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Capacity-Achieving Private Information Retrieval
Codes With Optimal Message Size

and Upload Cost
Chao Tian , Senior Member, IEEE, Hua Sun , Member, IEEE, and Jun Chen , Senior Member, IEEE

Abstract— We propose a new capacity-achieving code for the
private information retrieval (PIR) problem, and show that
it has the minimum message size (being one less than the
number of servers) and the minimum upload cost (being roughly
linear in the number of messages) among a general class of
capacity-achieving codes, and in particular, among all capacity-
achieving linear codes. Different from existing code constructions,
the proposed code is asymmetric, and this asymmetry appears
to be the key factor leading to the optimal message size and the
optimal upload cost. The converse results on the message size and
the upload cost are obtained by an analysis of the information
theoretic proof of the PIR capacity, from which a set of critical
properties of any capacity-achieving code in the code class of
interest is extracted. The symmetry structure of the PIR problem
is then analyzed, which allows us to construct symmetric codes
from asymmetric ones, yielding a meaningful bridge between the
proposed code and existing ones in the literature.

Index Terms— Capacity, private information retrieval.

I. INTRODUCTION

THE private information retrieval (PIR) problem addresses
the following scenario. A total of K messages, each of

L bits (or L symbols in some finite alphabet), are replicated
at N servers. A user wishes to retrieve one of the messages
without revealing the identity of the desired message to any
individual server. To retrieve this message, the user generates
one query for each server and each server will return an
answer to the user, which depends on the stored messages and
the received query. To ensure that each server learns nothing
about which message is being retrieved in the information
theoretic sense, each query must be marginally independent of
the desired message index. The PIR problem admits a trivial
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solution, where the user simply requests all the messages.
However, downloading everything obviously incurs too much
communication cost, and PIR systems should be designed to
communicate as efficiently as possible between the user and
the servers.

In PIR systems, the most important measure of communi-
cation efficiency is the retrieval rate, defined as the number
of message information bits that can be retrieved per bit of
downloaded data from the servers. The maximum value of
retrieval rate of a PIR system is referred to as its capacity, and
the problem of characterizing the capacity is of fundamental
importance in this setting. This problem was recently settled
in [1] where the capacity was found to be

C =
�

1 + 1

N
+ 1

N2 + . . .+ 1

N K−1

�−1

. (1)

Other notable efforts and generalizations on the PIR problem
in the coding and information theory literature can be found
in, e.g., [2]–[22].

In the previous works where the PIR capacity is concerned,
such as [1]–[4], [16]–[18], it is usually assumed that the
message length L is sufficiently large (L is allowed to go
to infinity). As a consequence, the corresponding code con-
structions in the literature are usually built by recursively
layering message symbols and parity symbols using symmetry
relations, resulting in codes that can only be applied on very
long messages. The number of symbols in each message
that a code can be applied on is sometimes referred to as
the sub-packetization factor of the code. A smaller message
length (sub-packetization factor) means that the code is more
versatile, has less constraints, and may lead to more efficient
implementation in practice. Another design factor that is of
practical importance is the possible number of queries that
each server needs to accommodate, i.e., the cardinalities of
the query sets. Small cardinalities of the query sets imply that,
firstly, the amount of information that needs to be sent to the
servers (often referred to as the upload cost) is small during
the query operation, and secondly, the servers only need to
compute a small set of functions, both of which lead to simpler
and more efficient system implementation.

In this work, we consider the construction of capacity-
achieving PIR codes, and the contribution is three-fold.

1) Firstly, we propose a novel capacity-achieving PIR code
construction, which has a small message size of (N − 1)
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bits and a low upload cost of N(K − 1) log2 N bits.
The coding alphabet of the proposed code can in fact be
chosen to be any finite group or finite field, and particu-
larly, to be the binary field which results in a binary linear
code. Different from existing code constructions, the code
proposed in this work is asymmetric, and this asymmetry
appears to be the key to the significant reductions in
the message size and the upload cost compared to other
capacity-achieving codes.

2) Secondly, through a novel and delicate analysis of the
converse proof of the PIR capacity, we identify a set of
critical properties for a class of capacity-achieving codes
on abelian groups, which we refer to as decomposable
codes. Based on these properties we further derive novel
converses for the message size and the upload cost.
These converse bounds match the corresponding values
in the proposed code, thus establishing the optimality of
the proposed code construction in terms of the message
size and the upload cost within the corresponding code
classes, in particular, among capacity-achieving (either
scalar or vector) linear codes.

3) Last but not least, the relation between symmetric PIR
codes and asymmetric PIR codes is analyzed in details.
The symmetry in this problem setting in fact includes
three different components, namely symmetry in server
indices, symmetry in file indices, and symmetry in the
query answers. The analysis reveals certain fundamental
structures in the problem setting that were largely over-
looked in the existing literature. Using these symmetry
relations, we show that the proposed code (in fact any
asymmetric code) can be used to build more symmetric
PIR codes, which offers a bridge between the proposed
code and the existing code constructions.

It should be noted that efforts on the PIR problem in
the theoretical computer science community focus on an
alternative formulation where the message length L is assumed
to be small and fixed, usually a single bit, but the number
of messages and the number of servers are allowed to grow
asymptotically [23]. In this setting, the overall communica-
tion cost can be viewed as consisting of upload cost and
download cost, the latter of which is inversely proportional
to the retrieval rate, and they can be traded off between
each other. In fact, there exists a complex relation among
the three quantities of the message size, the upload cost, and
the download cost. For example, for the solution of retrieving
everything, the upload cost is 0 as nothing needs to be sent to
the servers (i.e., there is no randomness in the queries) and the
download cost is K L as all messages are retrieved, and the
message size can be L = 1 bit each. Characterizing even
the sum cost of upload and download for the case L = 1 in
the original theoretical computer science formulation appears
to be intractable, and instead order-wise bounds have been
investigated; there have been considerable efforts and many
significant results after the ground-breaking work of [23]; see,
e.g., [24]–[29]. Against this general backdrop, our result can
be viewed as the first to precisely determine the relation among
the message size, the upload cost, and the download cost, for
the extreme point when the download cost is minimized.

The rest of the paper is organized as follows. Section II
provides the problem definition and the necessary notation.
Section III gives the proposed PIR code construction. The
converse results on the minimum message size and the mini-
mum upload cost are given in Section IV, and the symmetry
relations are discussed in Section V. Finally, Section VI
concludes the paper.

II. MODEL AND PRELIMINARIES

In this section, we provide a formal problem definition,
as well as the necessary notation for subsequent discussions.
A slightly different indexing method is chosen in this work:
instead of the more conventional indexing of starting at 1,
the indexing here starts at 0. This does not make any essential
difference in the problem and the solution, however it will
lead to notional simplicity when we present the new code
construction.

A. System Model

The private information retrieval model can be formally
described as follows. There are a total of N servers, each
storing a copy of K messages, denoted as W0,W1, . . . ,WK−1,
respectively. A user wishes to retrieve a message Wk , k ∈
{0, 1, . . . , K − 1}, however at the same time wishes to keep
the identity of the message being retrieved as a secret to
any one of the servers. For this purpose, the user, using a
random input F as the key, chooses a set of queries, Q0:N−1 =
(Q0, Q1, . . . , QN−1), one per server, and sends the queries
to the servers. Server-n responds with an answer An , which
depends on the messages stored at the server and the received
query. Using all the answers A0:N−1 = (A0, A1, . . . , AN−1)
from all the servers, together with the values of F and
k, the user then reconstructs Wk . The privacy requirement
stipulates that at each server, the probability distributions on
the allowed queries are identical for all the messages, thus the
server cannot learn any information regarding which message
is being requested.

We now give a more mathematically precise description of
the problem. Denote the set of possible queries for server-n
as Qn , and denote its cardinality as |Qn|. The cardinality of
a set A will be similarly denoted as |A| in the rest of the
paper. Assume that the random key F is uniformly distributed
on a certain finite set F . Moreover, a message Wk consists of
L symbols, each symbol belonging to a finite alphabet X ; in
particular, for messages in computer systems, we usually use
X = {0, 1}. The messages are mutually independent, each of
which is uniformly distributed on X L . We further allow the
query answers to be represented as a variable-length vector,
whose elements are in the finite alphabet Y , though our code
construction will eventually only use Y = X .

