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Gaussian Robust Sequential and Predictive Coding
Lin Song, Jun Chen, Member, IEEE, Jia Wang, and Tie Liu

Abstract—We introduce two new source coding problems:
robust sequential coding and robust predictive coding. For the
Gauss–Markov source model with the mean squared error distor-
tion measure, we characterize certain supporting hyperplanes of
the rate region of these two coding problems. Our investigation
also reveals an information-theoretic minimax theorem and the
associated extremal inequalities.

Index Terms—Extremal inequality, Gauss–Markov source, min-
imax theorem, predictive coding, saddle point, sequential coding.

I. INTRODUCTION

T HE sequential coding problem was first introduced by
Viswanathan and Berger in [1] (see also [2] for a closely

related problem). Due to its potential relevance to video coding
applications, this problem has received renewed interests in re-
cent years [3], [4]. In a sequential coding system, sources

, each representing a video frame, are encoded and
decoded in a causal manner, where Encoder has access to

, , and the decoder reconstructs
based on the outputs from the first encoders, .
If Encoder is only allowed to have access to as well as the
outputs from the first encoders (if ), then the resulting
problem is known as predictive coding. It is shown in [5] that
the rate regions of these two coding problems are identical if

form a Markov chain.1 Note that this
Markov chain condition is trivially satisfied when .
The existing coding schemes for sequential coding and pre-

dictive coding rely critically on the assumption that the decoder
has access to the first encoded frames (i.e., the outputs from the
first encoders) when reconstructing the th frame (i.e., ). As
a consequence, these schemes are vulnerable to the loss of en-
coded frames at the decoder end. Motivated by this observation,
we introduce a robust version of these two coding problems.
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1This result is also implied by [2, Th. 1].

Specifically, we require that the reconstruction of the th frame
has to meet a certain fidelity constraint even when the decoder
only has access to the output from the th encoder. This formula-
tion is also applicable to the scenario where the encoded frames
are to be decoded by two types of decoders: one has the capa-
bility of using multiple encoded frames to reconstruct a target
frame, while the other can only perform the reconstruction op-
eration based on a single encoded frame (due to storage or com-
plexity constraints).
The remainder of this paper is organized as follows. We state

our main results in Section II; these results provide a partial
characterization of the rate region of robust sequential coding
and robust predictive coding for the Gauss–Markov source
model under the mean squared error distortion constraint.
The proofs of these results are given in Sections III–V. It is
shown in Section VI that our main results can be viewed as a
manifestation of an information-theoretic minimax theorem.
Section VII contains an explicit characterization of the min-
imum sum rate for a special class of sources and distortion
constraints. We provide a detailed discussion of the proposed
robust predictive coding scheme in Section VIII and conclude
this paper in Section IX.
For any random object and random vector , we

define and .
Throughout this paper, the logarithm function is to base .

II. MAIN RESULTS

Consider sources with joint distribution
. Let be i.i.d. copies of
. Let be a distortion

measure, where and are, respectively, the source alphabet
(of ) and reconstruction alphabet, .

Definition 1: A rate vector is said to be
achievable with a sequential coding system subject to hierar-

chical distortion constraint and individual dis-

tortion constraint if for every , there exist
encoding functions , ,
and decoding functions , ,
and , , such that

(1)

(2)

where , , and
, , with ,
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Fig. 1. Robust sequential coding with hierarchical and individual distortion constraints.

. The rate region is the set of all the rate vec-
tors achievable with a sequential coding system subject to hi-
erarchical distortion constraint and individual distortion con-
straint .
A system diagram of robust sequential coding with hier-

archical and individual distortion constraints can be found in
Fig. 1.

Definition 2: A rate vector is said to be
achievable with a predictive coding system subject to hierar-

chical distortion constraint and individual dis-

tortion constraint if for every , there exist
encoding functions and

, , and decoding functions
, , and ,

, such that

(3)

(4)

where , , and
, , with and

, . The rate region
is the set of all the rate vectors achievable with a

predictive coding system subject to hierarchical distortion
constraint and individual distortion constraint .

