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When is Noisy State Information at the Encoder
as Useless as No Information or as

Good as Noise-Free State?
Rui Xu, Jun Chen, Senior Member, IEEE, Tsachy Weissman, Fellow, IEEE,

and Jian-Kang Zhang, Senior Member, IEEE

Abstract— For any binary-input channel with perfect state
information at the decoder, if the mutual information between
the noisy state observation at the encoder and the true channel
state is below a positive threshold determined solely by the state
distribution, then the capacity is the same as that with no encoder
side information. A complementary phenomenon is revealed for
the generalized probing capacity. Extensions beyond binary-input
channels are developed.

Index Terms— Binary-input, channel capacity, erasure channel,
probing capacity, state information, stochastically degraded.

I. INTRODUCTION

CONSIDER a memoryless channel pY |X,S with input X ,
output Y , and state S. We assume that the channel state S,

distributed according to pS , is provided to the decoder, and
a noisy state observation S̃, generated by S through side
channel pS̃|S , is available causally at the encoder. Here X ,

Y , S, and S̃ are defined over finite alphabets X , Y , S, and S̃,
respectively. In this setting (see Fig. 1), Shannon’s remarkable
result [1] (see also [2, eq. (3)] and [3, Th. 7.2]) implies that
the channel capacity is given by

C(pY |X,S, pS, pS̃|S) � max
pU

I (U ; Y |S). (1)

The auxiliary random variable U is defined over alphabet U
with |U | = |X ||S̃|, whose joint distribution with (X,Y, S, S̃)
factors as

pU,X,Y,S,S̃(u, x, y, s, s̃)

= pU (u)pS(s)pS̃|S(s̃|s)I(x = ψ(u, s̃))pY |X,S(y|x, s),

u ∈ U, x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃, (2)
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Fig. 1. Channel model.

where I(·) is the indicator function, and ψ(u, ·), u ∈ U , are
|X ||S̃| different mappings from S̃ to X . Without loss of gener-
ality, we set X = {0, 1, · · · , |X |− 1}, S = {0, 1 · · · , |S|− 1},
U = {0, 1, · · · , |X ||S̃| − 1}, and order the mappings ψ(u, ·),
u ∈ U , in such a way that the first |X | mappings1 are

ψ(u, ·) ≡ u, u ∈ X ; (3)

moreover, we assume that ρ � mins∈S pS(s) > 0. The
capacity formula (1) can be simplified in the following two
special cases. Specifically, when there is no encoder side
information, the channel capacity reduces to [3, eq. (7.2)]

C(pY |X,S, pS) � max
pX

I (X; Y |S), (4)

where pX,Y,S(x, y, s) = pX (x)pS(s)pY |X,S(y|x, s); on the
other hand, when perfect state information is available at the
encoder (as well as the decoder), the channel capacity becomes
[3, eq. (7.3)]

C(pY |X,S, pS) � max
pX |S

I (X; Y |S), (5)

where pX,Y,S(x, y, s) = pS(s)pX |S(x |s)pY |X,S(y|x, s).
For comparison, consider the following similarly defined

quantity

C ′(pY |X,S, pS, pS̃|S) � max
pU

I (X; Y |S),

where the joint distribution of (U, X,Y, S, S̃) is also given
by (2). We shall refer to C ′(pY |X,S, pS, pS̃|S) as the general-
ized probing capacity. By the functional representation lemma
[3, p. 626] (see also [5, Lemma 1]), C ′(pY |X,S, pS, pS̃|S) can
be defined equivalently as

C ′(pY |X,S, pS, pS̃|S) � max
pX |S̃

I (X; Y |S),

1These are the mappings that ignore the encoder side information.

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



XU et al.: WHEN IS NOISY STATE INFORMATION AT THE ENCODER AS USELESS AS NO INFORMATION OR AS GOOD AS NOISE-FREE STATE? 961

Fig. 2. Illustration of pY |X,S and pS given by (9) and (10), respectively.

where

pX,Y,S,S̃(x, y, s, s̃) = pS(s)pS̃|S(s̃|s)pX |S̃(x |s̃)pY |X,S(y|x, s),

x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃.
Clearly,

C(pY |X,S, pS) ≤ C(pY |X,S, pS, pS̃|S)
≤ C ′(pY |X,S, pS, pS̃|S)
≤ C(pY |X,S, pS). (6)

Moreover, we have

C(pY |X,S, pS, pS̃|S) = C ′(pY |X,S, pS, pS̃|S)
= C(pY |X,S, pS) (7)

if S and S̃ are independent (i.e., I (S; S̃) = 0), and

C(pY |X,S, pS, pS̃|S) = C ′(pY |X,S, pS, pS̃|S)
= C(pY |X,S, pS) (8)

if S is a deterministic function of S̃ (i.e., H (S|S̃) = 0).
To elucidate the operational meaning of C ′(pY |X,S,

pS, pS̃|S) and its connection with C(pY |X,S, pS, pS̃|S), it is
instructive to consider the special case where pS̃|S is a
binary erasure channel with erasure probability ε (denoted
by BEC(ε)), which corresponds to the probing channel setup
studied in [4]. The probing channel model is essentially the
same as the one in Fig. 1 except that, in Fig. 1, the encoder
(which, with high probability, observes approximately nε state
symbols out of the whole state sequence of length n when
n is large enough) has no control of the exact positions of
these nε symbols whereas, in the probing channel model,
the encoder has the freedom to specify the positions of these
nε symbols according to the message to be sent. It is shown
in [4] that this additional freedom increases the achievable rate
from C(pY |X,S, pS,BEC(ε)) to C ′(pY |X,S, pS,BEC(ε)). Now
consider an example (see also Fig. 2) where

pY |X,S(y|x, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1 − θ, (x, y, s) = (0, 0, 0) or (1, 1, 1),
θ, (x, y, s) = (0, 1, 0) or (1, 0, 1),
0, (x, y, s) = (1, 0, 0) or (0, 1, 1),
1, (x, y, s) = (1, 1, 0) or (0, 0, 1),

(9)

pS(0) = pS(1) = 1

2
. (10)

Fig. 3. Plots of C(pY |X,S, pS,BEC(ε)) and C ′(pY |X,S, pS ,BEC(ε))
against ε for ε ∈ [0, 1], where pY |X,S and pS are given by (9) with θ = 1

2
and (10), respectively.

For this example, it can be verified that

C(pY |X,S, pS)

=

⎧
⎪⎪⎨

⎪⎪⎩

log 2, θ = 0,

1
2

(

(1 − θ) log 2 + log 2
1+θ + θ log 2θ

1+θ
)

, θ ∈ (0, 1),

0, θ = 1,

C(pY |X,S, pS) =

⎧
⎪⎪⎨

⎪⎪⎩

log 2, θ = 0,

log

(

1 + (1 − θ)θ
θ

1−θ
)

, θ ∈ (0, 1),

0, θ = 1.

Note that C(pY |X,S, pS) is strictly greater than C(pY |X,S, pS)
unless θ = 0 or θ = 1. It follows by (7) and (8) that

C(pY |X,S, pS,BEC(ε))
∣
∣
ε=1 = C ′(pY |X,S, pS,BEC(ε))

∣
∣
ε=1

= C(pY |X,S, pS),

C(pY |X,S, pS,BEC(ε))
∣
∣
ε=0 = C ′(pY |X,S, pS,BEC(ε))

∣
∣
ε=0

= C(pY |X,S, pS).

To gain a better understanding, we plot C(pY |X,S,
pS,BEC(ε)) and C ′(pY |X,S, pS,BEC(ε)) against ε for ε ∈
[0, 1] in Fig. 3. It turns out that, somewhat counterintu-
itively, C(pY |X,S, pS,BEC(ε)) coincides with C(pY |X,S, pS)
way before ε reaches 1. That is to say, when ε is above a
certain threshold strictly less than 1, the noisy state observation
S̃ is useless and can be ignored (as far as the channel
capacity is concerned). On the the hand, it can be seen that
C ′(pY |X,S, pS,BEC(ε)) is equal to C(pY |X,S, pS) for a large
range of ε strictly greater than 0. Hence, in terms of the
probing capacity, the noisy state observation can be as good
as the perfect one. As shown in Fig. 4, the same phenomena
arise if we choose pS̃|S to be a binary symmetric channel with
crossover probability q (denoted by BSC(q)).