Definition 1. An N-server private information retrieval (PIR)
code for K messages, each of L-symbols in the alphabet X ,
consists of

1) N query functions:

φn : {0, 1, . . . , K − 1} × F → Qn,

n ∈ {0, , 1, ..., N − 1}, (2)
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i.e., the user chooses the query Q[k]
n = φn(k,F) for

server-n, using the index of the desired message and the
random key F;

2) N answer length functions:

�n : Qn → {0, 1, 2, . . .}, n ∈ {0, 1, ..., N − 1}, (3)

i.e., the length of the answer at each server, a non-
negative integer, is a deterministic function of the query,
but not the particular realization of the messages;

3) N answer functions:

ϕn : Qn × X K L → Y�n , n ∈ {0, 1, ..., N − 1}, (4)

where �n = �n(qn) with qn ∈ Qn being the (random)
query for server-n, Y is the coded symbol alphabet, and
in the sequel we shall write the query answer as A[k]

n �
ϕn(Q

[k]
n ,W0:K−1) when the message index k is relevant;

4) A reconstruction function using the answers from the
servers together with the desired message index and the
random key:

ψ :
N−1�
n=0

Y�n × {0, 1, ..., K − 1} × F → X L , (5)

i.e., Ŵk = ψ(A[k]
0:N−1, k,F) is the retrieved message.

These functions should satisfy the following two requirements:

1) Correctness: For any k ∈ {0, 1, ..., K − 1}, Ŵk = Wk.
2) Privacy: For every k, k � ∈ {0, 1, ..., K − 1}, n ∈

{0, 1, ..., N − 1}, and q ∈ Qn,

Pr(Q[k]
n = q) = Pr(Q[k�]

n = q). (6)

The correctness condition here requires that the recon-
structed message as a random variable is the same as the
requested message, and it thus inherently requires that for any
realization of F, the equality must hold. It is in fact without
loss of generality to restrict F and Qn’s to be certain finite sets
of integers, however, we allow them to be more general sets,
which will facilitate describing more concisely the proposed
PIR code construction.

It is also worth noting that the alphabet Y in the problem
definition may be an abstract finite set, with no further
structure assigned to it. However, for any such a finite set,
we can establish a bijective mapping between Y and the set
{0, 1, . . . , |Y|−1}. By further enforcing an operation between
any two elements in the latter set (for example, modulo |Y|
addition), the set Y can also be assigned an operation through
homomorphism. In other words, any abstract set Y can always
be viewed as a finite group, however requiring Y to be a finite
group in the problem definition is unnecessary.

B. Two General Code Classes

We next define precisely the code classes in which the
optimality of our proposed code construction is established.
These definitions are technical, and the readers may wish
to skip them at the initial read and simply consider the
more restricted code class of vector linear codes on a finite
field, without materially jeopardizing understanding the code

construction in Section III. These two definitions only become
important in Section IV when the optimality of the proposed
code construction is established.

Definition 2. A PIR code is called decomposable, if Y is a
finite abelian group, and for each fixed n ∈ {0, 1, . . . , N −
1} and q ∈ Qn, the answer function ϕn(q,W0:K−1) can be
written in the form

ϕn(q,W0:K−1)

=
�
ϕ
(q)
n,0(W0:K−1), ϕ

(q)
n,1(W0:K−1), . . . , ϕ

(q)
n,�n−1(W0:K−1)

�
,

(7)

where

ϕ
(q)
n,i (W0:K−1)

= ϕ
(q)

n,i,0(W0)⊕ ϕ
(q)
n,i,1(W1)⊕ . . .⊕ ϕ

(q)

n,i,K−1(WK−1),

i ∈ {0, 1, . . . , �n − 1}, (8)

where ⊕ represents addition in the finite group Y , and each
ϕ
(q)
n,i,k is a mapping X L → Y .

The terminology “decomposable” comes from (8) which
restricts each coded symbol to be a summation (in the abelian
group) of the component functions on the individual messages.
Let us consider an example where the two messages, each of a
single symbol, are in certain ring (Y,⊕,⊗), and the resulting
answer for n = q = 0 is

ϕ0(0, (W0,W1))

= (ϕ
(0)
0,0(W0,W1), ϕ

(0)
0,1(W0,W1), ϕ

(0)
0,2(W0,W1))

= �
(W0 ⊗ W0)⊕ α, (W0 ⊗ W0)⊕ (W1 ⊗ W1)⊕ α,

(W1 ⊗ W1)⊕ α
�
,

where α is an element of the ring. This code belongs to the
code class of decomposable codes, but it is clearly not linear.
Note that in the component function ϕ(0)0,1(W0,W1), we have

ϕ
(0)
0,1(W0,W1) = ϕ

(0)

0,1,0(W0)⊕ ϕ
(0)
0,1,1(W1)

= (W0 ⊗ W0)⊕ ((W1 ⊗ W1)⊕ α).

Definition 3. If a decomposable PIR code has the property
that any component function ϕ(q)n,i,k in (8) either satisfies the
condition			
w ∈ X L : ϕ(q)n,i,k (w) = g

�			
=

			
w ∈ X L : ϕ(q)n,i,k (w) = g��			 , ∀g, g� ∈ Y, (9)

or it maps everything to the same value, i.e.,

ϕ
(q)
n,i,k(w) = ϕ

(q)
n,i,k(w

�), ∀w,w� ∈ X L , (10)

then the PIR code is called uniformly decomposable.

A uniformly decomposable PIR code has the property that
the decomposed message mappings ϕ

(q)
n,i,k will preserve a

uniform probability distribution on the coded symbol alphabet,
unless the induced random variable is in fact deterministic.
The notion of decomposable codes considerably generalizes
the notion of linear codes. In particular, linear codes on finite
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fields are uniformly decomposable, and linear codes defined
on modules over a ring [30], [31] are decomposable (and
some are uniformly decomposable); it also naturally includes
codes defined on cosets of a binary lattice and some nonlinear
codes. In Section IV, we establish general outer bounds for
decomposable codes, which imply that the proposed code is
optimal in the corresponding code classes, and particularly,
it is optimal among all linear codes.

Decomposable codes can be simply represented as

ϕn(q,W0:K−1) = W0:K−1 · G(q)
n , (11)

where W0:K−1 is viewed as a length-K vector whose compo-
nents are in the alphabet X L , and G(q)

n is a matrix of dimension
K × �n whose elements G(q)

n,i,k are functions X L → Y with

the “·” operation between Wk and the matrix element G(q)
n,i,k

defined as

Wk · G(q)
n,i,k � ϕ

(q)
n,i,k (Wk). (12)

Consider another example (a uniformly decomposable code)
where K = 3, L = 1, and the answer for query q = 0 for
server-0 is

ϕ0(q = 0,W[0:2]) = ϕ
(0)
0,0(W0,W1,W2) = W0 � W2, (13)

where X = Y is the finite group {0, 1, 2, 3} with ⊕ and �
being the modulo-4 addition and subtraction. Then we have

ϕ0(q = 0,W[0:2])
= ϕ

(0)
0,0,0(W0)⊕ ϕ

(0)
0,0,1(W1)⊕ ϕ

(0)
0,0,2(W2)

= (W0)⊕ (0)⊕ (�W2)

= [W0,W1,W2] · G(0)
0

= [W0,W1,W2]
⎡
⎣ 1

0
−1

⎤
⎦ . (14)

In the matrix representation, G(0)
0 = [1, 0,−1]t , where 1

stands for the identity function, 0 for the all zero function,
and −1 for the negation function.

For linear codes defined on a finite field X , the function
ϕ
(q)
n,i,k (Wk) is the inner product between the length-L message

vector Wk , and a fixed length-L coding coefficient vector in
the same finite field. In this case, W0:K−1 can be alternatively
written as a length-K L vector in the alphabet X , and the
matrix G(q)

n can be further expanded as a K L × �n matrix
whose elements are also in X , and the finite field addition
and multiplication will be used in the matrix multiplication.
Such a matrix G(q)

n is in fact simply the familiar generator
matrix of (vector) linear codes [32].

It should be noted that most converse results on linear
codes in the literature have been established by deriving
relations among the ranks of the coding matrices, whereas
our converse proof in Section IV is information-theoretic in
nature. The benefit of our approach is that it allows us to derive
converse bounds for the general class of codes in a single
framework.