A system diagram of robust predictive coding with hierar-
chical and individual distortion constraints can be found in
Fig. 2.
In this study, we focus on the special case where

form a Gauss–Markov chain. With no essential loss
of generality, we assume , ,
where are mutually independent zero-mean
Gaussian random variables with and ,

. Furthermore, we use the mean squared error as
the distortion measure, i.e., for all

and , . Note that in this setting,
there is no loss of optimality in assuming

, , and ,
. As a consequence, (1) and (3) can be rewritten as

For the same reason, (2) and (4) can be rewritten as

Without loss of generality, we assume ,
, and , . Since both

and are closed convex sets, it suffices to characterize
their supporting hyperplanes, i.e., to solve the following opti-
mization problems:

where with , . In view of
the fact that , we must have

(5)
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Fig. 2. Robust predictive coding with hierarchical and individual distortion constraints.

To state the main results of this paper, we need to define the
following function:

where and . Furthermore,
let

Theorem 1: For with

Theorem 2: For with , ,

Theorem 3: For with

The proofs of Theorems 1–3 are given in Sections III–V, re-
spectively. These theorems together with (5) lead to the fol-
lowing result, which provides a characterization of certain sup-
porting hyperplanes of and ; in particular,
setting gives the minimum sum rate of
these two rate regions.
Theorem 4: For with

For the special case , one can verify that
and have the following explicit expression (when

):



3638 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013

where

Our formulation of robust sequential coding and predictive
coding is partly inspired by the classic multiple description
problem (see, e.g., [6] and [7]). In fact, the problem treated
in [7] can be viewed as a degenerate case of our setting with

, . It will be seen that such a con-
nection allows us to leverage the techniques developed for the
multiple description problem and, albeit somewhat implicitly,
provides conceptual guidelines for our analysis. However, a
straightforward application of the existing techniques turns out
to be insufficient for handling these new problems. Indeed, we
need to establish a new extremal inequality for the converse
argument (see Section III); the achievability scheme (see
Section IV) and the saddle point analysis (see Section V) are
also more delicate than their counterparts in [7]. Moreover, the
new coding problems possess certain features not found in the
multiple description problem; for example, the special case
studied in Section VII has no natural counterpart in multiple
description coding. Finally and most importantly, the analysis
of the new coding problems enables us to extract an informa-
tion-theoretic minimax theorem which is of interest in its own
right (see Section VI).

III. PROOF OF THEOREM 1

The following extremal inequality is the main technical in-
gredient in the proof of Theorem 1. It can be viewed as a gen-
eralization of [7, Lemma 1]. The proof is given in Appendix A.
Theorem 5: Let be a zero-mean Gaussian random

vector with i.i.d. entries of positive variance , ,
where . Let , , , , and be arbitrary real
numbers satisfying and . Then, for any
random vector and random object , jointly independent
of , such that ,

Now we proceed to prove Theorem 1. The proof relies on
Theorem 5 as well as the techniques developed in [7]–[9]. Given

, it suffices to show that

(6)

for all with , .
By Definition 1, for every , there exist encoding

functions , , such that

where , . One can readily
verify that

(7)

Let be a zero-mean Gaussian random vector with i.i.d. en-
tries of positive variance , ; moreover,
we assume is independent of ,

. Note that

(8)

Continuing from (7)

(9)
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(10)

where (9) is due to (8). Note that

(11)

(12)

where (11) follows from Lemma 9 in Appendix A. Moreover,
we have

(13)

where (13) follows from Theorem 5. Note that

(14)

(15)

where (14) is due to Lemma 8 in Appendix A. In view of Lemma
7 in Appendix A and the fact that

, we have

(16)

Substituting (12), (13), (15), (16) into (10) yields

(17)

Replacing with , , in (17)
gives

where . Note that there is a one-to-one
correspondence between and ,

. Let be a minimizer to

where , and tends to zero as . Without loss
of generality, we assume that converges to some as

(otherwise, one can take a converging subsequence of
, ). We have

This completes the proof of (6).

