
1548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

Caching and Delivery via Interference Elimination
Chao Tian , Senior Member, IEEE, and Jun Chen , Senior Member, IEEE

Abstract— We propose a new coded caching scheme where
linear combinations of the file segments are cached at the users,
for the cases where the number of files is no greater than
the number of users. When a user requests a certain file in
the delivery phase, the other file segments in the cached linear
combinations can be viewed as interference. The proposed scheme
combines rank-metric codes and maximum distance-separable
codes to facilitate the decoding and elimination of the interference
and also to simultaneously deliver useful contents to the intended
users. The performance of the proposed scheme can be explicitly
evaluated, and we show that it can achieve improvement over
known memory-rate tradeoff achievable results in the literature
in some regime; for certain special cases, the new memory-rate
tradeoff points can be shown to be optimal.

Index Terms— Cache memory, information theory.

I. INTRODUCTION

CACHING is a natural data management strategy when
communication has a bursty characteristic. During off-

peak time, local cache can be filled with data that is anticipated
to be useful later to reduce the delay when the communication
resources become scarce during peak time.

In a recent work [1], Maddah-Ali and Niesen provided
a formal information theoretic formulation for the caching
problem. In this formulation, there are N files, each of F bits,
and K users. Each user has a local cache memory of capacity
M F (thus a normalized capacity of M). In the placement
phase, the users can fill their caches with contents from the
central server without the knowledge of the precise requests.
In the delivery phase, each user will request one file from the
central server, and the central server must multicast certain
common (and possibly coded) information to all the users in
order to accommodate these requests. Since in the placement
phase, the requests at the later phase are unknown, the cached
contents must be strategically prepared at all the users. The
goal is to minimize the amount of multicast information
which has rate RF (or equivalently the normalized rate of
R), under the constraint on cache memory M; see Fig. 1.

Manuscript received April 19, 2016; revised November 17, 2017; accepted
December 28, 2017. Date of publication January 17, 2018; date of current
version February 15, 2018. C. Tian was supported by the National Science
Foundation under Grant CCF-15-26095. This paper was presented in part at
the 2016 International Symposium on Information Theory.

C. Tian was with the Department of Electrical Engineering and Computer
Science, The University of Tennessee, Knoxville, TN 37996 USA. He is now
with the Department of Electrical and Computer Engineering, Texas A&M
University, College Station, TX 77843 USA (e-mail: chao.tian@tamu.edu).

J. Chen is with the Department of Electrical and Computer Engi-
neering, McMaster University, Hamilton, ON L8S 4L8, Canada (e-mail:
junchen@ece.mcmaster.ca).

Communicated by K. Narayanan, Associate Editor for Coding Techniques.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2018.2794543

Fig. 1. An example caching system instance, where there are N = 3
files, denoted as (W1, W2, W3), and K = 4 users, whose cached contents
are (Z1, Z2, Z3, Z4), respectively. In this instance the users request files
(1, 2, 2, 3), respectively, the multicast information together with the cached
contents at each user, can be used to recover the requested files.

It was shown in [1] that coding can be rather beneficial in
this setting, while uncoded solutions suffer a significant loss.
Subsequent works extended it also to decentralized caching
placements [2], caching with nonuniform demands [3], online
caching placements [4], and hierarchical coded caching [5];
the caching methods have also found their applications in other
communication systems [6].

The scheme given in [1] utilizes uncoded placement and
coded delivery transmission. A close inspection of the per-
formance of the scheme reveals that when N ≤ K , many
individual memory-rate tradeoff points achieved by the scheme
in [1] are not on the lower convex envelope, and thus an
effective scheme is lacking for this case, particularly when
the cache capacity is small. Though the scheme in [1] was
shown to be within a constant factor of the optimum, the loss
of efficiency can be relatively significant when either N or K
is small. Particularly, for more sophisticated caching scenarios,
usually either files or users need to be classified into smaller
groups (see e.g. [3]), and such loss of efficiency may be
magnified. Recently a special scheme given in [1] for the case
of N = K = 2 was extended to the case N ≤ K in [7], and it
was showed that the memory-rate tradeoff pair

�
1
K , N(K−1)

K

�

is achievable and in fact optimal.
In this work, we propose a new coded caching scheme

when N ≤ K that caches linear combinations of the file
segments. When files are not being requested by a user, their
segments in the cached linear combinations can be considered
as interference by this user. Our scheme strategically elimi-
nates the interference by utilizing a combination of rank metric
codes and maximum distance separable codes; the delivery
transmission also simultaneously serves the role of content