C. Performance Metrics

The performance of an N-server PIR code can be measured
using the following three quantities:

1) The retrieval rate

R � L log2 |X |
log2 |Y| �N−1

n=0 E(�n)
, (15)

which is the number of bits of desired message informa-
tion that can be privately retrieved per bit of downloaded
data. This quantity should be maximized, because higher
rate implies fewer number of bits to be downloaded when
retrieving a message. It was shown in [1] that the retrieval
rate is upper-bounded by the PIR capacity C , i.e., R ≤ C ,
which is a function of (N, K ) given in (1).

2) The message size L log2 |X |, which is the number of
bits to represent each individual message. This quantity
should also be minimized, because PIR schemes for a
larger message size can be constructed by concatenating
multiple schemes for a smaller message size, but not
vice versa. Therefore, in practical applications, a smaller
message size implies a more versatile code design;
similar considerations of reducing the sub-packetization
factor also exist for the regenerating code problem, e.g.,
[33]–[37], and the coded caching problem, e.g.,
[38]–[40]. Note that we refer to the parameter L as the
message length, while the definition of the message size
also takes into account the alphabet size |X |.

3) The upload cost

N−1�
n=0

log2 |Qn|, (16)

which is the number of bits required to send the queries
to the servers. This quantity should be minimized for an
efficient PIR code, since a smaller upload cost implies
less user-to-server communication, and simpler server
functions as mentioned earlier.

The code construction we shall propose in this work is
optimal in the following senses:

1) It is capacity-achieving R = C , i.e., the retrieval rate is
optimal;

2) It has the smallest, thus optimal, message size among all
capacity-achieving uniformly decomposable codes;

3) It has the smallest, thus optimal, upload cost among all
capacity-achieving decomposable codes.

III. A NEW CAPACITY-ACHIEVING PIR CODE

In this section, we provide the details of the proposed
codes. Before presenting the code construction under general
parameters, we provide a motivating example for the case of
(N, K ) = (2, 2).

A. A Motivating Example (N, K ) = (2, 2)

Let us consider two different codes for the (N, K ) = (2, 2)
case, both of which are capacity-achieving.

1) A simple but new code is as given in Table I, where
0 in the transmission means no symbol is transmitted.
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TABLE I

ANSWERS FOR MESSAGE A AND B WHEN (N, K ) = (2, 2)
IN A SIMPLE NEW CODE

Here the two messages are A = (a) and B = (b), each
of which has only 1 symbol. The random key is binary,
uniformly distributed in the key set F = {0, 1}. It can be
seen that the expected download cost is 0.5 + 1 = 1.5,
and thus the rate is 2/3, which achieves the capacity.

2) In comparison, in the code constructed in [1], the two
messages A = (a1, a2, a3, a4) and B = (b1, b2, b3, b4)
each have 4 symbols. The random key set F is
the collection of permutation π(·), which is used to
select the one-to-one correspondence between {1, 2, 3, 4}
and {�,♦,♣,♥}. With this correspondence determined,
the code is as given in Table II. The download cost is 6
symbols, and the rate is thus 2/3.

It is observed that in the simple new code, the message
sizes for different queries are allowed to vary, while the code
constructed in [1] uses answers of the same length, regardless
of the key realization and the query.

B. The New PIR Code

The code we propose, which will be referred to as the
N-ary-indexed PIR code, has the following parameter:

L = N − 1. (17)

The query sets at the servers are defined as

Qn �
�

qn,0:K−1 ∈ {0, . . . , N − 1}K
				
�

K−1�
k=0

qn,k

�
N

= n

�
,

n ∈ {0, 1, . . . , N − 1}, (18)

where (·)N means the modulo N operation, and for conve-
nience we have written (qn,0, qn,1, . . . , qn,K−1) as qn,0:K−1.
In other words, the queries are length-K vectors, whose
elements are in the set {0, 1, . . . , N − 1}; the query set for
server-n is all such vectors whose elements sum up to n under
modulo N . It is easy to see that

|Qn | = N K−1, n ∈ {0, 1, . . . , N − 1}, (19)

since the first K − 1 digits of the query,
i.e., (qn,0, qn,1, . . . , qn,K−2), can take any value in the
set {0, 1, . . . , N − 1}K−1, however, for a fixed server-n,
the last digit is then uniquely determined in the set Qn .

The sample space of the random key is defined as F =
{0, 1, . . . , N − 1}K−1, and thus the random key F can be
written as

F = (F0,F1, . . . ,FK−2), (20)

where Fk ∈ {0, 1, . . . , N − 1}, k = 0, 1, . . . , K − 2. Each
message Wk , k ∈ {0, 1, . . . , K − 1}, is a length-L vector
and thus by pre-pending a dummy variable Wk,0 � 0, can
be written as

Wk = (Wk,0,Wk,1, . . . ,Wk,N−1), (21)

where (Wk,1, . . . ,Wk,N−1) is the true information payload
of the message Wk . Without loss of generality, we shall
assume X = {0, 1, · · · , |X | − 1}, which, together with the
modulo addition operation ⊕, forms a finite group (X ,⊕).
This includes the particularly attractive choice of X = {0, 1},
where each symbol is a bit and the group addition is simply
binary XOR, and in this case, the binary group can also be
viewed as the binary field.

We next provide the precise forms of the four coding
functions with the parameter and the relevant sets defined
above, which constitute the proposed code:

1) The query function φn for n ∈ {0, 1, . . . , N − 1} is

Q[k]
n = φn(k,F)

= �
F0,F1,Fk−1,

�
n − F∗

k

�
N ,Fk, . . . ,FK−2

�
,

(22)

where F∗
k �

��K−2
i=0 Fi

�
N

. In other words, all digits
except the k-th digit in the query vector are copied from
F, while the k-th digit is set to match the unique value in
the query set at this server. This query can be equivalently
written as Q[k]

n,0:K−1 since it is a length-K vector.
2) The answer length function �n for n ∈ {0, 1, . . . , N−1} is

�n(n, q) =
�

0 (n, q) = (0, (0, 0, . . . , 0))

1 otherwise
. (23)

In other words, there is only one query at the 0-th server
that will induce �0 = 0, while all other queries at all
other servers will induce an answer of a single symbol.

3) The answer function ϕn for n ∈ {0, 1, . . . , N − 1} is

A[k]
n = ϕn(Q

[k]
n,0:K−1,W0:K−1)

= W0,Q[k]
n,0

⊕ W1,Q[k]
n,1

⊕ . . .⊕ WK−1,Q[k]
n,K−1

= Wk,(n−F∗
k)N

⊕ �
W0,F0⊕

. . .⊕ Wk−1,Fk−1 ⊕ Wk+1,Fk ⊕ . . .⊕ WK−1,FK−2

�
,

(24)

where ⊕ is the addition operation in the group X . For
conciseness, we shall define

F � W0,F0 ⊕ . . .⊕ Wk−1,Fk−1 ⊕ Wk+1,Fk ⊕
. . .⊕ WK−1,FK−2 . (25)

4) The answers from the servers are

A[k]
n = Wk,(n−F∗

k)N
⊕ F,

n ∈ {0, 1, . . . , N − 1}. (26)

The message Wk can now be reconstructed by computing

Wk,(n−F∗
k)N

= A[k]
n � A[k]

F∗
k

= A[k]
n � F,

n ∈ {0, 1, . . . , N − 1}, (27)

where � denotes subtraction in the abelian group X .
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TABLE II

ANSWERS FOR MESSAGE A AND B WHEN (N, K ) = (2, 2) IN [1]

TABLE III

THE QUERY SETS AND THE ANSWERS AT THE SERVERS

The correctness of this code is almost immediate, once we
observe that in (27), as n ranges in the set {0, 1, . . . , N − 1},
the corresponding value

�
n − F∗

k

�
N exhausts all possible val-

ues in {0, 1, . . . , N − 1} as well. This implies all the elements
Wk,n , n ∈ {0, 1, . . . , N − 1} are recovered, and thus the
message is correctly reconstructed. The privacy of the code
is also almost immediate, as for any k ∈ {0, 1, . . . , K − 1},
n ∈ {0, 1, . . . , N − 1}, and q ∈ Qn ,

Pr(Q[k]
n = q) = N−K+1, (28)

i.e., the queries are sent to a server with a uniform distribution
on the respective query set. Since at each server, each answer is
sent with probability N−K+1, and only one answer in server-0
has length 0 while all other answers have length 1, the rate of
the code is

R = N − 1

(1 − N−K+1)+ (N − 1)
= N − 1

N − N−K+1

=
�

1 + 1

N
+ 1

N2 + . . .+ 1

N K−1

�−1

= C, (29)

i.e., achieving the capacity. The upload cost is simply

N log2 N K−1 = N(K − 1) log2 N, (30)

which is roughly linear in K for any fixed N .
We summarize the properties of the proposed PIR code

construction in the following theorem.