The contributions of the present work are summarized in
the following theorems, which indicate that the aforedescribed
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Fig. 4. Plots of C(pY |X,S, pS ,BSC(q)) and C ′(pY |X,S, pS ,BSC(q)) against

q for q ∈ [0, 1
2 ], where pY |X,S and pS are given by (9) with θ = 1

2 and (10),
respectively.

surprising phenomena can in fact be observed for all binary-
input channels.

Theorem 1: For any binary-input channel pY |X,S, state dis-
tribution pS , and side channel pS̃|S ,

C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if I (S; S̃) ≤ ρ2

2e2 , where ρ � mins∈S pS(s).
Theorem 2: For any binary-input channel pY |X,S, state dis-

tribution pS , and side channel pS̃|S ,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if H (S|S̃) ≤ 2ρ log 2
(|S|−1)(e−1) , where ρ � mins∈S pS(s).

On the surface these two results may look rather similar.
One might even suspect the existence of a certain duality
between them. However, it will be seen that the underlying
reasons are actually quite different. The proof of Theorem 1
hinges upon, among other things, a perturbation analysis.
In contrast, Theorem 2 is essentially a manifestation of an
induced Markov structure.

The conditions in Theorem 1 and Theorem 2 are stated in
terms of bounds on I (S; S̃) and H (S|S̃); as a consequence,
they depend inevitably on pS . As shown by Theorem 3 in
Section II and Theorem 4 in Section III, it is in fact possible
to establish these two results under more general conditions
on pS̃|S that are universal for all binary-input channels and
state distributions.

The rest of this paper is organized as follows. We present
the proofs of Theorems 1 and 2 in Sections II and III,
respectively. The validity of these two results under various
modified conditions is discussed in Section IV. Section V
contains some concluding remarks. Throughout this paper, all
logarithms are base-e.

II. PROOF OF THEOREM 1
First consider the special case where pS̃|S is a generalized

erasure channel (with erasure probability ε ∈ [0, 1]) defined as

p
S̃(ε)GE |S(s̃|s) =

⎧
⎨

⎩

1 − ε, s̃ = s,
ε, s̃ = ∗,
0, otherwise,

s ∈ S, s̃ ∈ S ∪ {∗}.

Lemma 1: Given any binary-input channel pY |X,S and state
distribution pS ,

C(pY |X,S, pS, p
S̃(ε)GE |S) = C(pY |X,S, pS)

for ε ∈ [1 − e−1, 1].
Remark: Lemma 1 provides a universal upper bound2 on

the erasure probability threshold above which the encoder side
information is useless. The actual threshold, however, depends
on pY |X,S and pS (see Section IV-A for a detailed analysis).

Proof: As indicated by (1), the capacity of the channel
model in Fig. 1 (i.e., C(pY |X,S, pS, pS̃|S)) is equal to that of
channel pY,S|U , where

pY,S|U(y, s|u) =
∑

s̃∈S̃
pS(s)pS̃|S(s̃|s)pY |X,S(y|ψ(u, s̃), s),

u ∈ U, y ∈ Y, s ∈ S.
According to [6, Th. 4.5.1], pU is a capacity-achieving input
distribution of channel pY,S|U (i.e., pU is a maximizer of the
optimization problem in (1)) if and only if there exists some
number C such that

D(pY,S|U (·, ·|u)‖pY,S) = C, u ∈ U with pU (u) > 0,

D(pY,S|U (·, ·|u)‖pY,S) ≤ C, u ∈ U with pU (u) = 0;
furthermore, the number C is equal to C(pY |X,S, pS, pS̃|S).
In view of (3), we have

pY,S|U(y, s|u) = pY,S|X(y, s|u), u ∈ X , y ∈ Y, s ∈ S.
Let pX̂ be a capacity-achieving input distribution of channel
pY,S|X (i.e, pX̂ is a maximizer of the optimization problem
in (4)). Define

pÛ (u) =
{

pX̂ (u), u ∈ X ,
0, otherwise.

(11)

It is clear that C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS) if and
only if pÛ is a capacity-achieving input distribution of
channel pY,S|U .

Now consider the special case where pS̃|S is a generalized
erasure channel with erasure probability ε, and define

DG E (pU , ε, u) = D(pY,S|U (·, ·|u)‖pY,S) (12)

to stress the dependence of D(pY,S|U (·, ·|u)‖pY,S) on pU , ε,
and u. It can be verified that

pY,S|U (y, s|u)
=

∑

s̃∈S∪{∗}
pS(s)pS̃(ε)|S(s̃|s)pY |X,S(y|ψ(u, s̃), s)

= pS(s)εpY |X,S(y|ψ(u, ∗), s)

+ pS(s)(1 − ε)pY |X,S(y|ψ(u, s), s)

= pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)), (13)

2Numerical simulations suggest that this universal upper bound is not tight.
Determining the exact universal erasure probability threshold remains an open
problem.
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where

δ(u, y, s) = pY |X,S(y|ψ(u, ∗), s) − pY |X,S(y|ψ(u, s), s),

u ∈ U, y ∈ Y, s ∈ S. (14)

Since |X | = 2, there is no loss of generality in assuming
that [7, Th. 2]

pX̂ (x) > e−1, x ∈ X . (15)

To the end of proving Lemma 1, it suffices to show that, for
ε ∈ [1 − e−1, 1],

DG E (pÛ , ε, u) = C(pY |X,S, pS), u ∈ X ,
DG E (pÛ , ε, u) ≤ C(pY |X,S, pS), otherwise.

Clearly, pÛ is a capacity-achieving input distribution of
channel pY,S|U when ε = 1. Therefore, we have3

DG E (pÛ , 1, u) = C(pY |X,S, pS), u ∈ X , (16)
DG E (pÛ , 1, u) ≤ C(pY |X,S, pS), otherwise. (17)

Note that

DG E (pÛ , ε, u)

=
∑

y∈Y,s∈S
pY,S|U(y, s|u) log

pY,S|U (y, s|u)
∑

u′∈U pÛ (u
′)pY,S|U (y, s|u′)

=
∑

y∈Y,s∈S
pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s)+ εδ(u, y, s)

∑
u′∈U pÛ (u

′)(pY |X,S(y|ψ(u′, s), s)+ εδ(u′, y, s))
(18)

=
∑

y∈Y,s∈S
pS(s)(pY |X,S(y|ψ(u, s), s) + εδ(u, y, s))

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

,

ε ∈ [0, 1], u ∈ U, (19)

where (18) is due to (13), and (19) is due to (3) and (11).
Moreover,

∂

∂ε
DG E (pÛ , ε, u)

=
∑

y∈Y,s∈S
pS(s)δ(u, y, s)

×
(

log
pY |X,S(y|ψ(u, s), s)+ εδ(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

+ 1

)

=
∑

y∈Y,s∈S
pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s)+ εδ(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

+
∑

s∈S
pS(s)

∑

y∈Y
δ(u, y, s)

=
∑

y∈Y,s∈S
pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s)+ εδ(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

,

ε ∈ [0, 1], u ∈ U . (20)

3The inequality in (17) is in fact an equality.

Define

Gδ = {u ∈ U : δ(u, y, s) = 0 for all y ∈ Y and s ∈ S}.
(21)

In light of (19),

DG E (pÛ , ε, u) = DG E (pÛ , 1, u), ε ∈ [0, 1], u ∈ Gδ.
(22)

For any u ∈ U\Gδ , there must exist some y ∈ Y and s ∈ S
such that δ(u, y, s) 	= 0; furthermore, since |X | = 2, we have

δ(u, y, s) > 0 
⇒ pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

= b(y, s)+ ε(a(y, s)− b(y, s)), (23)

δ(u, y, s) < 0 
⇒ pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

= a(y, s)+ ε(b(y, s)− a(y, s)), (24)

where

a(y, s) = max
x∈X

pY |X,S(y|x, s),

b(y, s) = min
x∈X

pY |X,S(y|x, s).

