, then the overall performance is discussed.
To be more concrete, we focus on the distribution 𝑄𝑋𝑌

𝑄𝑋𝑌 (𝑥, 𝑦) =

⎧⎨
⎩
0.45 𝑥 = 1, 𝑦 = 1

0.05 𝑥 = 1, 𝑦 = 2

0.09 𝑥 = 2, 𝑦 = 1

0.41 𝑥 = 2, 𝑦 = 2,

(11)

however, the design method is general and can be applied on
any joint distributions. Note that we have chosen the alphabet
{1, 2} instead of the usual binary field {0, 1} in order to be
consistent with the discussion in the previous section. More
precisely, when the source is 𝑋 and side information is 𝑌 , the
alphabet {1, 2} of source 𝑋 in this probability distribution
is mapped in a one-to-one manner to the finite field {0, 1}
together with the associated finite field operations; when 𝑌
is the source, the alphabet of 𝑌 is mapped in a similar
manner. This source distribution cannot be modeled as a
binary symmetric channel and thus using codes designed for
binary symmetric channels is not suitable.
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A. Example of Source Coding With Decoder Side Information

We first consider the design for the third step in our
splitting scheme, i.e., design LDPC code to encode 𝑋 with
side information 𝑌 based on the equivalent channel model
shown in Fig. 4.

The initial log-likelihood ration (LLR) messages
log

𝑃𝑈∣𝑉 (𝑢=1∣𝑣)
𝑃𝑈∣𝑉 (𝑢=2∣𝑣) and their associated probabilities need

to be determined in order to apply the discretized density
evolution (DE) [20] [21] algorithm. Using the equivalent
channel given in Section III-A, it is straightforward to verify
that these LLRs and associated probabilities are as follows,
assuming an all-zero codeword:

log
𝑃𝑈∣𝑉 (1∣𝑣)
𝑃𝑈∣𝑉 (2∣𝑣) =

⎧⎨
⎩
log 5 for 𝑣 = (1, 1) with prob. 0.45

log 5
41 for 𝑣 = (1, 2) with prob. 0.05

log 1
5 for 𝑣 = (2, 1) with prob. 0.09

log 41
5 for 𝑣 = (2, 2) with prob. 0.41

Several good degree distributions with code rates 0.6, 0.602,
0.604, 0.607, 0.609, 0.610, 0.612 0.614 are obtained by setting
the maximum variable node degree to be 20, 𝛿(𝑒𝑙−1 − 𝑒𝑙) =
0.001 and Δ𝜆 = 0.0005, where 𝛿(𝑒𝑙−1 − 𝑒𝑙) and Δ𝜆 are the
parameters involved in the linear programming setting of [21].
As an example, the degree distribution of code rate 0.614 is
given below:

𝜆(𝑥) = 0.213389𝑥+ 0.173764𝑥2 + 0.063𝑥3

+ 0.063𝑥4 + 0.056087𝑥5 + 0.036943𝑥6

+ 0.37𝑥7 + 0.42𝑥8 + 0.314816𝑥19

𝜌(𝑥) = 𝑥6.

In the simulation of each code, source sequences of length
108 are generated by the joint distribution shown in (11).
Each sequence is divided into 500 blocks with block length
𝑛 = 2 × 105 bits. Each block is decoded with the belief
propagation algorithm, for which the number of iteration is
limited to 150. The same belief propagation algorithm is also
used in simulations discussed in later sub-sections.

Fig. 5 shows the performance of these Slepian-Wolf codes
under two testing scenarios. In the first test, all the test-
ing source sequences are 𝜖-jointly-typical blocks with 𝜖 =
0.001 [22], and in the second test the testing source sequences
are randomly generated by the joint distribution in (11) so that
they can be either typical or atypical. Apparently, we expect
the first test to yield better results than the second one, since
the codes are specifically designed for the given distribution.
In Fig. 5, we see that the gap to the Slepian-Wolf limit of
0.57921 is 0.03 bit in the first test and 0.035 bit for the second.
These results are comparable to the 0.033 and 0.06 bit gap
for results on the symmetric sources using the LDPC codes
in [10] [11], with code length 105, bit error rate (BER) less
than 10−5, and similar decoding algorithms; recall that the
source distribution in (11) cannot be modeled as connected
by a symmetric channel, and thus it is expected to be more
difficult to code.
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Fig. 5. The performances of 8 irregular LDPC codes of length 2 × 105,
with side information 𝑌 at the decoder.