IV. PROOF OF THEOREM 2

It suffices to prove that

(18)

for all with , .
The maximization problem in (18) can be decomposed into

(19)
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The maximizers to (19) are characterized by the following result
[7, Lemma 2].
Lemma 1: For , define

1) If , then and
the maximizers to (19) are given by

otherwise
(20)

where

is the unique solution to the following equation:

for , . The maximizers
, , given in (20) are monotonically

increasing continuous functions of and monotonically
decreasing continuous functions of ; furthermore, the
monotonicity is strict when .

2) If , then
and the maximizers to (19) are given

by

(21)

The proof of the following lemma is essentially the same as
that of [7, Lemma 3] and thus is omitted.

Lemma 2: There exist and
with

such that

The following lemma provides an inner bound of .
A sketch of the proof is given in Appendix B.
Lemma 3: Let be jointly Gaussian with

such that
1) form a Markov chain, and

form a Markov
chain, ,

2) , , and ,
.

Then, for any satisfying

For the purpose of proving Theorem 2, it suffices to construct
satisfying the conditions in Lemma 3 such that

(22)

where and are specified in Lemma 2. Define

(23)

otherwise

(24)

otherwise

(25)

(26)

where
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We assume , . Let be jointly Gaussian
with such that

and form a Markov chain. Now let
be jointly Gaussian with such

that

and form a
Markov chain, , where

It is clear that the covariance matrix of is positive
semidefinite; moreover, one can readily verify that the co-
variance matrix of is positive semidefinite,

. As a consequence, the joint distribution of
and the constructed (as well as the

induced ) is well defined. It can be verified that

Therefore, the constructed satisfies the conditions
in Lemma 3. Note that

Moreover, we have

(27)

(28)

where (27) is due to the fact that
form a Markov chain and that is a (linear)

function of , and (28) is by direct evaluation
(see (26) for the definition of , ). Now one
can readily prove (22) by invoking Lemma 1. This completes
the proof of Theorem 2.

V. PROOF OF THEOREM 3

Without loss of generality, we assume
throughout this proof. Note that the minimization problem

can be decomposed into

(29)

(30)

(31)

The minimizers to (29)–(31) are characterized by the following
lemmas. The proofs of Lemmas 4 and 6 are straightforward and
thus omitted. The proof of Lemma 5 is given in Appendix C.
Lemma 4: The minimizer to (29) is given by .
Lemma 5: For , define

(32)

(33)

(34)

The minimizers to (30) are given by

(35)

where

(36)

Lemma 6: The minimizer to (31) is given by

(37)

Now we proceed to prove Theorem 3. The key step is to show
the existence of a saddle point with the property that

(38)

(39)

First consider the case where , , and
, . Let and . Define

Note that is a continuous function of
for , , and



3642 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 59, NO. 6, JUNE 2013

if for some ; moreover, it is
clear from the proof of Theorem 2 that

Therefore, the minimum of over
with , , is

achieved at some satisfying ,

. Let be a maximizer to

where . We shall prove that satisfies
(38) (note that (39) is automatically satisfied).
In view of Lemmas 4 and 6, and our choice of ,

we just need to show that satisfies the opti-
mality condition (35) (with , ) in
Lemma 5. Let us assume that (35) is violated by for some
. Note that and are determined by according

to (20). To stress this dependence, we denote and by
and , respectively. It is clear that at least one

of and is not zero since otherwise (35) is
satisfied by . Now, let be the minimizer determined
by and according to (35).We shall move
toward (and change , , and
correspondingly) while keeping ( ) and (
and ) fixed. It is shown in Appendix D that varies
continuously with if at least one of and
is not zero. As a consequence, we can keep moving until

at which one of the following cases happens:
1) ;
2) .
Clearly, satisfies (35) with and

. Define with and
for . Moreover, define with

, , and for and
. If , then

(40)

If , then

(41)

Note that both (40) and (41) contradict with the fact that
achieves the minimum of

over with , .
Therefore, indeed satisfies (38) and thus is a saddle
point.