Continuing from (20),

∂

∂ε
DG E (pÛ , ε, u) =

∑

y∈Y,s∈S
pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

≥
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)>0

δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

(1 − e−1)a(y, s)+ e−1b(y, s)

+
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)<0

δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

e−1a(y, s)+ (1 − e−1)b(y, s)
(25)

=
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)>0

δ(u, y, s)

× log
b(y, s)+ ε(a(y, s)− b(y, s))

(1 − e−1)a(y, s)+ e−1b(y, s)

+
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)<0

δ(u, y, s)

× log
a(y, s)+ ε(b(y, s)− a(y, s))

e−1a(y, s)+ (1 − e−1)b(y, s)
(26)

≥
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)>0

δ(u, y, s)

× log
(1 − e−1)a(y, s)+ e−1b(y, s)

(1 − e−1)a(y, s)+ e−1b(y, s)

+
∑

s∈S
pS(s)

∑

y∈Y :δ(u,y,s)<0

δ(u, y, s)

× log
e−1a(y, s)+ (1 − e−1)b(y, s)

e−1a(y, s)+ (1 − e−1)b(y, s)

= 0, ε ∈ [1 − e−1, 1], u ∈ U, (27)
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where (25) is due to (15), and (26) is due to (23) and (24).
Combining (16), (17), (22), (27), and the fact X ⊆ Gδ yields
the desired result.

Recall [3, p. 112] that pS̃1|S (with input alphabet S and

output alphabet S̃1) is said to be a stochastically degraded
version of pS̃2|S (with input alphabet S and output alphabet S̃2)
if there exists pS̃1|S̃2

satisfying

pS̃1|S(s̃1|s) =
∑

s̃2∈S̃2

pS̃2|S(s̃2|s)pS̃1|S̃2
(s̃1|s̃2),

s ∈ S, s̃1 ∈ S̃1. (28)

We can write (28) equivalently as

pS̃1|S = pS̃2|S pS̃1|S̃2

by viewing pS̃1|S , pS̃2|S , and pS̃1|S̃2
as probability transition

matrices.
The following result is obvious and its proof is omitted.
Lemma 2: If pS̃1|S is a stochastically degraded version of

pS̃2|S , then

C(pY |X,S, pS, pS̃1|S) ≤ C(pY |X,S, pS, pS̃2|S).
Next we extend Lemma 1 to the general case by characteriz-

ing the condition under which pS̃|S is a stochastically degraded
version of p

S̃(ε)GE |S .
Lemma 3: pS̃|S is a stochastically degraded version of

p
S̃(ε)GE |S if and only if

∑

s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ ε. (29)

Proof: The problem boils down to finding a necessary and
sufficient condition for the existence of p

S̃|S̃(ε)GE
such that

pS̃|S(s̃|s) =
∑

s̃ ′∈S∪{∗}
p

S̃(ε)GE |S(s̃
′|s)p

S̃|S̃(ε)GE
(s̃|s̃′),

s ∈ S, s̃ ∈ S̃. (30)

It suffices to consider the case ε ∈ [0, 1) since Lemma 3 is
trivially true when ε = 1. Note that

∑

s̃ ′∈S∪{∗}
p

S̃(ε)GE |S(s̃
′|s)p

S̃|S̃(ε)GE
(s̃|s̃′)

= (1 − ε)p
S̃|S̃(ε)GE

(s̃|s)+ εp
S̃|S̃(ε)GE

(s̃|∗), s ∈ S, s̃ ∈ S̃. (31)

Combining (30) and (31) gives

p
S̃|S̃(ε)GE

(s̃|s) =
pS̃|S(s̃|s)− εp

S̃|S̃(ε)GE
(s̃|∗)

1 − ε
, s ∈ S, s̃ ∈ S̃.

(32)

In light of (32),
∑

s̃∈S̃
p

S̃|S̃(ε)GE
(s̃|s) = 1, s ∈ S,

⇐⇒
∑

s̃∈S̃
p

S̃|S̃(ε)GE
(s̃|∗) = 1,

p
S̃|S̃(ε)GE

(s̃|s) ≥ 0, s ∈ S, s̃ ∈ S̃,
⇐⇒ min

s∈S
pS̃|S(s̃|s) ≥ εp

S̃|S̃(ε)GE
(s̃|∗), s̃ ∈ S̃. (33)

It can be readily seen that the existence of conditional dis-
tribution p

S̃|S̃(ε)GE
satisfying (30) is equivalent to the existence

of probability vector (p
S̃|S̃(ε)GE

(s̃|∗))s̃∈S̃ satisfying (33). Clearly,

(29) is a necessary and sufficient condition for the existence
of such (p

S̃|S̃(ε)GE
(s̃|∗))s̃∈S̃ .

Theorem 3: For any binary-input channel pY |X,S, state
distribution pS , and side channel pS̃|S ,

C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if
∑

s̃∈S̃

min
s∈S

pS̃|S(s̃|s) ≥ 1 − e−1. (34)

Proof: In view of Lemmas 1, 2, and 3, we have

C(pY |X,S, pS, pS̃|S) ≤ C(pY |X,S, pS) (35)

if (34) is satisfied. Combining (6) and (35) completes the proof
of Theorem 3.

Now we proceed to prove Theorem 1 by translating (34)
(which is a condition on pS̃|S that is universal for all binary-
input channels and state distributions) to an upper bound
on I (S; S̃). This upper bound, however, depends inevitably
on the state distribution.

For any pS̃|S violating (34) (i.e,
∑

s̃∈S̃ mins∈S pS̃|S(s̃|s) <
1 − e−1), we have

I (S; S̃) ≥ 1

2

( ∑

s∈S,s̃∈S̃
pS(s)

∣
∣
∣pS̃(s̃)− pS̃|S(s̃|s)

∣
∣
∣

)2

(36)

≥ 1

2

(
∑

s̃∈S̃
pS(s(s̃))

∣
∣
∣pS̃(s̃)− pS̃|S(s̃|s(s̃))

∣
∣
∣

)2

≥ 1

2

(

ρ
∑

s̃∈S̃

∣
∣
∣pS̃(s̃)− pS̃|S(s̃|s(s̃))

∣
∣
∣

)2

≥ 1

2

(

ρ

∣
∣
∣
∣
∣
∣

∑

s̃∈S̃
pS̃(s̃)−

∑

s̃∈S̃
pS̃|S(s̃|s(s̃))

∣
∣
∣
∣
∣
∣

)2

>
ρ2

2e2 ,

where (36) is due to Pinsker’s inequality [8, p. 44], and s(s̃)
is a minimizer of mins∈S pS̃|S(s̃|s), s̃ ∈ S̃ . As a consequence,

(34) must hold if I (S; S̃) ≤ ρ2

2e2 . This completes the proof of
Theorem 1.

III. PROOF OF THEOREM 2

First consider the special case where pS̃|S is a generalized

symmetric channel (with crossover probability q ∈ [0, 1
|S| ])

defined as

p
S̃(q)GS|S(s̃|s) =

{
1 − (|S| − 1)q, s̃ = s,
q, otherwise,

s ∈ S, s̃ ∈ S.

Lemma 4: C ′(pY |X,S, pS, p
S̃(q)GS|S) = C(pY |X,S, pS) if and

only if

min
x∈X+,s∈S

pX̂ |S(x |s)
∑

s ′∈S pX̂ |S(x |s′)
≥ q (37)
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for some pX̂ |S ∈ P , where P denotes the set of maximizers
of the optimization problem in (5), and X+ = {x ∈ X :∑

s∈S pX̂ |S(x |s) > 0}.
Proof: Clearly, C ′(pY |X,S, pS, p

S̃(q)GS|S) = C(pY |X,S, pS)

if and only if there exists pX̂ |S ∈ P that is a stochastically

degraded version of p
S̃(q)GS|S

. When q = 1
|S| , (37) is equivalent

to the desired condition that X̂ needs to be independent of S.
When q ∈ [0, 1

|S| ), p
S̃(q)GS|S is invertible and

p−1
S̃(q)GS|S

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

q−1
|S|q−1

q
|S|q−1 · · · q

|S|q−1

q
|S|q−1

. . .
. . .

...
...