B. Example of Source Coding With Partial Decoder Side
Information

We now consider the second step in our source splitting
scheme, and focus on encoding for the mid-point on the
dominant face of the Slepian-Wolf region, i.e, 𝑝 = 0.5. We
need to design code for source 𝑌 with the (randomized) partial
side information 𝑍 at the decoder, whose joint distribution is

𝑄𝑌 𝑍(𝑦, 𝑧) =

⎧⎨
⎩

0.27 𝑦 = 1, 𝑧 = 0

0.225 𝑦 = 1, 𝑧 = 1

0.045 𝑦 = 1, 𝑧 = 2

0.23 𝑦 = 2, 𝑧 = 0

0.025 𝑦 = 2, 𝑧 = 1

0.205 𝑦 = 2, 𝑧 = 2

The initial (LLR) messages and their associated probabili-
ties are as shown below:

log
𝑃𝑈∣𝑉 (1∣𝑣)
𝑃𝑈∣𝑉 (2∣𝑣) =

⎧⎨
⎩

log(2723 ) for 𝑣=(1, 0) with prob. 0.27

log(9) for 𝑣=(1, 1) with prob. 0.225

log( 9
41 ) for 𝑣=(1, 2) with prob. 0.045

log(2327 ) for 𝑣=(2, 0) with prob. 0.23

log(19 ) for 𝑣=(2, 1) with prob. 0.025

log(419 ) for 𝑣=(2, 2) with prob. 0.205

Under the same assumption and the same parameters setting
as the previous example, we apply the discretized density
evolution algorithm [20] [21], and find several LDPC codes of
rates 0.8060.8080.8100.8140.816, respectively. The Slepian-
Wolf limit is 0.7850, and thus these codes are less than 0.031
bit away from this lower bound. As an example, the degree
distribution of code rate 0.816 is given below:

𝜆(𝑥) = 0.394235𝑥+ 0.212846𝑥2 + 0.011𝑥3 + 0.092328𝑥4

+ 0.078893𝑥5 + 0.210698𝑥14

𝜌(𝑥) = 0.1𝑥2 + 0.9𝑥3

Since 𝑝 = 0.5, we can choose the pattern of 𝑇 (𝑡) to be a
sequence alternating between one and zero, and subsequently
we can assume 𝑑𝑥 = 0 without loss of generality. By doing so,
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Fig. 6. The performances of 6 irregular LDPC codes of length 2 × 105,
with partial 𝑋 side information at the decoder.

TABLE I
PERFORMANCES OF DIFFERENT CODES UNDER VARIOUS 𝑑𝑦 WITH 𝑝 = 0.5.

𝑅2 𝑑𝑦 BER

0.812 0 7.01× 10−5

1 6.12× 10−5

0.814 0 3.13× 10−5

1 4.21× 10−5

0.816 0 0.98× 10−6

1 1.17× 10−5

for a single fixed code, all the odd 𝑑𝑦 values induce exactly
the same error probability, and all the even 𝑑𝑦 values induce
exactly the same error probability. Thus we only need to
perform the simulation for the two cases 𝑑𝑦 = 0 and 𝑑𝑦 = 1.

The performance of these codes is shown in Fig. 6, where
the code length is again 2 × 105, and source sequences of
length 108 are generated by the given joint probability without
removing the atypical blocks. Results of the same code for
both 𝑑𝑦 = 0 and 𝑑𝑦 = 1 are shown in Table I, for three
different codes with rates 0.812, 0.814, 0.816, respectively.
It can be seen that for each code the error probability is
consistent between the two 𝑑𝑦 delay values, implying the
effectiveness of this coding step in the asynchronous setting.

C. Overall Code Performance

We are now ready to evaluate the overall code performance
in the A-SW setting. It is clear that by using variable-length
codes, the first coding step in the source splitting scheme
can achieve zero error with a negligible rate increase over
𝐻(𝑋) compared to the latter two steps, and thus we shall
omit the error probability and assume the rate is simply 𝐻(𝑋)
in the first step when calculating the overall rates and error
probability.

