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Practical Multiple Description Schemes

MD Scalar/Vector Quantization: Vaishampayan et al.
¢ Index Assignment ¢ Lattice/Sublattice

Entropy-Coded Dithered Lattice Quantizers (ECDQs): Frank-
Dayan & Zamir 02.

¢ Amenable to Analysis

Correlating Transforms: Orchard et al. 97, Pradhan & Ram-
chandran 00, Govyal & Kovacevic 0O1.

¢ Vector Sources



EGC* Region

I(X;U0;), 1=1,2,
I(X;U1) + I(X;Uz) + I(Uz; Uz X).
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Successive Quantization
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Dominant Face: R1 + Ry =I(X;U1)+I1(X;Up) + I(Uq; Up|X).

Vi: R =I1(X;Uy), Ry = I(X,Uy; Up).
Vo: Ry = I(X,U»;U1), Ry = I(X; Up).



Quantization Splitting

For any rate pair (R, R») on the dominant face, there exists
a random variable U} with (X,U;) — Uy — U} such that

Rl — I(X7Uéle)7
Ry = I(X;U%)+ I(X,Uy; Us|U).

Quantization Order: U5 — Uy — Us.

o If U} is independent of Us, then
Ry = I(X;U1), R2=1I(X,U1;U2),
which are the coordinates of Vj.
o If U, = Us, then
Ry = I(X,U2,U1), R2=1I(X,U2),
which are the coordinates of V5.



Gaussian MD Rate-Distortion Region

Let

Uy X + 1o + 11,

U2 - X + TO + T27
where (Tl,Tg),A To, X are zero-mean, jointly Gaussian and independent, and E(T1T2) =
—O0T 075 Let X;, = E(X|UZ) = o;U; (Z = 1,2), and X3 = E(X|U1,U2) = ﬁlUl —|—ﬂ2U2. Set
E(X — X;)?=D;, i=1,2,3, then
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With these o—% (=0,1,2), it is straightforward to verify that

1 o2
I(X;U;) = Elogﬁ i=1,2,

I(X;Uy)+ I(X;Uz) + I(U; Uz X)

1 o2 1
= Zlog=X4+Z1lo

2 gD3+2 g

(0% — D3)?

5
(0% - D)2 — | /(6% — D1)(@% — D2) - /(D1 — D2)(Dz — Da)]

6



The Correlation of Quantization Errors

We may view U; and U, as two different quantization of X.

Ui = X +To+ 1,
UQ — X+TO+T27

E[(U1 — X) (U2 — X)]

E[(To + T1)(To + 12)]

2
O'TO — 01,07,

. Ds3o% B ( Dio% B D3o% ) ( Dyo% B D3o% )
0§—D3 0)2(—D1 a%—Dg, 0§—D2 a%—D3
#*= 0.

It is hard to design two quantizers with quantization errors cor-
related in a desired manner.



Successive Quantization and GS Orthogonalization

GS Orthogonalization on (X,Uq,U>).

By = X,
B; = U; —E(U:|X)=U; - X,
U —E(U1|X,U1) = Uy — a1 X — axUj.
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Successive Quantization for Vj.

Ry = I(X,Up) =1(X,;, X + By),

R2 — I(X7 U].l UQ) — I(E(UQ|X7 U]_), UQ)
I(a1X + asU1;a1X + asU7 + By).



Graph Representation of Successive Quantization
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Quantization Splitting and GS Orthogonalization

UL = Up + T.

GS Orthogonalization on (X,U5,Uy).

By = X,
By = Uy —E(U5X) =Ub— X,
By = U; —E(U1|X,UL) =Uj — b1 X — boUA.

Quantization Splitting.

Ry = I(X,U5 Uy) = I(E(U1|X,U5); Uy)
= I(b1X + boUb; b1 X + boUb + Bo),
Ry, = I(X;Ub)+ I(X,Uy; Us|Ub)

I(X; X + By) + I(X,Uq; Us|Ub).
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GS Orthogonalization on (U5, X, Uy, Us)

EO — Ué?
By = Uy —E(U1|Bg) —E(U1|B1) = Uy — baBg — b5 By,
B3 = Uy —E(Uz|Bg) — E(Uz|B1) — E(Uz|B2)

Us — bgBg — by By — bgBo.

I(X,Uq; Up|U5)
I(b3Bg + B1,b4Bg + bsB1 + B2; bgBo + b7B1 + bgB2 + B3|Bp)
I(B1,bsB1 + Bo;b7B1 + bgBo + B3)
I(b7B1 + bgBo; b7B1 + bgB2 + B3).
Note: b7§1 +b8E2 = (b7—b5b8)X—|—b8U1 + (b3b5b8—b3b7—b4b8)Ué.
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Graph Representation of Quantization Splitting
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Entropy-Coded Dithered Lattice Quantization
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Qn(X+7Z) — ~ X4+ N.

R = H(Qn(X + Z)Z) = I(X;Y) = h(Y) — h(N).
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Simulate GS Orthogonalization by Sequential
(Dithered) Quantization

S
|

X1,
Xo —a1Xq,
I = X3 —azXy1 —azXo,

~
|—\
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Let Z, have the same variance as I;, t = 1,2,.---. Construct the
following sequential (dithered) quantization system.

Y1 — X17

Xo = Qa1 X1+ 21) — 71,

X3 = Qu(axX1 + a3Xo + 7o) — Zp,

(X1, Xo,---,) and (X1, X»o,---) have the same covariance matrix.
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Successive Quantization — Additive Noise
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Successive Quantization — ECDQ

a1

ECDQ11 (% X

16



Quantization Splitting — Additive Noise

17



Quantization Splitting — ECDQ
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Property and Performance

Achieve the whole Gaussian MD rate-distortion region as the
dimension of the (optimal) lattice quantizers becomes large.

For general smooth sources, the performance no worse than
that for an i.i.d. Gaussian source with the same variance.

Asymptotically optimal at high resolution for general smooth
sources.

Universal in the sense that it only needs the information of the
first and second order statistics of the source.

For the scalar case, the central and side distortion product is
2.596 dB away from the information theoretic distortion product;
2.5 dB if timesharing of vertices is used.
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Conclusion

A Framework for Practical MD Quantization Systems
¢ Successive Quantization (Splitting) — Ordering
o GS Orthogonalization — Sufficient Statistics

o ECDQ — Practical Implementation

Generalization to the n-Channel Case (Venkataramani et al.
03, Pradhan et al. 04).

o Successive Quantization (Splitting) ¢ Contra-polymatroid ¢ Duality

MMSE Estimation and Lattice Coding/Quantization (Erez &
Zamir 04). Shannon meets Wiener (Forney 03,04).
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