Theorem 1. The N-ary-indexed PIR code is correct, privacy-
preserving, and capacity-achieving. Among all capacity-
achieving uniformly decomposable PIR codes, it has the
smallest message size, which is N − 1. Among all capacity-
achieving decomposable PIR codes, it has the lowest upload
cost, which is N(K − 1) log2 N.

The optimality in terms of the message size and the upload
cost is proved in Section IV. The capacity-achieving code
in [1] has a message size of L = N K and an upload cost

of N K log2(
N K !

N K−1 ! ), while the one in [21] has a message

size1 of L = N K−1 and an upload cost of N K log2(
N K−1 !
N K−2 ! ).

Therefore, the proposed code construction is able to provide
an exponential order of improvements over the existing ones
in the literature.

C. An Example for (N, K ) = (3, 3)

Here we use (N, K ) = (3, 3) to illustrate the general code
construction. The code will have L = N −1 = 2, and we shall
denote W0 = (a1, a2),W1 = (b1, b2),W2 = (c1, c2), where
all the elements are in the binary field {0, 1}. As described in
the general code construction, we extend these messages by
pre-pending one dummy element to each of them, denoted as
a0 = b0 = c0 = 0, to form

W0 = (a0, a1, a2),W1 = (b0, b1, b2),W2 = (c0, c1, c2).

(31)

In Table III, we provide the query set Qn at each server, as well
as the corresponding answers.

Let us consider the case where the random key is chosen to
be F = (0, 2), and the message being requested is W1, then
the three queries sent to the servers are

q0 = (0, 1, 2), q1 = (0, 2, 2), q2 = (0, 0, 2), (32)

i.e., the middle digit in the query is chosen to be the unique
value in each query set, and the other two digits are set

1The definition of retrieval rate (15) is given in terms of the inverse of the
expected number of downloaded symbols (over all random queries), which
is in line with the approach taken in [1]. In [21], an alternative definition
was adopted, where the retrieval rate was defined in terms of the inverse of
the maximum number of downloaded symbols (among all possible queries).
Under the alternative definition of [21], the minimum message size was shown
to be N K −1 for any capacity-achieving codes. In a sense, our result shows
that this subtle difference in the problem definition in fact induces a significant
difference in terms of the optimal message sizes.
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according to F = (0, 2). The answers are thus

A0 = a0 ⊕ b1 ⊕ c2 = b1 ⊕ c2,

A1 = a0 ⊕ b2 ⊕ c2 = b2 ⊕ c2,

A2 = a0 ⊕ b0 ⊕ c2 = c2. (33)

It is clear that b1 and b2 can be recovered from these answers
by subtracting A2 = c2 from A0 and A1. The code is
also privacy-preserving, since regardless of the message being
requested, a query element is being sent with probability 1/9.
The retrieval rate is also easy to compute as

R = 2
1
9 ∗ 2 + 8

9 ∗ 3
= 9

13
, (34)

which matches the capacity of this system.

Remark: The queries in each row of Table III are intention-
ally arranged to have the first two digits being the same, for
ease of inspection.

IV. LOWER BOUNDING THE MESSAGE SIZE

AND THE UPLOAD COST

The minimum upload cost and the minimum message size
are closely related to the retrieval rate of a PIR code. For
example, a naive PIR code where everything is downloaded
can have upload cost of 0, and message size of 1, however a
more efficient PIR code will need to induce a larger message
size and a higher upload cost. In this work, we consider
the minimum upload cost and the minimum message size
when the retrieval rate is maximized and when the codes are
decomposable, i.e., capacity-achieving decomposable codes.
We will show, through a delicate set of relations among the
coding function matrices G(q)

n ’s, that the capacity-achieving
requirement forces the PIR codes to have certain algebraic
structure, which can be utilized to derive the desired lower
bounds.

A. Properties of Capacity-Achieving Decomposable Codes

We first provide a detailed analysis of capacity-achieving
codes, from which three important properties are derived,
given in two lemmas. The analysis is a refinement of the
converse proof given in [1], however, with the emphasis on
the necessary conditions for optimal codes. A similar approach
was used in [41] to analyze optimal joint source-channel codes,
and in [43] to facilitate reverse-engineering code designs in
coded caching systems.

Lemma 1. For any PIR code, we have

I
�

W0:k−1,k+1:K−1; A[k]
0:N−1

			Wk ,F
�

≤ L(1/R − 1) log2 |X | , k ∈ {0, 1, . . . , K − 1}. (35)

Moreover, for any PIR code that the equality holds for all
k ∈ {0, 1, . . . , K −1} in (35), let q0:N−1 = (q0, q1, . . . , qN−1)
be a set of queries for which Pr(Q[k]

0:N−1 = q0:N−1) > 0 for
some k ∈ {0, 1, . . . , K − 1}, then the code must have

P1. Independence of the retrieved data: the N random vari-
ables A(q0)

0 , A(q1)
1 , . . . , A(qN−1)

N−1 are mutually independent,

where A(qn)
n is the answer from server-n when the query

Q[k]
n = qn.

The proof of this lemma is given in the appendix. The
property P1 is obtained by setting the inequality (35) to
equality, which forces the intermediate steps to also become
equality, and then extracting the independence implied by such
information theoretic equality.

Remark: For decomposable codes, we can further write�
A(q0)

0 , A(q1)
1 , . . . , A(qN−1)

N−1

�
=

�
W0:K−1 · G(q0)

0 ,W0:K−1 · G(q1)
1 ,

. . . ,W0:K−1 · G(qN−1)
N−1

�
. (36)

Also note that for linear codes, the independence rela-
tion given above implies that the columns of the matrices
G(q0)

0 ,G(q1)
1 , . . . ,G(qN−1)

N−1 are linearly independent.
Recall that for decomposable codes, the answer for a query

Qn = q at server-n can be written as W0:K−1 · G(q)
n , or more

concisely, sometimes represented by the coding function
matrix G(q)

n alone. The next lemma involves submatrices of
G(q)

n , with the rows corresponding to a subset of the messages
removed, say {Wi , i ∈ A}; we shall write such a submatrix as
G(q)

n|A. For example, if (N, K ) = (3, 3), and A = 1, then G(1)
1|1

is the submatrix of G(1)
1 with the middle row corresponding

to the message W1 removed.

Lemma 2. Let π : {0, 1, . . . , K − 1} → {0, 1, . . . , K − 1}
be a permutation function. For any PIR code, for any k ∈
{1, 2, . . . , K − 1},

N I
�

Wπ(k:K−1); A[π(k−1)]
0:N−1

			Wπ(0:k−1),F
�

≥ I
�

Wπ(k+1:K−1); A[π(k)]
0:N−1

			Wπ(0:k),F
�

+ L log2 |X |.
(37)

Moreover, for any decomposable code for which the equal-
ity holds for any k and π(·) in (37), let q0:N−1 =
(q0, q1, . . . , qN−1) be a set of queries for which Pr(Q[k]

0:N−1 =
q0:N−1) > 0 for the query of the message Wk, and
G(q0)

0 ,G(q1)
1 , . . . ,G(qN−1)

N−1 be the corresponding answer coding
matrices, then

P2. Identical information for the residuals: the N random
variables

W0:k−1,k+1:K−1 · G(q0)
0|k ,W0:k−1,k+1:K−1 · G(q1)

1|k ,

. . . ,W0:k−1,k+1:K−1 · G(qN−1)
N−1|k (38)

are deterministic of each other;
P3. Independence of the requested message signals: the ran-

dom variables

Wk · G(q0)
0|0:k−1,k+1:K−1,Wk · G(q1)

1|0:k−1,k+1:K−1,

. . . ,Wk · G(qN−1)
N−1|0:k−1,k+1:K−1 (39)

are independent.

The proof of this lemma can be found in the appendix.
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Remark: The property of decomposable codes was used in
the proof of Lemma 2, where the answers are decomposed
into separate components according to the messages Wk’s,
with which relations among these answers are derived. Such
decomposition does not apply on other code classes in general,
and thus the proof cannot be carried through directly using the
same argument.

Theorem 2. Any capacity-achieving decomposable PIR code
must have the properties P1-P3.