Now consider the general case where ,
, and , . The preceding ar-

gument shows the existence of such that

where , and tends to one as . By taking
a converging subsequence of , , with its limit
denoted by , one can readily verify that satisfies
(38) and (39).
Let be an arbitrary saddle point satisfying (38) and

(39). It can be shown2 that
S1) , ;
S2) there exists some such that for and

for (we set if all the entries of are
zero, and set if all the entries of are positive).

To complete the proof of Theorem 3, it suffices to show that

(42)

(43)

Clearly

(44)

where (with ,
) tends to as , and is a maximizer

to

Without loss of generality, we assume that converges to
some as (otherwise one can take a converging sub-
sequence of , ). Note that

(45)
where the first equality is due to S1) and the fact that

, as a function of , is continuous at
if for all . Combining (44) and (45) proves (42).

Now construct with ,

, such that converges to as , and

(46)

where (46) is void if . Let be the minimizer to

2Note that we must have . If for some , then it follows
by (20) and (21) that ; on the other hand, according to (35) and (37),
we must have , which leads to a contradiction. In view of (35) and
the fact that , we must have if . One can verify that

, as a function of , is continuous at if for all
, but not necessarily so if for some . It will be seen that S1) and S2)
allow us to circumvent such points of discontinuity.
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It is easy to verify that converges to as
, where for and for .

Clearly

which proves (43).

VI. MINIMAX THEOREM

We shall show that our main results in Section II can be
viewed as a manifestation of a certain information-theoretic
minimax theorem. It will be seen that this minimax theorem
can be used to explain why there is no loss of optimality in
choosing the auxiliary random vectors to be
Gaussian in the proof of Theorem 1.
Let be defined as in Section II. Define

where . We assume that
form a Markov chain, . As a

consequence, in order to determine , it suffices to specify the
conditional distribution of given , ,
as well as the conditional distribution of given

. Let denote the set of conditional distributions
. Moreover, let denote the set of con-

ditional distributions of given
such that , , ,

, and form
a Markov chain, , where ,

, and , .
Theorem 6:

The following extremal inequality is needed for the proof of
Theorem 6. Its proof can be found in Appendix E.
Theorem 7: Let be a zero-mean Gaussian random

vector with i.i.d. entries of positive variance , .
Let be an arbitrary positive real number. Then, for any
random vector and random object , jointly independent
of , such that , we have

Now we proceed to prove Theorem 6. It suffices to show that

(47)

Let be a zero-mean Gaussian random vector with i.i.d. en-
tries of positive variance , ; moreover,

we assume is independent of ,
. Let , . Note that

Therefore, we have

(48)

It can be shown [cf., (12), (13), (15), and (16)] that

(49)

(50)
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(51)

(52)

Substituting (49)–(52) into (48) and setting
, , yields

which further implies

Therefore, we have

(53)

In view of (53) and Theorem 3, for the purpose of establishing
(47), it suffices to prove that

To this end, we shall show that given any with ,
, there exists such that

A1) , ,

A2) , ,
A3) form a Markov chain,

.
Moreover

(54)

Let and be as specified in Lemma 2. Note that ,
, , , and

(55)

As shown in Section IV, one can construct a zero-mean
random vector jointly Gaussian with

such that:

B1) and ,
,

B2) , ,
B3) form a Markov chain,
and form a Markov
chain, .

First assume that , . Define

It can be verified that

(56)

(57)

(58)

Let be
i.i.d. copies of , and let

, . It is easy to see that A1), A2), and
A3) are implied by B1), B2), and B3), respectively. Moreover,
one can readily verify that is independent of

, . Note that

(59)
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We have

Since , it follows from Theorem 7 that

Therefore, we have

(60)

Substituting (60) into (59) and invoking (56)–(58) yields

(61)

If for some , then

As a consequence, one can readily verify that (61) continues to
hold. Combining (55) and (61) gives

which further implies (54). This completes the proof of Theorem
6.