. . .
. . . q

|S|q−1
q

|S|q−1 · · · q
|S|q−1

q−1
|S|q−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (38)

The problem boils down to finding a necessary and sufficient
condition under which p−1

S̃(q)GS|S
pX̂ |S is a valid probability tran-

sition matrix (i.e., all entries are non-negative and the sum of
each row vector is equal to 1). Note that

p−1
S̃(q)GS|S

pX̂ |S

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ = p−1

S̃(q)GS|S

⎛

⎜
⎜
⎜
⎝

1
1
...
1

⎞

⎟
⎟
⎟
⎠

= p−1
S̃(q)GS|S

p
S̃(q)GS|S

⎛

⎜
⎜
⎜
⎝

1
1
...
1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1
1
...
1

⎞

⎟
⎟
⎟
⎠
. (39)

Moreover, all entries of p−1
S̃(q)GS|S

pX̂ |S are non-negative if and

only if

−pX̂|S(x |s)+ q
∑

s ′∈S pX̂ |S(x |s′)
|S|q − 1

≥ 0, x ∈ S, s ∈ S,

which is equivalent to (37).
The following result is obvious and its proof is omitted.
Lemma 5: If pS̃1|S is a stochastically degraded version

of pS̃2|S , then

C ′(pY |X,S, pS, pS̃1|S) ≤ C ′(pY |X,S, pS, pS̃2|S).
Lemma 6: p

S̃(q)GS|S
is a stochastically degraded version of

pS̃|S if

max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
∑

s ′∈S pŜ|S(ŝ|s′)
≤ q, (40)

where Ŝ is the maximum likelihood estimate of S based on S̃,
and S+ = {ŝ ∈ S : ∑

s∈S pŜ|S(ŝ|s) > 0}.
Proof: The case q = 1

|S| is trivial. When q ∈ [0, 1
|S|),

p
S̃(q)GS|S

is invertible and p−1
S̃(q)GS|S

is given by (38). It can be

shown (see the derivation of (39)) that the sum of each row
of p−1

S̃(q)GS|S
pŜ|S is equal to 1; moreover, the off-diagonal entries

of p−1
S̃(q)GS|S

pŜ|S are non-positive if and only if

−pŜ|S(ŝ|s)+ q
∑

s ′∈S pŜ|S(ŝ|s′)
|S|q − 1

≤ 0,

s ∈ S, ŝ ∈ S+ : s 	= ŝ,

which is equivalent to (40). Therefore, (40) ensures that
p−1

S̃(q)GS|S
pŜ|S is a non-singular M-matrix, which in turn ensures

that p−1
Ŝ|S p

S̃(q)GS|S exists and is a non-negative matrix [9]. Hence,

if (40) is satisfied, then p−1
Ŝ|S p

S̃(q)GS|S is a valid probability

transition matrix (the requirement that the entries in each row
of p−1

Ŝ|S p
S̃(q)GS|S

add up to 1 is automatically satisfied), which

implies that p
S̃(q)GS|S is a stochastically degraded version of pŜ|S

(and consequently a stochastically degraded version of pS̃|S).

Theorem 4: For any binary-input channel pY |X,S , state dis-
tribution pS , and side channel pS̃|S ,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if

max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
∑

s ′∈S pŜ|S(ŝ|s′) ≤ 1

(|S| − 1)e − |S| + 2
, (41)

where Ŝ is the maximum likelihood estimate of S based on S̃.
Proof: Since |X | = 2, it follows from [7, Th. 2] that there

exists pX̂ |S ∈ P satisfying

pX̂ |S(x |s) > e−1, x ∈ X , s ∈ S.

For such pX̂ |S ,

min
x∈X+,s∈S

pX̂ |S(x |s)
∑

s ′∈S pX̂ |S(x |s′)
≥ e−1

e−1 + (|S| − 1)(1 − e−1)

= 1

(|S| − 1)e − |S| + 2
.

In view of of Lemmas 4, 5, and 6, we have

C ′(pY |X,S, pS, pS̃|S) ≥ C(pY |X,S, pS) (42)

if (41) is satisfied. Combining (6) and (42) completes the proof
of Theorem 4.

Now we are in a position to prove Theorem 2. Let Ŝ and Ŝ′
denote respectively the maximum likelihood estimate and the
maximum a posteriori estimate of S based on S̃. According
to [10, Th. 11],

P(S 	= Ŝ′) ≤ H (S|S̃)
2 log 2

. (43)
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It can be verified that
∑

s,ŝ∈S :s 	=ŝ

pŜ|S(ŝ|s) ≤
∑

s,ŝ∈S :s 	=ŝ

pŜ ′|S(ŝ|s)

≤ 1

ρ

∑

s,ŝ∈S :s 	=ŝ

pS(s)pŜ ′|S(ŝ|s)

= P(S 	= Ŝ′)
ρ

. (44)

Substituting (43) into (44) yields

∑

s,ŝ∈S :s 	=ŝ

pŜ|S(ŝ|s) ≤ h̄ � H (S|S̃)
2ρ log 2

. (45)

Note that

max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
∑

s ′∈S pŜ|S(ŝ|s′)
≤ h̄

h̄ + I(h̄ ≤ 1)
. (46)

Indeed, (46) is trivially true when h̄ > 1; moreover, when
h̄ ≤ 1,

max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
∑

s ′∈S pŜ|S(ŝ|s′)

≤ max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
pŜ|S(ŝ|s)+ pŜ|S(ŝ|ŝ)

= max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
pŜ|S(ŝ|s)+ 1 − ∑

ŝ ′∈S :ŝ ′ 	=ŝ pŜ|S(ŝ′|ŝ)

≤ max
s∈S,ŝ∈S+:s 	=ŝ

pŜ|S(ŝ|s)
2 pŜ|S(ŝ|s)+ 1 − h̄

(47)

≤ h̄

h̄ + 1
, (48)

where (47) and (48) are due to (45). In view of Theorem 4,
It suffices to have

h̄

h̄ + I(h̄ ≤ 1)
≤ 1

(|S| − 1)e − |S| + 2
. (49)

Note that (49) is not satisfied when h̄ > 1 since its left-
hand side is equal to 1 whereas its right-hand side is strictly
less than 1 (h̄ > 1 implies |S| ≥ 2). When h̄ ≤ 1, we can
rewrite (49) as4

h̄ ≤ 1

(|S| − 1)(e − 1)
,

which is exactly the desired result. This completes the proof
of Theorem 2.

In Appendix A, we give an alternative proof of Theorem 2
with a different threshold on H (S|S̃).

IV. EXTENSION AND DISCUSSION

A. Extension of Theorem 1

It is interesting to know to what extent Theorem 1 can
be extended beyond the binary-input case. This subsection is

4Note that h̄ ≤ 1
(|S|−1)(e−1) implies h̄ ≤ 1 when |S| ≥ 2. The case |S| = 1

is trivial since h̄ can only take the value 0.

largely devoted to answering this question. For any pY |X,S
and pS , define

ε(pY |X,S, pS) = min{ε ∈ [0, 1] : C(pY |X,S, pS, p
S̃(ε)GE |S)

= C(pY |X,S, pS)},
q(pY |X,S, pS) = min{q ∈ [0, 1

|S| ] : C(pY |X,S, pS, p
S̃(q)GS|S

)

= C(pY |X,S, pS)}.
Proposition 1: 1) There exists α(pY |X,S, pS) > 0 such

that C(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS) for all pS̃|S
satisfying I (S; S̃) ≤ α(pY |X,S, pS) if and only if
ε(pY |X,S, pS) < 1.

2) ε(pY |X,S, pS) < 1 if and only if
∑

y∈Y,s∈S
pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, ∗), s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

> 0,

u ∈ U+\Gδ, (50)

where δ(u, y, s) and Gδ are defined in (14) and (21),
respectively, pX̂ is an arbitrary maximizer of the opti-
mization problem in (4), and

U+ =
{

u ∈ U :
∑

y∈Y,s∈S
pS(s)pY |X,S(y|ψ(u, ∗), s)

× log
pY |X,S(y|ψ(u, ∗), s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

= C(pY |X,S, pS)

}

.