Proof: Let π : {0, 1, . . . , K − 1} → {0, 1, . . . , K − 1} be
a permutation. Starting from Lemma 1, we can write

L

R
− L ≥ I

�
Wπ(1:K−1); A[π(0)]

0:N−1

			Wπ(0),F
�

≥ L

N
+ 1

N
I
�

Wπ(2:K−1); A[π(1)]
0:N−1

			Wπ(0:1),F
�

≥ ...

≥ L

�
1

N
+ . . .+ 1

N K−1

�
, (40)

where all the other inequalities are by recursively applying
Lemma 2, and it follows that R ≤ C . For any decomposable
code that satisfies R = C , all the inequalities in Lemma 1
and Lemma 2 must be equality for any permutation π , and
according to the lemmas, such decomposable codes must have
properties P1-P3.

B. Minimum Message Size

We have the following theorem, which provides a lower
bound on the minimum message size for capacity-achieving
uniformly decomposable codes.

Theorem 3. The message size of any uniformly decomposable
capacity-achieving PIR code is greater than or equal to (N −
1) log2 |Y|; in particular, it must be greater than or equal to
(N − 1).

Remark: Clearly this implies that the standard linear codes
defined on finite fields are lower bounded by the same values.
Note also that the bound (N − 1) log2 |Y| is dependent on Y
but not X , which reflects the fact that the representation of
the message is of little fundamental importance because we
can always use an equivalent representation.

Proof: Let us consider a capacity-achieving uniformly
decomposable PIR code, and the request to retrieve the mes-
sage Wk . Recall property P2 which states that W0:k−1,k+1:K−1 ·
G(qn)

n|k , n ∈ {0, 1, . . . , N − 1}, are deterministic functions of
each other. There must be a set of queries q0:N−1 with non-
zero probability such that

H
�

W0:k−1,k+1:K−1 · G(qn)
n|k

�
�= 0,

n = {0, 1, . . . , N − 1}, (41)

because otherwise, all answers will have the form

W0:K−1 · G(qn)
n = Wk · G(qn)

n|0:k−1,k+1:K+1 ⊕�,

n = {0, 1, . . . , N − 1}, (42)

where � ∈ Y is a constant; this would imply that the answers
only involve the message Wk but not other messages, but such
answers clearly cannot be both private and correct.

With such a set of queries q0:N−1 that (41) holds, consider
property P3, which states that

Wk · G(q0)
0|0:k−1,k+1:K−1,Wk · G(q1)

1|0:k−1,k+1:K−1,

. . . ,Wk · G(qN−1)
N−1|0:k−1,k+1:K−1 (43)

are independent, and our aim is to show that no more than one
of their entropies can be zero. To see this, assume otherwise,
i.e., at least two of the entropies are zero. Without loss of
generality, let us assume that

H
�

Wk · G(q0)
0|0:k−1,k+1:K−1

�
= H

�
Wk · G(q1)

1|0:k−1,k+1:K−1

�
= 0, (44)

implying that both Wk · G(q0)
0|0:k−1,k+1:K−1 and Wk ·

G(q1)
1|0:k−1,k+1:K−1 in fact take a fixed value, independent of the

value of Wk . However, this further implies that the retrieved
messages from server-0 and server-1 are

W0:K−1 · G(q0)
0 =W0:k−1,k+1:K−1 · G(q0)

0|k ⊕�1,

W0:K−1 · G(q1)
1 =W0:k−1,k+1:K−1 · G(q1)

1|k ⊕�2, (45)

where �1 and �2 are two constants in the abelian group Y .
Because of property P2, the two random variables in (45) are
in fact deterministic of each other. However this contradicts
property P1 which states that the retrieved contents are inde-
pendent (recall that their entropies are not zero). Thus we can
conclude that at least N − 1 of the entropies of the terms in
(43) are not zero. Because the function ϕ(q)(n, i, k) induces a
uniform probability distribution on the coded symbol alphabet
Y (unless it takes a deterministic value), and moreover, by the
independence property of P3, we can now conclude that the
message size must be greater than or equal to (N −1) log2 |Y|.
Since any meaningful alphabet Y must satisfy |Y| ≥ 2,
the message size must be greater than or equal to N − 1.
The proof is thus complete.
Remark: The property of uniformly decomposable codes is
only invoked during the proof in the last step, which requires
the component functions to induce a uniform distribution on
the coded alphabet, unless it always takes a deterministic
value.

C. Minimum Upload Cost

Theorem 4. The upload cost of any capacity-achieving
decomposable PIR code is greater than or equal to
N(K − 1) log2 N.

We need the following notion of distinctness in the proof.

Definition 4. Two random variables A and B are
called information-theoretically distinct, or simply distinct,
if I (A; B) < max(H (A), H (B)).

According to this definition, if a random variable can be
obtained from another through an invertible transformation,
they are not information-theoretically distinct.



TIAN et al.: CAPACITY-ACHIEVING PRIVATE INFORMATION RETRIEVAL CODES 7621

Server 0 Server 1 Server 2 ... Server N − 1

V0,0,0,...,0, V0,1,0,...,0, V0,2,0,...,0, . . . V0,N−1,0,...,0 → W1

V1,N−1,0,...,0, V1,0,0,...,0, V1,1,0,...,0, . . . V1,N−2,0,...,0 → W1

. . . . . . . . . . . . . . . . . .
VN−1,1,0,...,0, VN−1,2,0,...,0, VN−1,3,0,...,0, . . . VN−1,0,0,...,0 → W1

(51)

Server 0 Server 1 Server 2 ... Server N − 1

. . . . . . . . . . . . . . . . . .
VN−1,2,N−1,...,0, VN−1,2,0,...,0, VN−1,2,1,...,0, . . . VN−1,2,N−2,...,0 → W2

. . . . . . . . . . . . . . . . . .
V1,1,N−2,...,0, V1,1,N−1,...,0, V1,1,0,...,0, . . . V1,1,N−3,...,0 → W2

. . . . . . . . . . . . . . . . . . .

(53)

Proof: We prove that for a capacity-achieving decompos-
able PIR code for N servers and K messages, the minimum
upload cost to each server is at least (K −1) log2 N , i.e., it is
a lower bound on log2 |Qn |, n ∈ {0, 1, . . . , N − 1}. To begin
the proof, we find a set of queries q0:N−1 for the message
W0, and assume that the answers have the property that the
interference signal (i.e., the part of the answer that is not the
requested message) is not null, i.e.,

H
�

W1:K−1 · G(qn)
n|0

�
�= 0, n = {0, 1, . . . , N − 1}, (46)

which always exists using the same argument as in Theorem 2;
c.f. (41). This implies that at least for one of the interference
signals k ∈ {1, 2, . . . , K − 1} we have

H
�

Wk · G(qn)
n|0:k−1,k+1:K−1

�
�= 0, n = {0, 1, . . . , N − 1},

(47)

due to property P2. Without loss of generality, let us assume it
is k = K −1. With this set of queries, following the argument
in Theorem 2, at most one of the entropies

H
�

W0 · G(qn)
n|1:K−1

�
, n = {0, 1, . . . , N − 1} (48)

can be zero. Again without loss of generality, assume it is
n = 0. We shall denote a particular answer from a server
as Va0,a1,...,aK−1 , the meaning of which will soon become
apparent.

Since the queries q0:N−1 are for the message W0,
the answers from the N servers, respectively,

V0,0,0,...,0, V1,0,0,...,0, . . . , VN−1,0,0,...,0 (49)

can be used to recover W0, and moreover, the W0 component
functions

W0 · G(qn)
n|1:K−1, n = {0, 1, . . . , N − 1} (50)

are all information-theoretically distinct by property P3,
and the fact that at most one of them can have zero
entropy. We indicate this distinctness by the subscript in the
answers (49) in the 0-th position.

Due to the privacy constraint, each answer in (49) can also
be used to reconstruct W1, together with some other answers,
i.e., as shown in (51) at the top of this page. In each row
of (51), the results produced by the component functions on

W0,2:N−1 in the answers are deterministic functions of each
other across different servers, due to property P2. Moreover,
for these answers, the component WK−1 must satisfy

H
�

WK−1 · G(qn)
n|0:K−2

�
�= 0, n = {0, 1, . . . , N − 1}, (52)

due to our assumption on (47) holding for k = K − 1. As a
consequence, in each row of (51), the component functions
W1 · G(q)

n|0,2:K−1 are again distinct. Note however, across rows
of (51), the component functions on W1 in the answers are
not necessarily distinct or identical. However, the component
functions W0:1 ·G(q)

n|2:K−1 of the answers in (51) are all distinct,
since they have distinct W0 component functions in different
rows, (i.e., for answers in different rows, the W0 component
functions are (50)), while for answers in the same row, the W1
component functions are distinct. Thus there are at least N
answers with distinct component functions W0:1 · G(q)

n|2:K−1 at
server-n, which are the answers with the sum of the indices
equal to n modulo N , given in the same column in (51).