The block length 𝑛 is fixed at 3 × 105 for all simulation
in this subsection and as such the length of code used in the
third step is in fact (1− 𝑝)𝑛. Each source sequence of length
3×108 is generated, and the error probability is averaged over

TABLE II
OVERALL CODE PERFORMANCE OPERATING UNDER DIFFERENT 𝑑𝑦 FOR,

𝑝 = 1/2, 𝑝 = 1/3 AND 𝑝 = 2/3, RESPECTIVELY.

Encoding rates in step 1, 2, 3 𝑑𝑦 BER
0.5, 0.812, 0.311 (𝑝 = 1/2) 0 3.61× 10−5

1 3.21× 10−5

0.5, 0.814, 0.311 (𝑝 = 1/2) 0 1.72× 10−5

1 2.26× 10−5

0.5, 0.816, 0.311 (𝑝 = 1/2) 0 6.41× 10−6

1 7.35× 10−6

0.33, 0.8902, 0.412 (𝑝 = 1/3) 0 9.79× 10−6

1 1.00× 10−5

2 1.01× 10−5

0.67, 0.746, 0.208 (𝑝 = 2/3) 0 2.81× 10−6

1 4.83× 10−6

2 2.87× 10−6

both 𝑋 and 𝑌 sequences, and thus the BER may be smaller
than the corresponding ones shown in Table. I.

For 𝑝 = 1
2 , in order to drive the overall error probability

smaller, we choose a slightly larger rate in the third coding step
than the ones given in Section IV-A. We again assume 𝑑𝑥 = 0,
and recall for this case we only need to test the cases 𝑑𝑦 = 0
and 𝑑𝑦 = 1. Using the same design method we also find codes
for the rate pairs associated with time sharing parameter 𝑝 = 1

3
and 𝑝 = 2

3 , respectively. The resulting performances of these
codes are summarized in Table III, where we again assumed
𝑑𝑥 = 0. The degree distributions in the second encoding step
(rate 0.8902) and the third encoding step (rate 0.6185) for the
case 𝑝 = 1

3 are:

𝜆(𝑥) = 0.480869𝑥+ 0.206888𝑥2 + 0.010614𝑥3

+ 0.070857𝑥4 + 0.094407𝑥5 + 0.136366𝑥14

𝜌(𝑥) = 0.75𝑥2 + 0.25𝑥3.

and

𝜆(𝑥) = 0.213124𝑥+ 0.170764𝑥2 + 0.06𝑥3

+ 0.06𝑥4 + 0.053352𝑥5 + 0.039944𝑥6

+ 0.4𝑥7 + 0.45𝑥8 + 0.317816𝑥19

𝜌(𝑥) = 𝑥6.

The degree distributions in the second encoding step (rate
0.746) and the third encoding step (rate 0.623) for the case
𝑝 = 2

3 are respectively:

𝜆(𝑥) = 0.356665𝑥+ 0.248526𝑥2 + 0.028𝑥3

+ 0.027575𝑥4 + 0.173207𝑥5 + 0.028611𝑥6

+ 0.072795𝑥15 + 0.064621𝑥16

𝜌(𝑥) = 0.7𝑥3 + 0.3𝑥4.

and

𝜆(𝑥) = 0.212855𝑥+ 0.167764𝑥2 + 0.057𝑥3

+ 0.057𝑥4 + 0.050621𝑥5 + 0.042944𝑥6

+ 0.43𝑥7 + 0.48𝑥8 + 0.320816𝑥19

𝜌(𝑥) = 𝑥6.

To quantify the coding efficiency without the asynchronous
requirement, we include the performances for 𝑑𝑦 = 0 in Table
II. The desired rate pair on the dominant face of the Slepian-
Wolf region is shown together with the actual code rate pair
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TABLE III
RESULTS IN TERMS OF DISTANCE TO THE SLEPIAN-WOLF LIMIT.

𝑝 Target rates Actual rates Gap BER
1
3

(0.7195, 0.8551) (0.7457, 0.8902) 0.044 6.88× 10−6

1
2

(0.7896, 0.7850) (0.8108, 0.8162) 0.038 9.96× 10−6

2
3

(0.8597, 0.7148) (0.8743, 0.7460) 0.034 3.50× 10−6

(𝑅1, 𝑅2) from the design in Table III. The average BER is
kept below 10−5 and the gap is measured in terms of the
Euclidean distance. These results are roughly on the same
order as the best known designs [23] for symmetric sources
to achieve general S-SW rate pairs, where by using IRA code
with block length 105, a gap of 0.039 to the Slepian-Wolf
limit is reported. Thus the design proposed in this work can
achieve satisfactory performance in the S-SW setting, even it
is in fact designed for the more general A-SW setting.