Remark: All maximizers of the optimization problem in
(4) give rise to the same

∑
x∈X pX̂ (x)pY |X,S(y|x, s), y ∈ Y ,

s ∈ S [6, p. 96, corollary 2].
Proof: The first statement can be easily extracted from

the proof of Theorem 1.
Now we proceed to prove the second statement. First recall

the definitions of DG E (pU , ε, u) and pÛ in (12) and (11),
respectively. Since pÛ is a capacity-achieving input distribu-
tion of channel pY,S|U when ε = 1, we must have

DG E (pÛ , 1, u) = C(pY |X,S, pS), u ∈ U with pÛ (u) > 0,

DG E (pÛ , 1, u) ≤ C(pY |X,S, pS), u ∈ U with pÛ (u) = 0,

which, together with the fact U+ = {u ∈ U : DG E (pÛ , 1, u) =
C(pY |X,S, pS)}, implies

{u ∈ U : pÛ (u) > 0} ⊆ U+, (51)

DG E (pÛ , 1, u) = C(pY |X,S, pS), u ∈ U+, (52)

DG E (pÛ , 1, u) < C(pY |X,S, pS), otherwise. (53)

It can be verified that

DG E (pÛ , ε, u) = DG E (pÛ , 1, u), ε ∈ [0, 1], u ∈ Gδ. (54)

Moreover, in view of (20), we can write (50) equivalently as

∂

∂ε
DG E (pÛ , ε, u)

∣
∣
∣
∣
ε=1

> 0, u ∈ U+\Gδ. (55)
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According to (52)–(55), there exists ε(pY |X,S, pS) ∈ [0, 1)
such that

DG E (pÛ , ε, u) = C(pY |X,S, pS), u ∈ U+ ∩ Gδ, (56)

DG E (pÛ , ε, u) ≤ C(pY |X,S, pS), otherwise (57)

for ε ≥ ε(pY |X,S, pS). In light of (51) and the fact {u ∈ U :
pÛ (u) > 0} ⊆ X ⊆ Gδ , we have

{u ∈ U : pÛ (u) > 0} ⊆ U+ ∩ Gδ. (58)

Combining (56), (57), and (58) proves the “if" part of the
second statement. Next we turn to the “only if" part of the
second statement. Assuming the existence of ε(pY |X,S, pS) ∈
[0, 1) such that C(pY |X,S, pS, pS̃(ε)|S) = C(pY |X,S, pS) for
ε ≥ ε(pY |X,S, pS) (or equivalently pÛ is a capacity-achieving
input distribution of channel pY,S|U for ε ≥ ε(pY |X,S, pS)),
we must have

DG E (pÛ , ε, u) ≤C(pY |X,S, pS), ε ≥ ε(pY |X,S, pS), u ∈ U .
(59)

It can be verified that

∂2

∂ε2 DG E (pÛ , ε, u)

=
∑

y∈Y,s∈S

pS(s)δ2(u, y, s)

pY |X,S(y|ψ(u, s), s) + εδ(u, y, s)

> 0, ε ∈ [0, 1], u ∈ U\Gδ . (60)

Moreover, by the definition of U+,

DG E (pÛ , 1, u) = C(pY |X,S, pS), u ∈ U+. (61)

Note that (59), (60), and (61) hold simultaneously for u ∈
U+\Gδ , from which (50) (or equivalently (55)) can be readily
deduced. This completes the proof of Proposition 1.

As shown by the following example, the necessary and
sufficient condition (50) is not always satisfied when |X | > 2.
Let

pY |X,S(y|x, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (x, y, s) = (0, 0, 0) or (1, 1, 1),

0, (x, y, s) = (0, 1, 0) or (1, 0, 1),
2
5 , (x, y, s) = (1, 0, 0) or (0, 1, 1),
3
5 , (x, y, s) = (1, 1, 0) or (0, 0, 1),
3

10 , (x, y, s) = (2, 0, 0),
1
5 , (x, y, s) = (2, 0, 1),
7

10 , (x, y, s) = (2, 1, 0),
4
5 , (x, y, s) = (2, 1, 1),

(62)

pS(0) = pS(1) = 1

2
. (63)

For this example, it can be verified that û ∈ U+\Gδ and

∑

y∈Y,s∈S
pS(s)δ(û, y, s) log

pY |X,S(y|ψ(û, ∗), s)
∑

x∈X pX̂ (x)pY |X,S(y|x, s)
< 0,

where ψ(û, ·) is given by ψ(û, 0) = 2, ψ(û, 1) = 1,
and ψ(û, ∗) = 1; indeed, Fig. 5 shows that
C(pY |X,S, pS,BEC(ε)) > C(pY |X,S, pS) for ε ∈ [0, 1).

Fig. 5. Plot of C(pY |X,S, pS ,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S
and pS are given by (62) and (63), respectively.

The proof of Proposition 1 in fact suggests a strategy for
computing ε(pY |X,S, pS). Let pX̂ be an arbitrary maximizer
of the optimization problem in (4) and define pÛ according
to (11). Note that

• DG E (pÛ , 1, u) ≤ C(pY |X,S, pS) for u ∈ U (see (52)
and (53)),

• DG E (pÛ , ε, u) does not depend on ε for u ∈ Gδ
(see (54)),

• DG E (pÛ , ε, u) is a strictly convex function of ε for
u ∈ U\Gδ (see (60)).

Hence, for each u ∈ U , there are three mutually exclusive
cases.

1) DG E (pÛ , 0, u) ≤ C(pY |X,S, pS): We have
DG E (pÛ , ε, u) ≤ C(pY |X,S, pS) for ε ∈ [ε(u), 1],
where ε(u) = 0.

2) DG E (pÛ , 0, u) > DG E (pÛ , 1, u) = C(pY |X,S, pS)

and ∂
∂ε DG E (pÛ , ε, u)

∣
∣
ε=1 ≤ 0 (this case can arise

only when |X | > 2): We have DG E (pÛ , 0, u) >
C(pY |X,S, pS) for ε ∈ [0, ε(u)), where ε(u) = 1.

3) Otherwise: We have DG E (pÛ , ε, u) > C(pY |X,S, pS)
for ε ∈ [0, ε(u)) and DG E (pÛ , ε, u) ≤ C(pY |X,S, pS)
for ε ∈ [ε(u), 1], where ε(u) is the unique solution of
DG E (pÛ , ε, u) = C(pY |X,S, pS) for ε ∈ (0, 1).

It can be readily shown that

ε(pY |X,S, pS) = max
u∈U

ε(u). (64)

We can compute q(pY |X,S, pS) in a similar way. Define

DGS(pU , q, u) = D(pY,S|U (·, ·|u)‖pY,S),

where

pY,S|U(y, s|u) = pS(s)(pY |X,S(y|ψ(u, s), s)+ qω(u, y, s))
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with

ω(u, y, s) =
∑

s̃∈S :s̃ 	=s

pY |X,S(y|ψ(u, s̃), s)

−(|S| − 1)pY |X,S(y|ψ(u, s), s),

u ∈ U, y ∈ Y, s ∈ S.
Again, let pÛ be defined5 according to (11). It can be verified
that

DGS(pÛ , q, u)

=
∑

y∈Y,s∈S
pS(s)(pY |X,S(y|ψ(u, s), s)+ qω(u, y, s))

× log
pY |X,S(y|ψ(u, s), s)+ qω(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

,

q ∈ [0, 1

|S| ], u ∈ U,
∂

∂q
DGS(pÛ , q, u)

=
∑

y∈Y,s∈S
pS(s)δ(u, y, s)

× log
pY |X,S(y|ψ(u, s), s)+ qω(u, y, s)

∑
x∈X pX̂ (x)pY |X,S(y|x, s)

,

q ∈ [0, 1

|S| ], u ∈ U,
∂2

∂q2 DGS(pÛ , q, u)

=
∑

y∈Y,s∈S

pS(s)δ2(u, y, s)

pY |X,S(y|ψ(u, s), s) + qω(u, y, s)
> 0,

q ∈ [0, 1

|S| ], u ∈ U\Gω,
where

Gω = {u ∈ U : ω(u, y, s) = 0 for all y ∈ Y and s ∈ S}.
Clearly,

• DGS(pÛ ,
1

|S| , u) ≤ C(pY |X,S, pS) for u ∈ U ,
• DGS(pÛ , q, u) does not depend on q for u ∈ Gω,
• DGS(pÛ , q, u) is a strictly convex function of q for

u ∈ U\Gω.