VII. MINIMUM SUM RATE: A SPECIAL CASE

In this section, we focus on the case (which
corresponds to the sum rate). Let , ,
and , , where .
Moreover, let and ,
where and . By Theorem 3,
and coincide in this special case; therefore, we shall
denote them by . The main result of this section is an
explicit characterization of .

Theorem 8:
1) If , then

2) If , then

3) If , then

where

Proof:
1) Let and . It can be verified that

satisfies (38) and (39) (see the optimality condi-
tions in Lemmas 1, 4, 5, and 6). Therefore, it follows by
the proof of Theorem 3 that

Note that in this case, we can decrease the hierarchical dis-

tortion constraint to without affecting
the minimum sum rate, where

2) Let and . It can be verified that
satisfies (38) and (39) (see the optimality condi-

tions in Lemmas 1, 4, 5, and 6). Therefore, it follows by
the proof of Theorem 3 that

Note that in this case, we can decrease the individual distor-

tion constraint to without affecting the
minimum sum rate, where

3) Let and . It is easy to verify
that satisfies (39) (see the optimality condition in
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Lemma 1). Note that the optimality conditions in Lemmas
4 and 6 are clearly satisfied; therefore, to verify (38), it suf-
fices to show that satisfies the optimality condition
in Lemma 5. In view of the fact that and that

we just need to show that , where

This is indeed true since . Therefore,

it follows by the proof of Theorem 3 that

VIII. MISCELLANEOUS RESULTS

A. Robust Predictive Coding System

In this section, we propose an efficient implementation of the
robust predictive coding scheme associated with Lemma 3. For
simplicity, throughout this section, we describe the scheme in
the form of single-letter operations; however, it should be under-
stood that in fact such a scheme has to be implemented over long
blocks in order to approach the information-theoretic limits.
As shown in Section IV, to minimize the weighted sum

rate of the robust predictive coding scheme associated
with Lemma 3, there is no loss of optimality in considering
zero-mean random vector jointly
Gaussian with such that

where and satisfy

and the parameters , , and , are defined in
(23)–(25), respectively; moreover,
form a Markov chain, and

form a Markov chain, . Let

where is the rate of Encoder . One can interpret and ,
respectively, as the input and the output of Encoder 1; similarly,

and can be interpreted, respectively, as
the input and the output of Encoder , . Given the
outputs from the first encoders, the decoder can compute
and use it as the reconstruction of , and the resulting distortion
is , . If the decoder only receives the output from
Encoder , then it simply uses as the reconstruction of ,
and the resulting distortion is , . Moreover, in
view of the fact that

it suffices to provide Encoder with as the input,
. Note that we can write

where

otherwise

It is clear that

As a consequence, we can interpret Encoder 1 as a quantizer
with , , and respectively as the input, the output,
and the quantization error; similarly, we can interpret Encoder
as a quantizer with , , and respectively
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Fig. 3. Robust predictive coding via successive quantization. Here can be
viewed as a multiletter version of , , and can be viewed as
a multiletter version of , .

as the input, the output, and the quantization error, .
Furthermore, in view of the fact that

the calculation of at the encoders and the decoder
can be performed iteratively. A robust predictive coding system
based on this interpretation is depicted in Fig. 3. It is worth
mentioning that one can implement the quantization operation
in such a system by using entropy-coded dithered lattice quan-
tizers (see, e.g., [10]–[12]).

B. Reconstruction Based on an Arbitrary Subset of Encoder
Outputs

As pointed out in Section VIII-A, one can interpret as
the output of Encoder , , for the robust predic-
tive coding scheme associated with Lemma 3. Although it is
developed for the scenario where only the hierarchical distor-
tion constraint and the individual distortion constraint are im-
posed, this scheme has a desirable property that every subset of
the encoder outputs is decodable. For example, if at the time of
reconstructing , the decoder only receives the outputs from
a subset of the first 5 encoders (say, ), then it can
still decode these outputs and further use as
the reconstruction of (with the resulting distortion equal to

).
Now we proceed to give a detailed analysis for this kind of

scenario. Again we shall focus on the case where
satisfies the conditions listed in Section VIII-A. Assume that
the decoder receives , for some non-empty set

; moreover, at the time of reconstructing , the de-
coder is only allowed to use . With no loss of gen-
erality, we shall assume (which implies )
for all .
Define

Note that and if for all . We
shall show that and can be computed
iteratively.
It is clear that

otherwise

otherwise.