V. CONCLUSION

In this paper we introduced a new information-theoretic
scheme based on source splitting for the asynchronous
Slepian-Wolf problem. Combined with the source-channel
correspondence result, the proposed LDPC code design leads
to promising performance which is validated by simulations.
The advantage of the proposed method is that it does not
require common randomness and super-letter construction, and
it can utilize existing code design results for the corner points
of S-SW problem.

APPENDIX

In this appendix, we prove the sufficiency of linear codes in
the A-SW setting. Since the sufficiency for the first and third
steps is well known, we only need to focus on the second
step, more precisely as follows: encoding a length-𝑛 source
𝑌 sequence, where 𝑘 = 𝑛𝑝 out of 𝑛 of the corresponding 𝑋
side information samples are available at the decoder, whose
positions (the non-erased pattern within a block due to shifts
of a given 𝑇 (𝑡)) are unknown to the encoder, but known to
the decoder. We have the following theorem.

Theorem 1: There exists a sequence of linear codes with
rate approaching 𝑝𝐻(𝑌 ∣𝑋) + (1 − 𝑝)𝐻(𝑌 ), indexed by the
code length 𝑛, with uniformly diminishing error probability
for the above problem of source coding with partial decoder
side information for all cyclic shifts.

We prove this theorem using the method of types [5], and
particularly the techniques in [24]. The type of a sequence
𝑥𝑛 ∈ 𝒳𝑛 is the distribution 𝑃𝑋 on 𝒳 by

𝑃𝑋(𝑎) ≜ 1

𝑛
𝑁(𝑎∣𝑥𝑛) for every 𝑎 ∈ 𝒳 ,

where 𝑁(𝑎∣𝑥𝑛) is the number of occurrences of symbol 𝑎
in the sequence 𝑥𝑛. Denote the set of types for length-𝑛
sequences in the alphabet 𝒳 as 𝒫𝑛(𝒳 ). The set of length-𝑛
sequences of type 𝑃 will be denoted as 𝒯 𝑛

𝑃 . Similar concepts
can be defined for joint types, marginal types and conditional
types, but are omitted here for brevity. We need the following
elementary results in [5].

Lemma 1: The number of different types of sequences in
𝒳𝑛 is less than (𝑛+ 1)∣𝒳 ∣, i.e., ∣𝒫𝑛(𝒳 )∣ ≤ (𝑛+ 1)∣𝒳 ∣ .

Lemma 2: For any type 𝑃𝑋 of sequences in 𝒳𝑛, ∣𝒯 𝑛
𝑃𝑋

∣ ≤
2𝑛𝐻(𝑃𝑋 ). Similarly, for any conditional type 𝑃𝑌 ∣𝑋 of se-
quences in 𝒴𝑛, ∣𝒯 𝑛

𝑃𝑌 ∣𝑋 (𝑥𝑛)∣ ≤ 2𝑛𝐻(𝑃𝑌 ∣𝑋) for any 𝑥𝑛 of the
consistent type. Here we use the notation 𝐻(𝑃𝑌 ∣𝑋) to denote
the conditional entropy of the given joint type.

Let 𝑄 be an arbitrary distribution on 𝒳 and 𝑄𝑛 be the cor-
responding product distribution on 𝒳𝑛. We have the following
simple identity [24],

𝑄𝑛(𝑥𝑛) = 2−𝑛(𝐷(𝑃𝑋∥𝑄)+𝐻(𝑃𝑋 )) (12)

for any 𝑃𝑋 ∈ 𝒫𝑛(𝒳 ) and 𝑥𝑛 ∈ 𝒯 𝑛
𝑃𝑋

.
Proof of Theorem 1: Consider the source sequence 𝑌 𝑛

and the side information 𝑋𝑘. Divide 𝑌 𝑛 into two parts with
length 𝑘 and 𝑛− 𝑘, respectively, the first of which is aligned
with the known side information sequence 𝑋𝑘. We associate
the first part with a generic random variable 𝑌1 and the second
part with a generic random variable 𝑌2. It is understood that
the sequence associated with 𝑌1 is of length 𝑘 while the
sequence associated with 𝑌2 is of length 𝑛− 𝑘.