Next consider each answer in (51), which can also be used
to recover W2 due to the privacy requirement. For example,
if we focus on the answers VN−1,2,0,...,0 and V1,1,0,...,0, which
are from server 1 and server 2, respectively, they can be
used to recover W2 with some other answers, as shown in
(53) at the top of this page. Again these answers are distinct
through a similar argument as before. Using this argument
on all the answers in (51) for the retrieval of W2, it can be
seen that across all the servers, there are at least N3 answers,
whose component functions W0:2 · G(q)

n|3:K−1 are all distinct,
and each server has at least N2 answers whose corresponding
component functions are distinct. We can continue this line of
argument for messages W3,W4, . . . ,WK−2, resulting in a total
of N K−1 answers at all the servers (N K−2 at each server) in
the form of

Va0,a1,...,aK−2,0, ak ∈ {0, 1, . . . , N − 1}, (54)

whose component functions W0:K−2 · G(q)
n|K−1 are distinct.

Next consider the reconstruction of the message WK−1, for
which we need to be more careful. In this case, we cannot
assume the interference signals in the retrieval are not null,
because WK−1 is now the requested message, and the condi-
tion (52) becomes insufficient; thus the component functions
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of WK−1 in the answers cannot be guaranteed to be all distinct
during a retrieval. However, notice that due to the distinctness
of the component functions W0:K−2 ·G(q)

n|K−1 in all the answers
in (54), at most one of these component functions can have
zero entropy, i.e., in these answers, there is at most one of
them satisfying,

H
�

W0:K−2 · G(q)
n|K−1

�
= 0. (55)

For all other answers that (55) does not hold, our previous
induction argument based on the distinctness of the signal
components still applies. For the one exception answer where
(55) holds, which we assume without of generality to be
V0,0,...,0, the answers to recover WK−1 can be labeled as

V0,0,...,0, V0,0,...,1, . . . , V0,0,...,N−1, (56)

which may not be all distinct since there may be more than
one item with zero entropy. However, since they are placed at
different servers, each one of them is distinct from all other
answers at the same server.

We have shown that at server-n, n ∈ {0, 1, . . . , N −1}, there
are at least N K−1 distinct answers Va0,a1,...,aK−1 in the form
of �

K−1�
k=0

ak

�
N

= n, (57)

implying |Qn| ≥ N K−1. Our proof is now complete.
Remark: Although Theorem 4 is stated in terms of the total
upload cost, in the proof, we have actually shown that the
upload cost at each individual server is greater than or equal
to (K − 1) log2 N .

V. SYMMETRY AND SYMMETRIZED CODES

The proposed code construction is able to achieve exponen-
tial improvements over the existing capacity-achieving PIR
codes in the literature, in terms of both the message size
and the upload cost. The question we wish to address in this
section is what the root cause is for these improvements. It is
clear that the existing codes in the literature, such as [1]–[4],
[16]–[18], are all symmetric, while our proposed code is not
symmetric. It is thus natural to suspect that this symmetry
vs. asymmetry relation is the root cause, however, in order to
better understand this issue, we have to identify and evaluate
carefully the symmetry relations in the problem.

Recall our discussion on the minimum upload cost, which
is related to |Qn|. For simplicity, we shall refer to the distinct
answers (or precisely, distinct answer functions) at a server as
the varieties of the answers at this server.2 This concept plays
an instrumental role in the subsequent discussion.

There are in fact three kinds of symmetry relations in this
problem setting:

1) Server-symmetry: obtained by permuting the servers;
2) Message-symmetry: obtained by permuting the messages;
3) Variety-symmetry: obtained by compositing the varieties

of answers.

2The term variety here should be distinguished from the algebraic variety
concept in algebraic geometry.

Among the three types of symmetry relations, the variety-
symmetry is the most interesting, and appears unique to the
PIR problem. Through this symmetry, it can be shown that
without loss of optimality on the retrieval rate, we can always
assume that the varieties are requested with a uniform distribu-
tion at any given server. These three symmetry components can
be operated in composition, and space sharing of all possible
permuted codes eventually can yield a highly symmetric code.
In this section we shall provide a precise characterization of
these three types of symmetry relations, and discuss several
consequences of these relations. Technically, this is accom-
plished by constructing a new set of coding functions, which
either by space-sharing over some permutations or some other
mechanism, will induce certain symmetry relation on the
coding rates and the probability distribution.

Central to these symmetry relations are the following ran-
dom variables

{W0,W1, . . . ,WK−1},
{A(0)0 , A(1)0 , . . . , A(|Q0|−1)

0 },
{A(0)1 , A(1)1 , . . . , A(|Q1|−1)

1 },
. . . ,

{A(0)N−1, A(1)N−1, . . . , A(|QN−1|−1)
N−1 }, (58)

where A(q)n is the answer at server-n for the query Qn = q .
Note that A(q)n is a deterministic function of the messages
W0:K−1; this should be distinguished from A[k]

n which is the
(randomized) answer for the request of the message Wk at
server-n, and not a deterministic function of the messages
W0:K−1.

The symmetrization techniques given this section should
not be viewed as design requirements stipulated by practical
system design considerations, but rather should be viewed as
theoretical tools to pinpoint the key difference between our
code construction and the existing ones, and perhaps to help
future investigations on the capacities of privacy-preserving
primitives, as they appear to be rather general.

A. Server-Symmetry

Let π(·) be a permutation function on the set {0, 1, . . . , N −
1}, which is the set of server indices. For any PIR code which
is specified by the four coding functions in Definition 1, a new
set of coding functions can be specified as

φ̂n = φπ(n), �̂n = �π(n), ϕ̂n = ϕπ(n),

n ∈ {0, 1, . . . , N − 1}, (59)

and

ψ̂(A0:N−1, k,F) = ψ(Aπ−1(0:N−1), k,F). (60)

Let us examine an example where N = 4, and let

π([0, 1, 2, 3]) = [3, 0, 1, 2]. (61)

Then we have

φ̂0 = φ3, φ̂1 = φ0, φ̂2 = φ1, φ̂3 = φ2, (62)
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that is, the query sent to server-0 in this new code is what was
sent to server-3, etc. Similarly,

�̂0 = �3, �̂1 = �0, �̂2 = �1, �̂3 = �2,

ϕ̂0 = ϕ3, ϕ̂1 = ϕ0, ϕ̂2 = ϕ1, ϕ̂3 = ϕ2, (63)

that is, the function to produce the answer (and the length of
the answer) at server-0 in the permuted code is what was used
at server-3 for the same query value, etc.; moreover, for the
reconstruction function

ψ̂(A0, A1, A2, A3, k,F) = ψ(A1, A2, A3, A0, k,F), (64)

that is, the reconstructed message Ŵk using random key F,
is in fact obtained by operating the original function on the
permuted answers, i.e., using the answer obtained from server-
0 in the place of what was for the answer from server-3, etc.

It is easy to see that this new set of coding functions is
indeed privacy-preserving and correct, since there is no essen-
tial change in the coding operations. A direct consequence of
the definition of the new code is reflected on the equivalence
of the induced random variables in the two codes as

{Ŵ0, Ŵ1, . . . , ŴK−1},
{ Â(0)0 , Â(1)0 , . . . , Â(|Q̂0|−1)

0 },
{ Â(0)1 , Â(1)1 , . . . , Â(|Q̂1|−1)

1 },
. . . , { Â(0)N−1, Â(1)N−1, . . . , Â(|Q̂N−1|−1)

N−1 }
= {W0,W1, . . . ,WK−1},
{A(0)π(0), A(1)π(0), . . . , A

(|Qπ(0)|−1)
π(0) },

{A(0)π(1), A(1)π(1), . . . , A
(|Qπ(1)|−1)
π(1) },

. . . , {A(0)π(N−1), A(1)π(N−1), . . . , A
(|Qπ(N−1)|−1)
π(N−1) }. (65)

Next consider the following code constructed through the
space-sharing technique using a base code. Let each message
consist of a total of N L symbols, and apply a permuted
version of the base code on each length-L sequence (and
over the K messages), which corresponds to one of the
cyclic permutations on {0, 1, . . . , N − 1}. This space-sharing
code is clearly privacy-preserving and correct, and it has the
property that |Q̂0| = |Q̂1| = . . . = |Q̂N−1| = �N−1

n=0 |Qn|,
i.e., the upload costs to all the servers are the same. Moreover,
the expected retrieval rates are also the same across all the
servers, i.e., E(�̂0) = E(�̂1) = . . . = E(�̂N−1).