Hence, for each u ∈ U , there are also three mutually exclusive
cases.

1) DGS(pÛ , 0, u) ≤ C(pY |X,S, pS): We have
DGS(pÛ , q, u) ≤ C(pY |X,S, pS) for q ∈ [q(u), 1],
where q(u) = 0.

2) DGS(pÛ , 0, u) > DGS(pÛ ,
1

|S| , u) = C(pY |X,S, pS)

and ∂
∂q DGS(pÛ , q, u)

∣
∣
∣
q= 1

|S|
≤ 0 (this case can arise

only when |X | > 2): We have DGS(pÛ , 0, u) >

C(pY |X,S, pS) for q ∈ [0, q(u)), where q(u) = 1
|S| .

3) Otherwise: We have DGS(pÛ , q, u) > C(pY |X,S, pS)
for q ∈ [0, q(u)) and DGS(pÛ , q, u) ≤ C(pY |X,S, pS)

5Note that the underlying U depends on S̃. In particular, |U | = |X ||S| when

pS̃|S is a generalized symmetric channel whereas |U | = |X ||S|+1 when pS̃|S
is a generalized erasure channel.

for q ∈ [q(u), 1
|S| ], where q(u) is the unique solution

of DGS(pÛ , q, u) = C(pY |X,S, pS) for q ∈ (0, 1
|S| ).

It can be readily shown that

q(pY |X,S, pS) = max
u∈U

q(u). (65)

For pY |X,S and pS illustrated in Fig. 2 (see also (9) and
(10)), we show in Appendix B that

ε(pY |X,S, pS) =
{
ε̂(θ), θ ∈ (0, 1),
0, otherwise,

(66)

q(pY |X,S, pS) =
{

q̂(θ), θ ∈ (0, 1),
0, otherwise,

(67)

where ε̂(θ) is the unique solution of

ε(1 − θ) log 2ε + (1 − ε(1 − θ)) log
2(1 − ε(1 − θ))

1 + θ

= (1 − θ) log 2 + θ log
2θ

1 + θ

for ε ∈ (0, 1), and q̂(θ) is the unique solution of

q(1 − θ) log 2q + (1 − q(1 − θ)) log
2(1 − q(1 − θ))

1 + θ

= 1

2

(

(1 − θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

for q ∈ (0, 1
2 ). Setting θ = 1

2 gives ε(pY |X,S, pS) ≈ 0.1
(cf. Fig. 3) and q(pY |X,S, pS) ≈ 0.037 (cf. Fig. 4).

B. Extension of Theorem 2

We shall extend Theorem 2 in a similar fashion. For any
pY |X,S and pS , define

ε(pY |X,S, pS) = max{ε ∈ [0, 1] : C ′(pY |X,S, pS, p
S̃(ε)GE |S)

= C(pY |X,S, pS)},
q(pY |X,S, pS) = max{q ∈ [0, 1

|S| ] : C ′(pY |X,S, pS, p
S̃(q)GS|S

)

= C(pY |X,S, pS)}.
Proposition 2: 1) There exists β(pY |X,S, pS) > 0 such

that C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS) for all pS̃|S
satisfying H (S|S̃) ≤ β(pY |X,S, pS) if and only if
q(pY |X,S, pS) > 0.

2) q(pY |X,S, pS) > 0 if and only if there exists pX̂ |S ∈ P
such that

{x ∈ X : pX̂ |S(x |s) > 0} = X+, s ∈ S. (68)

Proof: The first statement can be easily extracted from the
proof of Theorem 2. The second statement is a consequence
of Lemma 4.

As shown by the following example, the necessary and
sufficient condition (68) is not always satisfied when |X | > 2.
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Fig. 6. Plot of C ′(pY |X,S , pS ,BSC(q)) against q for q ∈ [0, 1
2 ], where

pY |X,S and pS are given by (69) and (70), respectively.

Let

pY |X,S(y|x, s) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, (x, y, s) = (0, 0, 0) or (2, 1, 1),

0, (x, y, s) = (0, 1, 0) or (2, 0, 1),
2
5 , (x, y, s) = (1, 0, 0) or (0, 1, 1),
3
5 , (x, y, s) = (1, 1, 0) or (0, 0, 1),
4
5 , (x, y, s) = (2, 0, 0) or (1, 1, 1),
1
5 , (x, y, s) = (2, 1, 0) or (1, 0, 1),

(69)

pS(0) = pS(1) = 1

2
. (70)

For this example, it can be verified that the maximizer of the
optimization problem in (5), denoted by pX̂ |S , is unique and

{x ∈ X : pX̂ |S(x |0) > 0} = {0, 1},
{x ∈ X : pX̂ |S(x |1) > 0} = {0, 2};

indeed, Fig. 6 shows that C ′(pY |X,S, pS,BSC(q)) <
C(pY |X,S, pS) for q ∈ (0, 1

2 ].
In view of Lemmas 3 and 4, we have

ε(pY |X,S, pS) = max
pX̂ |S∈P

∑

x∈X
min
s∈S

pX̂ |S(x |s), (71)

q(pY |X,S, pS) = max
pX̂ |S∈P

min
x∈X+,s∈S

pX̂ |S(x |s)
∑

s ′∈S pX̂ |S(x |s′)
. (72)

Note that P does not depend on pS (under the assumption
ρ > 0); as a consequence, ε(pY |X,S, pS) and q(pY |X,S, pS)
do not depend on pS either. For pY |X,S and pS illustrated in
Fig. 2 (see also (9) and (10)), we show in Appendix C that

ε(pY |X,S, pS) =
⎧
⎨

⎩

2

(

1 + (1 − θ)θ
θ

1−θ
)−1

θ
θ

1−θ , θ ∈ (0, 1),

1, otherwise,
(73)

q(pY |X,S, pS) =

⎧
⎪⎨

⎪⎩

(

1 + (1 − θ)θ
θ

1−θ
)−1

θ
θ

1−θ , θ ∈ (0, 1),

1
2 , otherwise.

(74)

Setting θ = 1
2 gives ε(pY |X,S, pS) = 4

5 (cf. Fig. 3) and
q(pY |X,S, pS) = 2

5 (cf. Fig. 4).

C. Two Implicit Conditions

In this subsection, we shall examine the following two
implicit conditions in Theorem 1:

1) perfect state information at the decoder,
2) causal noisy state observation at the encoder.
If no state information is available at the decoder, then the

channel capacity is given by

C̃(pY |X,S, pS, pS̃|S) � max
pU

I (U ; Y ),

where the joint distribution of (U, X,Y, S, S̃) is given by (2).
Furthermore, if there is also no state information available at
the encoder, then the channel capacity becomes

C̃(pY |X,S, pS) � max
pX

I (X; Y ), (75)

where pX,Y,S(x, y, s) = pX (x)pS(s)pY |X,S(y|x, s). Define

ε̃(pY |X,S, pS) = min{ε ∈ [0, 1] : C̃(pY |X,S, pS, p
S̃(ε)GE |S)

= C̃(pY |X,S, pS)}.
The proof of the following result is similar to that of Propo-
sition 1 and is omitted.

Proposition 3: 1) There exists α̃(pY |X,S, pS) > 0 such
that C̃(pY |X,S, pS, pS̃|S) = C̃(pY |X,S, pS) for all pS̃|S
satisfying I (S; S̃) ≤ α̃(pY |X,S, pS) if and only if
ε̃(pY |X,S, pS) < 1.

2) ε̃(pY |X,S, pS) < 1 if and only if

∑

y∈Y

(
∑

s∈S
pS(s)δ(u, y, s)

)

× log

∑
s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)

∑
x∈X ,s∈S pX̂ (x)pS(s)pY |X,S(y|x, s)

> 0,

u ∈ Ũ+\G̃δ, (76)

where δ(u, y, s) is defined in (14), pX̂ is an arbitrary
maximizer of the optimization problem in (75), and

G̃δ =
{

u ∈ U :
∑

s∈S
pS(s)δ(u, y, s) = 0 for all y ∈ Y

}

,

Ũ+ =
{

u ∈ U :
∑

y∈Y

(∑

s∈S
pS(s)pY |X,S(y|ψ(u, ∗), s)

)

× log

∑
s∈S pS(s)pY |X,S(y|ψ(u, ∗), s)

∑
x∈X ,s∈S pX̂ (x)pS(s)pY |X,S(y|x, s)

= C̃(pY |X,S, pS)

}

.