Let us consider constructing linear encoding function 𝑓(⋅)
using an 𝑛× 𝑙 parity check matrix with entries independently
and uniformly selected from 𝒴 , where 𝒴 is assumed to be a
finite field. For each joint type pair

(𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

) ∈ (𝒫𝑘(𝒴 × 𝒴 × 𝒳 ),𝒫𝑛−𝑘(𝒴 × 𝒴)), (13)

we also write the marginal type associated with (𝑌1, 𝑋)
as 𝑃𝑌1𝑋 , and write the marginal type associated with 𝑌2

also as 𝑃𝑌2 . The basic idea is to investigate the probability
that the decoder decodes incorrectly some pair of sequences
(𝑦𝑘1 , 𝑦

𝑛−𝑘
2 ), when the original pair of sequences observed is

in fact (𝑦𝑘1 , 𝑦
𝑛−𝑘
2 ), by analyzing their joint types.

For each joint type pair in (13), let 𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

)

denote the number of sequences (𝑦𝑘1 , 𝑥
𝑘, 𝑦𝑛−𝑘

2 ) with
(𝑦𝑘1 , 𝑥

𝑘) ∈ 𝒯 𝑘
𝑃𝑌1𝑋

and 𝑦𝑛−𝑘
2 ∈ 𝒯 𝑛−𝑘

𝑃𝑌2
, such that for some

(𝑦𝑘1 , 𝑦
𝑛−𝑘
2 ) ∕= (𝑦𝑘1 , 𝑦

𝑛−𝑘
2 ) with (𝑦𝑘1 , 𝑦

𝑘
1 , 𝑥

𝑘) ∈ 𝒯 𝑘
𝑃𝑌1𝑌1𝑋

and (𝑦𝑛−𝑘
2 , 𝑦𝑛−𝑘

2 ) ∈ 𝒯 𝑛−𝑘
𝑃𝑌2𝑌2

, and furthermore, the relation

𝑓(𝑦𝑘1𝑦
𝑛−𝑘
2 ) = 𝑓(𝑦𝑘1𝑦

𝑛−𝑘
2 ) holds. Due to the random construc-

tion of the linear function 𝑓(⋅), it is straightforward to see that
for two distinct sequences, we have

Pr[𝑓(𝑦𝑘1𝑦
𝑛−𝑘
2 ) = 𝑓(𝑦𝑘1𝑦

𝑛−𝑘
2 )] = ∣𝒴∣−𝑙. (14)

It follows that for any joint type pair in (13), we have

𝔼𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

)

(𝑎)

≤ ∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣2𝑘𝐻(𝑃𝑌1 ∣𝑌1𝑋)2(𝑛−𝑘)𝐻(𝑃𝑌2 ∣𝑌2
)∣𝒴∣−𝑙

(𝑏)

≤ ∣∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣2𝑘𝐻(𝑃𝑌1 ∣𝑋 ) × 2(𝑛−𝑘)𝐻(𝑃𝑌2
)∣𝒴∣−𝑙, (15)

where in (a) we have used Lemma 2, and (b) is due to condi-
tioning reduces entropy. By applying Markov’s inequality and
defining 𝑅 = 𝑙

𝑛 log ∣𝒴∣, we have

Pr

{
𝑁𝑓 (𝑃𝑌1𝑌1𝑋

, 𝑃𝑌2𝑌2
) ≥

∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣2−𝑛[𝑅− 𝑘
𝑛𝐻(𝑃𝑌1 ∣𝑋)−𝑛−𝑘

𝑛 𝐻(𝑃𝑌2
)−𝛿𝑛]

}

≤ 2−𝑛𝛿𝑛 . (16)
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As afore-mentioned, there are at most a total of 𝑛 side
information erasure patterns (within the cyclic group), and the
number of types is upper-bounded by (𝑘 + 1)∣𝒳 ∣∣𝒴∣2(𝑛− 𝑘 +
1)∣𝒴∣2 by applying Lemma 1, and thus the probability of the
event 𝐸0, that for some type pair and some side information
erasure pattern the condition in the brace of (16) is satisfied,
is bounded by