For , we have and
if ; moreover, we have and if

. Therefore, it suffices to consider the case where

and (which implies ).

Since form a
Markov chain, it follows that

form a Markov chain. As a consequence

In view of the fact that

we can write

where is independent of (recall that
form a Markov chain). Therefore

It is also easy to see that

Now one can readily verify that
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Fig. 4. Reconstruction based on a subset of encoder outputs.

where

with

An illustrative example is given in Fig. 4. In this example,
we choose , , and ,

, where and ; moreover, we set
and , where

and . We plot , , for the
scenario where .
A comparison with the ideal scenario (i.e., )
shows that the proposed scheme has a desirable “self-recovery”
property.

IX. CONCLUSION

We have partially characterized the rate region of ro-
bust sequential coding and robust predictive coding for the
Gauss–Markov source model under the mean squared error
distortion constraint. More fundamentally, our investigation
reveals an information-theoretic minimax theorem, which can
be obtained by coupling two extremal inequalities. It is worth
noting that most of the results in this study can be extended to
the vector source setting in a relatively straightforward manner.

In particular, one can establish the vector version of Theorems
5 and 7 by leveraging techniques developed in [13]–[15].

APPENDIX A
PROOF OF THEOREM 5

The following lemma is well known.
Lemma 7: For any random vector and random object
such that ,

The following result is a variant of the worst additive noise
lemma by Ihara [16] as well as Diggavi and Cover [17, Lemma
II.2]. Its proof can be found in [9, Appendix B].

Lemma 8: Let be a zero-mean Gaussian random vector
with i.i.d. entries of positive variance . For any random vector
and random object , jointly independent of , such that

,

Lemma 9: Let be a zero-mean Gaussian random vector
with i.i.d. entries of positive variance , . Let and
be arbitrary real numbers satisfying . Then for

any random vector and random object , jointly indepen-
dent of , such that ,

Proof: Note that

(62)

Since , , it follows
from Lemma 7 that

(63)

Furthermore, by Lemma 8, we have

(64)

Substituting (63) and (64) into (62) completes the proof of
Lemma 9.
Now we are ready to prove Theorem 5. It can be verified that
1) if , then Theorem 5 is implied by Lemma 7;
2) if or , then Theorem 5 is implied
by Lemma 8;

3) if , then Theorem 5 is implied by Lemma 9.
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Therefore, it suffices to consider the case where and
, . With no loss of generality, we shall assume

.
First consider the case . Note that

(65)

By Lemma 8

(66)

If , then without loss of generality, we can assume
, where is independent of ,

and the entries of are i.i.d. Gaussian random variables with
mean zero and variance . Hence

(67)

where (67) follows from Lemma 8 and the fact that
. It is clear that

(67) also holds when . Substituting (66) and (67)
into (65) gives

which is the desired result.
Now it suffices to prove Theorem 5 for the case .

To this end, we use a reductionmethod inspired by [18].Without
loss of generality, we assume , where is
independent of , and the entries of are i.i.d.
Gaussian random variables with mean zero and variance

, . Note that

(68)

Let , . It can be verified that
, . Moreover, it is clear that

is independent of , and the entries of are
i.i.d. Gaussian random variables with mean zero and variance

, . Note that

(69)

(70)

where (69) follows by the entropy power inequality. Substi-
tuting (70) into (68), we obtain

(71)

Now we proceed to bound . Let be an
estimate of based on , where

It can be verified that

Since and

, we have
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which, by Lemma 7, implies that

(72)

In view of (71) and (72), we have

Let . Note that there is a one-to-one correspondence

between and . Moreover, it
can be verified that

which completes the proof.