We could also space share over longer messages of (N !)L
symbols each, where for each length-L sequence we apply
the permuted coding function corresponding to one of the N !
permutations on {0, 1, . . . , N − 1}. By leveraging (65), it is
also possible to obtain an invariance in terms of the joint
entropy values of the subsets of the random variables. Such
refined invariant relations are not necessary for this work,
however, similar relations have been shown to be important
when deriving information theoretic converse bounds [42],
[43] in other information systems.

It should be noted that although the expected numbers of
retrieved symbols are the same across the servers (and thus
the retrieval rates are the same per server), this does not

imply for each individual set of queries q0:N−1 with non-zero
probability, the numbers of symbols being retrieved are the
same as those for another set of queries q �

0:N−1. To achieve
such a fine level of invariance, we will need to invoke the
variety-symmetry, to be introduced in Section V-C.

B. Message-Symmetry

Let π(·) be a permutation function on the set {0, 1, . . . ,
K −1}, which is the set of message indices. For any PIR code
which is specified by the four coding functions in Definition 1,
a new set of coding functions can be specified as

φ̄n = φn, �̄n = �n, ϕ̄n(q,W0:K−1) = ϕn(q,Wπ(0:K−1)),

n ∈ {0, 1, . . . , N − 1}, (66)

and

ψ̄(A0:N−1, k,F) = ψ(A0:N−1, π
−1(k),F). (67)

Let us examine an example where K = 3 and let

π([0, 1, 2]) = [2, 0, 1]. (68)

Then we have for the functions ϕ̄n

ϕ̄n(q,W0,W1,W2) = ϕn(q,W2,W0,W1),

n ∈ {0, 1, . . . , N − 1}, (69)

that is, the message W0 in the new code serves the role of W1
in the original code, etc.

For the reconstruction functions

ψ̄(A0:N−1, 0,F) = ψ(A0:N−1, 1,F),

ψ̄(A0:N−1, 1,F) = ψ(A0:N−1, 2,F),

ψ̄(A0:N−1, 2,F) = ψ(A0:N−1, 0,F), (70)

that is, the message W0 is reconstructed in the same way as
that for W1 in the base code, etc.

This new set of coding functions is again privacy-preserving
and correct. A direct consequence of the definition of the
permuted code is reflected on the equivalence in the probability
distribution of the random variables

{W̄0, W̄1, . . . , W̄K−1},
{ Ā(0)0 , Ā(1)0 , . . . , Ā(|Q0|−1)

0 },
{ Ā(0)1 , Ā(1)1 , . . . , Ā(|Q1|−1)

1 }, . . . ,
. . . , { Ā(0)N−1, Ā(1)N−1, . . . , Ā(|QN−1|−1)

N−1 }
d= {Wπ−1(0),Wπ−1(1), . . . ,Wπ−1(K−1)},

{A(0)0 , A(1)0 , . . . , A(|Q0|−1)
0 },

{A(0)1 , A(1)1 , . . . , A(|Q1|−1)
1 },

. . . , {A(0)N−1, A(1)N−1, . . . , A(|QN−1|−1)
N−1 }, (71)

where
d= indicates equivalence in distribution, but not neces-

sarily identical.
Next consider the following code constructed through the

space-sharing technique using a base code. Let each message
consist of a total of (K !)L symbols, and apply a permuted
version of the base code on each length-L sequence (and
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across K messages), which corresponds to one of the possible
permutations on {0, 1, . . . , K − 1}. This space-sharing code
is clearly privacy-preserving and correct, however it does
not lead to any explicit symmetry relation on the coding
rates or the distribution on the queries. It does lead to more
subtle invariant relations on the entropies of the subsets of
the random variables, e.g., the joint entropy of a subset of
the answers and a subset of the messages is invariant to
which subset of messages is being involved. This symmetry
cannot produce the invariance on the individual varieties we
mentioned earlier.

C. Variety-Symmetry

The last symmetry we consider is produced by constructing
a different set of queries (and answer varieties) and a new
random key F̂ to retrieve the messages. The variety-symmetry
is constructed using a different mechanism than the previous
two types of symmetry relations.

Recall in the base code, the random key F is uniformly
distributed on the alphabet F . In the new code, the random
key is uniformly distributed on the following set

F̀ �
�

f0:|F |−1 ∈ F |F | :

f0:|F |−1 is a permutation of the elements of F
�
. (72)

It follows that |F̀ | = |F |!. The new code operates as follows.
The message has |F |L symbols, which is partitioned into |F |
length-L blocks. Suppose a particular random key realization
F̀ = f0:|F |−1 is generated for the new code. For index
i ∈ {0, 1, . . . , |F | − 1}, the corresponding i -th blocks of the
messages are encoded using the base code retrieval strategy
determined by the key value F = fi ∈ F .

This new code is clearly correct, and next we show that it is
also privacy-preserving. Recall for the request of the message
Wk , the query for server-n is a deterministic function of the
random key F = f in the base code. Because in the new code,
any valid key f0:|F |−1 is a permutation of all the elements in
F , the number of times that a particular query q ∈ Qn appears
in such a query sequence f0:|F |−1 at server-n is given by

κn,k(q) � |{ f ∈ F : φn(k, f ) = q}| . (73)

Because the base code is privacy-preserving, we have

κn(q) � κn,0(q) = κn,1(q) = . . . = κn,K−1(q),

n ∈ {0, 1, . . . , N − 1}, q ∈ Qn. (74)

The composition of any query q0:|F |−1 sent to server-n for
the request of the message Wk in this new code, which is a
vector of length |F |, is thus given exactly by (74), and the
only difference among the queries is the patterns that these
elements in Qn are arranged. Thus, the query set at server-n
is the constant composition set, i.e.,

Tn =
�

q0:|F |−1 ∈ Q|F |
n : the number of

appearances of any q ∈ Qn in q0:|F |−1 = κn(q)

�
. (75)

TABLE IV

ANSWERS FOR MESSAGE A AND B FOR (N, K ) = (2, 2) AFTER
VARIETY-SYMMETRIZATION

Due to the symmetry in F̀ and Tn , as well as the uniform dis-
tribution on F̀ , it is clear that the distribution of the query on
Tn is also uniform, regardless of the identity of the requested
message. Thus this new code is indeed privacy-preserving.
As a direct consequence of the construction, at each server, all
the answer varieties also have the same numbers of symbols.

D. Applying the Symmetrization Techniques

Let us revisit our example for (N, K ) = (2, 2) given in
Section III-A. To make a variety-symmetric code, we let each
message be 2 bits, denoted as A = (a1, a2), B = (b1, b2),
respectively. The total number of new varieties at each server
is |Q̀n| = 2!. This new code is illustrated in Table IV.
It can be seen that now at each server, the lengths of the
answers are indeed the same. We can further apply the server-
symmetrization technique, which will produce a code quite
similar to that proposed in [1] and illustrated in Table II.

We can apply the variety-symmetrization technique on our
proposed code with more general parameters. The message
size will increase by a factor of N K−1, resulting in a total
message size of N K−1(N − 1) in the new symmetrized code.
In [21], it was shown that if we insist that the total number
of retrieved symbols from all servers is the same for all
possible query combinations, then the minimum message size
is N K−1. Our proposed code in Section III-B has a much
smaller message size of N −1, but does not have this property,
which turns out to be rather restrictive. On the other hand,
the variety-symmetrized code based on our proposed code has
a slightly larger message size of N K−1(N−1) than the optimal
value in the restricted setting of [21]. This relatively small
increase appears to have stemmed from the decoupled design
strategy of applying the symmetrization technique on a base
code, instead of designing a symmetric code directly.

More generally, we can apply all three symmetrization
techniques on any asymmetric code (in any order) to obtain
a code that is highly symmetric without jeopardizing the
retrieval rate, but at the expense of the message size and the
upload cost. From this perspective, the reason behind the small
message size and upload cost of the proposed code is indeed
its asymmetric nature.