Pr(𝐸0) ≤ 𝑛(𝑘 + 1)∣𝒳 ∣∣𝒴∣2(𝑛− 𝑘 + 1)∣𝒴∣22−𝑛𝛿𝑛 , (17)

which is strictly less than one for sufficiently large 𝑛, by
choosing 𝛿𝑛 appropriately such 𝛿𝑛 → 0 as 𝑛 → ∞; such a
sequence of 𝛿𝑛 indeed exists by the 𝛿-convention in [5] (p. 34).
It is thus seen that there exists 𝑓(⋅) such that for sufficiently
large 𝑛

𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

)

≤ ∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣2−𝑛[𝑅− 𝑘
𝑛𝐻(𝑃𝑌1 ∣𝑋)−𝑛−𝑘

𝑛 𝐻(𝑃𝑌2
)−𝛿𝑛], (18)

for all joint type pairs in (13) and all possible erasure patterns.
By observing

𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

) ≤ ∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣, (19)

we may write without loss of generality that

𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

)

≤ ∣𝒯 𝑘
𝑃𝑌1𝑋

∣∣𝒯 𝑛−𝑘
𝑃𝑌2

∣2−𝑛∣𝑅− 𝑘
𝑛𝐻(𝑃𝑌1∣𝑋 )−𝑛−𝑘

𝑛 𝐻(𝑃𝑌2
)−𝛿𝑛∣+ , (20)

where ∣𝑥∣+ ≜ max(𝑥, 0).
We shall use the linear code 𝑓(⋅) with the above property

(20) as the encoding function. The decoder now chooses
(𝑦𝑘1 , 𝑦

𝑛−𝑘
2 ) such that 𝑘

𝑛𝐻(𝑃𝑌1∣𝑋)+ 𝑛−𝑘
𝑛 𝐻(𝑃𝑌2

) is minimized.
The decoding error probability can be bounded as

𝑃𝑒

(𝑎)

≤
∑

𝑁𝑓 (𝑃𝑌1𝑌1𝑋
, 𝑃𝑌2𝑌2

)2−𝑘[𝐷(𝑃𝑌1𝑋∥𝑄𝑌 𝑋 )+𝐻(𝑃𝑌1𝑋 )]

× 2−(𝑛−𝑘)[𝐷(𝑃𝑌2∥𝑄𝑌 )+𝐻(𝑃𝑌2 )]

(𝑏)

≤
∑

2−𝑛∣𝑅− 𝑘
𝑛𝐻(𝑃𝑌1 ∣𝑋)−𝑛−𝑘

𝑛 𝐻(𝑃𝑌2
)−𝛿𝑛∣+

× 2−𝑘𝐷(𝑃𝑌1𝑋∥𝑄𝑌 𝑋 )2−(𝑛−𝑘)𝐷(𝑃𝑌2∥𝑄𝑌 )

(𝑐)

≤ (𝑘 + 1)∣𝒳 ∣∣𝒴∣2(𝑛− 𝑘 + 1)∣𝒴∣22−𝑛𝐸1 , (21)

where (a) is by (12) and by taking summation over joint type
pairs in (13) such that

𝑘

𝑛
𝐻(𝑃𝑌1∣𝑋) +

𝑛− 𝑘

𝑛
𝐻(𝑃𝑌2

)

≤ 𝑘

𝑛
𝐻(𝑃𝑌1∣𝑋) +

𝑛− 𝑘

𝑛
𝐻(𝑃𝑌2), (22)

because only this case may lead to a decoding error; in (b)
we used (20) and Lemma 2; in (c) we define

𝐸1 =min

[ ∣∣∣∣𝑅− 𝑘

𝑛
𝐻(𝑃𝑌1∣𝑋)− 𝑛− 𝑘

𝑛
𝐻(𝑃𝑌2

)− 𝛿𝑛

∣∣∣∣
+

+
𝑘

𝑛
𝐷(𝑃𝑌1𝑋∥𝑄𝑌𝑋) +

𝑛− 𝑘

𝑛
𝐷(𝑃𝑌2∥𝑄𝑌 )

]
,

and the minimization is over the joint type pairs in (13) such
that (22) holds. By choosing 𝑅 such that

𝑅 >
𝑘

𝑛
𝐻(𝑌 ∣𝑋) +

𝑛− 𝑘

𝑛
𝐻(𝑌 ), (23)

it is clear that 𝐸1 is bounded below from zero when 𝑛 is
sufficiently large, which completes the proof.
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