APPENDIX B
PROOF OF LEMMA 3

Consider discrete memoryless sources with
joint probability mass function . Let be
a bounded distortion measure on , where both and
are finite, . We shall show that if there exist

auxiliary random variables (over finite alphabet ),
, and functions , ,

and , , such that
P1) form a Markov chain,
and form a Markov
chain, ,
P2) , , and

, ,
then for any satisfying

One can readily extend this result to the quadratic Gaussian case
via a discretization procedure and certain limiting arguments
[19].
As the proof is based on the standard techniques in network

information theory, we only give a sketch here. We adopt the
notation in [19].

Codebook Generation: Fix a conditional probability mass
function and functions

, , and , ,
such that P1) and P2) are satisfied. Note that P1) is satisfied if

factors as

For , randomly and independently generate
sequences , , each according to

. The codebook is revealed to the encoders and
the decoder.

Encoding: Given , Encoder 1 finds an index
such that ; if there is more than

one such index, it picks the smallest one among them; if there
is no such index, it sets . For , given

, Encoder finds an index
such that ; if there is more
than one such index, it picks the smallest one among them; if
there is no such index, it sets . Here, we assume that

. The indices are then sent to the
decoder.

Decoding: For , given , the de-

coder computes , ,
and uses as the reconstruction of . For , given

, the decoder computes , , and
uses as the reconstruction of .

Error Analysis: Let denote the output of Encoder
, . By the covering lemma [19, Lemma 3.3,
p. 62], tends to one as
if , where tends to zero
as . Then it follows from the conditional typicality
lemma [19, p. 27] that
tends to one as . For , by the covering
lemma, tends to one
as if , where

tends to zero as ; furthermore, it follows from [19,
Lemma 12.3, p. 299] and the Markov lemma [19, Lemma 12.1,
p. 296] that
tends to one as if is sufficiently small com-
pared to . Therefore, for every and every

(with determined by ), there exists a de-
terministic codebook conditioned on which the probability of

is less than .
Now one can readily complete the proof by invoking the typical
average lemma [19, p. 26].
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APPENDIX C
PROOF OF LEMMA 5

Consider the following minimization problem:

(73)

where

It is easy to verify that the objective function is a constant if
; moreover, the minimum in (73) is achieved at

if and .
In the rest of the proof we shall assume

(which implies that the minimum in (73) is not achieved at
). Note that

where , , and are defined in (32)–(34), respectively, and

It is clear that , , and for .
Now consider the following cases.
1) If , then the equation

has a unique positive root at , where is defined in
(36). We have for and
for . As a consequence, the minimum in (73) is
achieved at .

2) If , we have for . As a conse-
quence, the minimum in (73) is achieved at .

This completes the proof of Lemma 5.

APPENDIX D
CONTINUITY OF

To stress their dependence on , we shall de-
note , , , and by , ,

, and respectively. Define regions
and as follows:

It is clear that varies continuously with if
moves inside one of these two re-

gions. Therefore, we only need to consider the case where

traverses through the boundary between
and .
Let be a boundary point between and .

It is clear that ; moreover, it suffices
to consider the case since we have if
both and are zero. As a consequence,
we have . Note that
if . On the other hand, as

moves toward from the
side, we have

Moreover, since

it follows that , which further
implies that

when is sufficiently close to .
Therefore, varies continuously with when

traverses through the boundary be-
tween and .

APPENDIX E
PROOF OF THEOREM 7

First consider the case .Without loss of generality,
we can assume , where is independent of

, and the entries of are i.i.d. Gaussian random
variables with mean zero and variance . Note that

(74)

where (74) is due to the fact that
form a Markov chain. Moreover, we have

As a consequence
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which is the desired result. By symmetry, this upper bound also
holds when .
Now consider the case . Without loss

of generality, we assume , where is indepen-
dent of , and the entries of are i.i.d. Gaussian
random variables with mean zero and variance ,
. Note that

(75)

(76)

where (75) is due to the entropy power inequality. Note that
, . Therefore, it

follows from Lemma 7 in Appendix A that

(77)

In view of (76) and (77), we have

which completes the proof.
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