As shown by the following example, the necessary and
sufficient condition (76) is not always satisfied even when
|X | = 2. Let

Y = X ⊕ S, X = Y = S = {0, 1}, (77)

pS(1) = μ ∈ (0, 1

2
), (78)
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Fig. 7. Plot of C̃(pY |X,S, pS ,BEC(ε)) against ε for ε ∈ [0, 1], where pY |X,S
and pS are given by (77) with μ = 1

4 and (78), respectively.

where ⊕ is the modulo-2 addition. It can be verified that (76)
is not satisfied for this example; indeed, Fig. 7 indicates that

C̃(pY |X,S, pS,BEC(ε)) > C̃(pY |X,S, pS), ε ∈ [0, 1). (79)

Here we give an alternative way to prove (79). Write S =
S̃⊕�, where S̃ and � are two mutually independent Bernoulli
random variables with

pS̃(1) = ν ∈ [0, μ],
p�(1) = μ− ν

1 − 2ν
.

It is clear that

C̃(pY |X,S, pS, pS̃|S) = log 2 − H (�)

> log 2 − H (S)

= C̃(pY |X,S, pS), ν ∈ (0, μ]. (80)

In light of Lemma 3, pS̃|S is a stochastically degraded version
of BEC(ε) and consequently

C̃(pY |X,S, pS,BEC(ε)) ≥ C̃(pY |X,S, pS, pS̃|S) (81)

if H (S) − H (�) ≤ μ2(1−ε)2
2 . Combining (80) and (81)

proves (79).
Now we proceed to examine the second implicit condi-

tion. If the noisy state observation is available non-causally
at the encoder, the Gelfand-Pinsker theorem [11] (see also
[3, Th. 7.3]) indicates that the channel capacity is given by

CG P(pY |X,S, pS, pS̃|S) � max
pU |S̃

I (U ; Y, S) − I (U ; S̃),

where the joint distribution of (U, X,Y, S, S̃) factors as

pU,X,Y,S,S̃(u, x, y, s, s̃)

= pS(s)pS̃|S(s̃|s)pU |S̃(u|s̃)I(x = ψ(u, s̃))pY |X,S(y|x, s),

u ∈ U, x ∈ X , y ∈ Y, s ∈ S, s̃ ∈ S̃.

Fig. 8. Plot of CG P (pY |X,S, pS ,BEC(ε)) against ε for ε ∈ [0, 1], where
pY |X,S and pS are given by (9) with θ = 1

2 and (10), respectively.

It turns out that CG P (pY |X,S, pS, pS̃|S) is bounded between
C(pY |X,S, pS, pS̃|S) and C ′(pY |X,S, pS, pS̃|S), i.e.,

C(pY |X,S, pS, pS̃|S) ≤ CG P(pY |X,S, pS, pS̃|S)
≤ C ′(pY |X,S, pS, pS̃|S).

Indeed, the first inequality is obvious, and the second one holds
because

I (U ; Y, S) − I (U ; S̃) ≤ I (U ; Y, S) − I (U ; S)

= I (U ; Y |S)
≤ I (X; Y |S).

In Fig. 8 we plot CG P(pY |X,S, pS,BEC(ε)) against ε
for ε ∈ [0, 1], where pY |X,S and pS are given
by (9) with θ = 1

2 and (10), respectively; it can be
seen that CG P (pY |X,S, pS,BEC(ε)) is strictly greater than
C(pY |X,S, pS) except when ε = 1. So the causality condition
on the noisy state observation at the encoder is not superfluous
for Theorem 1.

V. CONCLUSION

We have shown that the capacity of binary-input6 channels
is very “sensitive” to the quality of the encoder side informa-
tion whereas the generalized probing capacity is very “robust.”
Here the words “sensitive” and “robust” should not be under-
stood in a quantitative sense. Indeed, it is known [7] that,
when |X | = 2, the ratio of C(pY |X,S, pS) to C(pY |X,S, pS) is
at least 0.942 and the difference between these two quantities
is at most ∼0.011 bit; in other words, the gain that can
be obtained by exploiting the encoder side information (or
the loss that can be incurred by ignoring the encoder side
information) is very limited anyway.

6In fact, both numerical simulation and theoretical analysis suggest that
similar results hold for many (but not all) non-binary-input channels.
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Binary signalling is widely used, especially in wideband
communications. So our work might have some practical
relevance. However, great caution should be exercised in inter-
preting Theorems 1 and 2. Specifically, both results rely on
the assumption that the channel state takes values from a finite
set,7 which is not necessarily satisfied in reality; moreover, the
freedom of power control in real communication systems is
not captured by our results. Nevertheless, our work can be
viewed as an initial step towards a better understanding of
the fundamental performance limits of communication systems
where the transmitter side information and the receiver side
information are not deterministically related.

Finally, it is worth mentioning that our results might have
their counterparts in source coding.

APPENDIX A
AN ALTERNATIVE PROOF OF THEOREM 2

We shall show that, for any binary-input channel pY |X,S,
state distribution pS, and side channel pS̃|S ,

C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)

if

H (S|S̃) ≤ 4ρ log 2

3 + 2(e − 1)
√

2|S| . (82)

Lemma 7: pX̂ |S is a stochastically degraded version of pS̃|S
if

H (S|S̃) ≤ 4τρ log 2

3τ + 2
√

2|S| , (83)

where

τ = min
x∈X+

mins∈S pX̂ |S(x |s)
maxs∈S pX̂ |S(x |s) .

Proof: Let Ŝ denote the maximum likelihood estimate
of S based on S̃. It suffices to show that pŜ|S is invertible

and p−1
Ŝ|S pX̂ |S is a valid probability transition matrix if (83)

is satisfied.
Let σmin(pŜ|S) denote the smallest singular value of pŜ|S .

It follows from [12, Th. 3] that

σmin(pŜ|S) ≥ min
s∈S

1

2

(

2 pŜ|S(s|s)−
∑

ŝ∈S :ŝ 	=s

pŜ|S(ŝ|s)

−
∑

ŝ∈S :ŝ 	=s

pŜ|S(s|ŝ)
)

. (84)

Clearly,

min
s∈S

1

2

(

2 pŜ|S(s|s)−
∑

ŝ∈S :ŝ 	=s

pŜ|S(ŝ|s)−
∑

ŝ∈S :ŝ 	=s

pŜ|S(s|ŝ)
)

= min
s∈S

1

2

(

2 − 3
∑

ŝ∈S :ŝ 	=s

pŜ|S(ŝ|s)−
∑

ŝ∈S :ŝ 	=s

pŜ|S(s|ŝ)
)

≥ 1 − 3

2

∑

s,ŝ∈S :s 	=ŝ

pŜ|S(ŝ|s). (85)

7In contrast, the assumption |Y | < ∞ and |S̃| < ∞ is not essential

Substituting (85) into (84) and invoking (45) gives

σmin(pŜ|S) ≥ 1 − 3H (S|S̃)
4ρ log 2

. (86)

Therefore, pŜ|S is invertible if H (S|S̃) < 4ρ log 2
3 . Let ‖ · ‖∞,

‖ · ‖2, and ‖ · ‖F denote the maximum row sum matrix norm,
the spectral norm, and the Frobenius norm, respectively [13].
Note that

‖p−1
Ŝ|S − diag(1, · · · , 1)‖∞

≤ √|S|‖p−1
Ŝ|S − diag(1, · · · , 1)‖2

≤ √|S|‖p−1
Ŝ|S‖2‖pŜ|S − diag(1, · · · , 1)‖2 (87)

≤ √|S|‖p−1
Ŝ|S‖2‖pŜ|S − diag(1, · · · , 1)‖F , (88)

where (87) follows by the sub-multiplicative property of the
spectral norm. We have