VI. CONCLUSION

We proposed a new capacity-achieving PIR code construc-
tion, which has the optimal message size and the optimal
upload cost. The key to the reduction of both factors, compared
to existing constructions, appears to be the asymmetry in the
proposed code. In order to prove converse bounds for the
optimal message size and the optimal upload cost, we extracted
certain critical structures in the converse proof of the PIR
capacity. The symmetry structure in the PIR problem is of
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interest in its own right, and we provided a careful analysis of
this structure, which can be used to symmetrize any PIR code
into its symmetric version.

Although in this work we have focused on the most
canonical setting of the private information retrieval problem,
the proposed code construction using asymmetric structure
can be extended to more general settings, such as maximum
distance separable code (MDS-coded) databases, for which
readers can refer to [44].

APPENDIX A
PROOF OF TECHNICAL LEMMAS

Proof: [Proof of Lemma 1] Without loss of generality, let
us consider k = 0. We start by writing the following chain of
inequalities:

I
�

W1:K−1; A[0]
0:N−1

			W0,F
�

(a)= I
�

W1:K−1; A[0]
0:N−1,W0

			F�
= I

�
W1:K−1; A[0]

0:N−1

			F�
+ I

�
W1:K−1; W0

			A[0]
0:N−1,F

�
(b)= I

�
W1:K−1; A[0]

0:N−1

			F�
= H

�
A[0]

0:N−1

			F�
− H

�
A[0]

0:N−1

			W1:K−1,F
�

= H
�

A[0]
0:N−1

			F�
− H

�
W0, A[0]

0:N−1

			W1:K−1,F
�

+ H
�

W0

			A[0]
0:N−1,W1:K−1,F

�
(c)= H

�
A[0]

0:N−1

			F�
− H (W0|W1:K−1,F)

(d)≤
�

L

R
− L

�
log2 |X |, (76)

where (a) is because the components of
(W0,W1, . . . ,WK−1,F) are mutually independent, (b)
and (c) are due to the retrieval correctness requirement
and the fact that A0:N−1 is a deterministic function of
(W0:K−1,F), and (d) is by the definition of the retrieval rate.

To see the independence condition P1, let us consider (d),
and we can write

H (A[0]
0:N−1|F)

=
�

q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)

· H
�

A[0]
0:N−1

			Q[0]
0:N−1 = q0:N−1

�
=

�
q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)

· H
�

A(q0)
0 , A(q1)

1 , . . . , A(qN−1)
N−1

�
(e)≤

�
q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)

N−1�
n=0

H
�

A(qn)
n

�

≤
�

q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)

N−1�
n=0

�n log2 |Y|

= log2 |Y|
N−1�
n=0

E(�n)

= L

R
log2 |X |. (77)

For the equality to hold, it is clear that (e) must be equality for
any q0:N−1 of non-zero probability, and thus the independence
condition P1 must hold for k = 0. However, by choosing a
permutation π on {0, 1, . . . , K − 1} such that π(k) = 0 and
using the same line of proof, it can be concluded that the
independence condition holds for all coding matrices of any
given requested message. The proof is thus complete.

Proof: [Proof of Lemma 2] Without loss of generality,
let us consider the identity permutation function π(k) = k.
We can start by writing the following chain of information
inequalities:

N I
�

Wk:K−1; A[k−1]
0:N−1

			W0:k−1,F
�

(a)≥
N−1�
n=0

I
�

Wk:K−1; A[k−1]
n

			W0:k−1,F
�

(b)=
N−1�
n=0

I
�

Wk:K−1; A[k]
n

			W0:k−1,F
�

(c)=
N−1�
n=0

H
�

A[k]
n

			W0:k−1,F
�

(d)≥
N−1�
n=0

H
�

A[k]
n

			W0:k−1,F, A[k]
0:n−1

�

=
N−1�
n=0

I
�

Wk:K−1; A[k]
n

			W0:k−1,F, A[k]
0:n−1

�

= I
�

Wk:K−1; A[k]
0:N−1

			W0:k−1,F
�

(e)= I
�

Wk:K−1; Wk, A[k]
0:N−1

			W0:k−1,F
�

= L log2 |X | + I
�

Wk+1:K−1; A[k]
0:N−1

			W0:k ,F
�
, (78)

where (c) is because the answers are deterministic functions of
the messages and the random key F, (e) is due to the retrieval
correctness requirement, and the equality (b) can be justified
as follows. We can write that

I
�

Wk:K−1; A[k−1]
n

			W0:k−1,F
�

= H
�

A[k−1]
n

			W0:k−1,F
�

− H
�

A[k−1]
n

			W0:K−1,F
�

= H
�

A[k−1]
n

			W0:k−1,F
�

( f )= H
�

A[k−1]
n

			W0:k−1, Q[k−1]
n

�
(g)= H

�
A[k]

n

			W0:k−1, Q[k]
n

�
(h)= H

�
A[k]

n

			W0:k−1,F
�

− H
�

A[k]
n

			W0:K−1,F
�

= I
�

Wk:K−1; A[k]
n

			W0:k−1,F
�
, (79)

where ( f ) is due to the Markov string (A[k]
n ,W0:K−1) ↔

Q[k]
n ↔ F, (g) is because of the privacy constraint, and (h)

is because of the afore-mentioned Markov string and the fact
that Q[k]

n is a deterministic function of F.
The inequalities (a) and (d) are due to the standard non-

negativity property of mutual information. However, the nec-
essary conditions stated in the lemma can be derived from
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0 = H
�

A[0]
0:N−1

			A[0]
n ,W0,F

�
=

�
q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)H

�
A[0]

0:N−1

			A[0]
n ,W0, Q[0]

0:N−1 = q0:N−1

�
(i)=

�
q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)H

�
W1:K−1 ·

�
G(q0)

0|0 ,G(q1)
1|0 , . . . ,G(qN−1)

N−1|0
� 				W1:K−1 · G(qn)

n|0 ,W0, Q[0]
0:N−1 = q0:N−1

�

( j )=
�

q0:N−1

Pr(Q[0]
0:N−1 = q0:N−1)H

�
W1:K−1 ·

�
G(q0)

0|0 ,G(q1)
1|0 , . . . ,G(qN−1)

N−1|0
� 				W1:K−1 · G(qn)

n|0
�
. (80)

0 = I

�
A[K−1]

N−1 ; A[K−1]
0:N−2

				W0:K−2, Q[K−1]
0:N−1 = q0:N−1

�

= I
�

WK−1 · G(qN−1)
N−1|0:K−2; WK−1 ·

�
G(q0)

0|0:K−2,G(q1)
1|0:K−2, . . . ,G(qN−2)

N−2|0:K−2

��
. (82)

these two inequalities. First consider when (a) is equality,
from which we have that any decomposable code must satisfy
the condition in (80), shown at the top of this page, where
in (i) we have utilized the fact that the component functions
W0 ·G(qn)

n|1:K−1 can be meaningfully subtracted from the answers
in the abelian group, and ( j) is because W0 is now independent
of everything else after the corresponding component functions
are eliminated in the answers, and the dependence on q0:N−1
is fully absorbed in the answer function matrix Gq0:N−1

n . This
implies that for any set of queries Q[0]

0:N−1 = q0:N−1 with a
non-zero probability,

H

�
W1:K−1 ·

�
G(q0)

0|0 ,G(q1)
1|0 , . . . ,G(qN−1)

N−1|0
� 				W1:K−1 · G(qn)

n|0
�

= 0, n ∈ {0, 1, . . . , N − 1}. (81)

This indeed implies that W1:K−1 · G(qn)
n|0 can determine any

W1:K−1 · G
(qn� )
n�|0 , for n, n� ∈ {0, 1, . . . , N − 1}. Since the

query can be other than for the message W0 (by taking a
different permutation π(·) in the lemma), it follows that the
deterministic property P2 indeed holds.

Next consider (d), particularly for k = K − 1 and
the summand for n = N − 1. For decomposable codes,
the inequality being equality implies (82), shown at the
top of this page, which further implies the independence
between the random variables WK−1 ·G(qN−1)

N−1|0:K−2 and WK−1 ·�
G(q0)

0|0:K−2,G(q0)
1|0:K−2, ·,G(qN−2)

N−2|0:K−2

�
. Since in the above argu-

ment, we can choose any value k in (d), and take any other
order in the summation on both sides of (d), indeed the
stated independence property P3 holds. The proof is now
complete.
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