‖p−1
Ŝ|S‖2 = 1

σmin(pŜ|S)

≤
(

1 − 3H (S|S̃)
4ρ log 2

)−1

, (89)

where (89) is due to (86). For pŜ|S − diag(1, · · · , 1), it is

clear that the diagonal entries are non-positive, the off-diagonal
entries are non-negative, and the sum of all entries is equal
to 0; moreover, the sum of its off-diagonal entries is bounded
above by H(S|S̃)

2ρ log 2 (see (45)). Therefore,

‖pŜ|S − diag(1, · · · , 1)‖F

=
√∑

s∈S
(pŜ|S(s|s)− 1)2 +

∑

s,ŝ∈S :s 	=ŝ

(pŜ|S(ŝ|s))2

≤
√
√
√
√

(
∑

s∈S
(pŜ|S(s|s)− 1)

)2

+
(

∑

s,ŝ∈S :s 	=ŝ

pŜ|S(ŝ|s)
)2

=
√
√
√
√2

(
∑

s,ŝ∈S :s 	=ŝ

pŜ|S(ŝ|s)
)2

≤ H (S|S̃)√
2ρ log 2

. (90)

Substituting (89) and (90) into (88) yields

‖p−1
Ŝ|S − diag(1, · · · , 1)‖∞

≤
√|S|H (S|S̃)√

2ρ log 2

(

1 − 3H (S|S̃)
4ρ log 2

)−1

. (91)

To ensure that all entries of p−1
Ŝ|S pX̂ |S are non-negative (or

equivalently (diag(1, · · · , 1) − p−1
Ŝ|S)pX̂ |S is component-wise

dominated by pX̂ |S), it suffices to have

‖p−1
Ŝ|S − diag(1, · · · , 1)‖∞ ≤ τ. (92)
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TABLE I

SPECIFICATION OF ψ(·, ·) FOR U = {0, 1, · · · , 7} AND S̃ = {0, 1, ∗}

Combining (91) and (92) shows that p−1
Ŝ|S pX̂ |S is a valid

probability transition matrix8 if (83) is satisfied.9

Since |X | = 2, it follows from [7, Th. 2] that there exists
pX̂ |S ∈ P satisfying

pX̂ |S(x |s) > e−1, x ∈ X , s ∈ S.
For such pX̂ |S , we have

τ ≥ 1

e − 1
.

Invoking Lemma 7 shows that pX̂ |S is a stochastically
degraded version of pS̃|S (and consequently
C ′(pY |X,S, pS, pS̃|S) = C(pY |X,S, pS)) if (82) is satisfied.

APPENDIX B
PROOF OF (66) AND (67)

Lemma 8: For θ ∈ (0, 1),

η(θ) � (1 − θ) log(1 + θ)+ θ log θ < 0.

Proof: We have

d2η(θ)

dθ2 = d

dθ

(

− log(1 + θ)+ 1 − θ

1 + θ
+ log θ + 1

)

= − 1

1 + θ
− 2

(1 + θ)2
+ 1

θ

= 1 − θ

θ(1 + θ)2

> 0, θ ∈ (0, 1),

which, together with the fact η(0) = η(1) = 0, implies the
desired result.

When θ = 0 or θ = 1, we have C(pY |X,S, pS) =
C(pY |X,S, pS), which implies ε(pY |X,S, pS) =
q(pY |X,S, pS) = 0. When θ ∈ (0, 1), the maximizer of
the optimization problem in (4), denoted by pX̂ , is unique
and is given by

pX̂ (0) = pX̂ (1) = 1

2
.

8The requirement that the entries in each row of p−1
Ŝ|S pX̂ |S add up to 1 is

automatically satisfied.
9Note that (83) implies H (S|S̃) < 4ρ log 2

3 , which further implies the
existence of p−1

Ŝ|S .

Now consider ψ(·, ·) specified by Table I. It can be verified
that

DG E (pÛ , ε, u)

= 1

2

(

(1 − θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

, u = 0, 1,

DG E (pÛ , ε, u)

= 1

2

(

ε(1 − θ) log 2ε + (θ + ε(1 − θ)) log
2(θ + ε(1 − θ))

1 + θ

+ (1 − ε(1 − θ)) log
2(1 − ε(1 − θ))

1 + θ

+ (1 − ε)(1 − θ) log 2(1 − ε)

)

, u = 2, 3,

DG E (pÛ , ε, u)

= 1

2

(

(1 − θ) log 2 + (θ + ε(1 − θ)) log
2(θ + ε(1 − θ))

1 + θ

+ θ log
2θ

1 + θ
+ (1 − ε)(1 − θ) log 2(1 − ε)

)

, u = 4, 5,

DG E (pÛ , ε, u)

= 1

2

(

ε(1 − θ) log 2ε + log
2

1 + θ

+ (1 − ε(1 − θ)) log
2(1 − ε(1 − θ))

1 + θ

)

, u = 6, 7.

Moreover,

DG E (pÛ , 0, u) = 1

2

(

(1 − θ) log 2 + log
2

1 + θ

+θ log
2θ

1 + θ

)

= C(pY |X,S, pS), u = 0, 1, 2, 3,

DG E (pÛ , 0, u) = (1 − θ) log 2 + θ log
2θ

1 + θ
< C(pY |X,S, pS), u = 4, 5, (93)

DG E (pÛ , 0, u) = log
2

1 + θ
> C(pY |X,S, pS), u = 6, 7, (94)

where (93) and (94) follow from Lemma 8. Therefore, we
have

ε(u) = 0, u = 0, 1, 2, 3, 4, 5,

ε(u) = ε̂(θ), u = 6, 7,

which, together with (64), proves (66) for θ ∈ (0, 1). Next
consider ψ(·, ·) specified by Table II. It can be verified that

DGS(pÛ , q, u)

= 1

2

(

(1 − θ) log 2 + log
2

1 + θ
+ θ log

2θ

1 + θ

)

, u = 0, 1,

DGS(pÛ , q, 2)

= (1 − q)(1 − θ) log 2(1 − q)

+(θ + q(1 − θ)) log
2(θ + q(1 − θ))

1 + θ
,

DGS(pÛ , q, 3)

= q(1 − θ) log 2q + (1 − q(1 − θ)) log
2(1 − q(1 − θ))

1 + θ
.
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TABLE II

SPECIFICATION OF ψ(·, ·) FOR U = {0, 1, · · · , 3} AND S̃ = {0, 1, ∗}

Moreover,

DGS(pÛ , 0, u) = 1

2

(

(1 − θ) log 2 + log
2

1 + θ

+θ log
2θ

1 + θ

)

= C(pY |X,S, pS), u = 0, 1,

DGS(pÛ , 0, 2) = (1 − θ) log 2 + θ log
2θ

1 + θ
< C(pY |X,S, pS), (95)

DGS(pÛ , 0, 3) = log
2

1 + θ
> C(pY |X,S, pS), (96)

where (95) and (96) follow from Lemma 8. Therefore, we
have

q(u) = 0, u = 0, 1, 2,

q(3) = q̂(θ),

which, together with (65), proves (67) for θ ∈ (0, 1).

APPENDIX C
PROOF OF (73) AND (74)

When θ = 0 or θ = 1, we have C(pY |X,S, pS) =
C(pY |X,S, pS), which implies ε(pY |X,S, pS) = 1 and
q(pY |X,S, pS) = 1

2 . When θ ∈ (0, 1), the maximizer of the
optimization problem in (5), denoted by pX̂ |S , is unique and
is given by

pX̂ |S(x |s)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(

1 + (1 − θ)θ
θ

1−θ
)−1

θ
θ

1−θ , x = s,

(

1 + (1 − θ)θ
θ

1−θ
)−1(

1 − θ
1

1−θ
)

, otherwise.

In view of (71) and (72), it suffices to show that

θ
θ

1−θ < 1 − θ
1

1−θ , θ ∈ (0, 1).

Indeed, for θ ∈ (0, 1),

θ
θ

1−θ < 1 − θ
1

1−θ

⇔ 1 < θ− θ
1−θ − θ

⇔ (1 − θ) log(1 + θ)+ θ log θ < 0,

and the last inequality is true according to Lemma 8.
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