0018-9448 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-8752-6141
https://orcid.org/0000-0002-8084-9332
https://orcid.org/0000-0001-8752-6141
https://orcid.org/0000-0002-8084-9332
https://orcid.org/0000-0001-8752-6141
https://orcid.org/0000-0002-8084-9332


TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1549

delivery to other users. We show that the proposed scheme can
provide new memory-rate tradeoff points that are strictly better
than the known achievable memory-rate tradeoff results in the
literature. In fact, in certain cases, it can achieve points on
the optimal tradeoff function. In contrast to previous schemes
in the literature, the proposed codes are not binary, but in
larger finite fields. Although we utilize rank metric codes as a
convenient tool to construct general explicit codes, it is by no
means necessary. In fact one disadvantage of using rank metric
codes is the large field size that the codes require, and we show
that by directly considering the underlying rank constraints and
utilizing generic linear codes, a smaller field size is sufficient
for such codes to exist.

In the rest of the paper, we shall first give the main
theorem in Section II, then introduce some preliminaries in
Section III. Before presenting the new codes, we provide three
examples to illustrate the design principles in Section IV. The
coding scheme, the corresponding proofs of correctness and
analysis are given in Section V and Section VI, respectively.
We conclude the paper in Section VII, and relegate some more
technical proofs to the appendix.

II. MAIN THEOREM

The main result of this paper is summarized below, where
N is used to denote the set of natural numbers.

Theorem 1: For N ∈ N files and K ∈ N users each with
a cache of size M, where N ≤ K , the following memory-rate
(M, R) pairs are achievable�

t[(N − 1)t + K − N]
K (K − 1)

,
N(K − t)

K

�
, t = 0, 1, . . . , K .

(1)

With t = 0 the memory-rate tradeoff point degenerates to
the trivial one (M, R) = (0, N), i.e., no cache; when t = 1,
it gives the same memory-rate pair as given in [7]; when
t = K , we obtain another trivial point of (M, R) = (N, 0),
i.e., no delivery transmission.

The new memory-rate tradeoff points are illustrated for the
case (N, K ) = (2, 4) in Fig. 2. For reference, the tradeoff
points achieved by the scheme in [1] and the cut-set based
lower bound [1] are also shown, together with a computation-
based lower bound established in a separate work (see [8])
using a method developed in [9]. The two leftmost points
achieved by the proposed scheme (the solid black line labeled
with diamonds) are previously known, which are the trivial
case with no cache, and the point given in [7], respectively.
The third point is previously unknown to be achievable, and
it is explained in detail in Section IV. Here all three points
given by the new code are in fact on the optimal tradeoff
function. The new memory-rate point (M, R) = (2/3, 1) is
strictly better than the known upper bound given in [1], which
is shown in dashed magenta in Fig. 2.

In the proposed scheme, for demands where not all files
are requested, the scheme can be viewed as degenerate cases
of the scheme for certain enhanced demands, where all files
are being requested. Although the scheme for such demands
can be viewed as degenerate, this does not imply the memory-
rate tradeoff points achieved by the proposed scheme are only

Fig. 2. Illustration of the memory-rate tradeoff upper bounds and the lower
bounds for (N, K ) = (2, 4). The pair (1/2, 3/2) can be achieved by the
scheme given in [1], but it is not on the convex envelope of the previously
known upper bound.

Fig. 3. Illustration of the achievable memory-rate tradeoffs for
(N, K ) = (4, 20). The solid teal line completes the lower convex envelope
of the memory-rate pairs by the proposed scheme and those by the scheme
in [1].

effective when R ≥ N − 1, for which non-trivial codes are
required only for the demands that all files are requested; see
Sections V and VI. The different memory-rate tradeoff points
achieved by the proposed scheme and those achieved by the
scheme given in [1] are illustrated for the case of (N, K ) =
(4, 20) in Fig. 3. The point (M, R) = (259/380, 13/5) is on
the lower convex envelope, and the transmission rate is less
than N − 1 = 3 here.

As indicated by Fig. 2 and Fig. 3, for the cases N ≤ K
where the proposed codes are valid, there are in general
three regimes: the proposed scheme performs better in the
low cache memory regime, the scheme in [1] performs better
in the high cache memory regime, and there is a transition
regime in between. Since the proposed scheme in fact naturally



1550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

generalizes the code given in [7], which was shown to be
optimal when M ≤ 1

K , the improvement by the proposed
scheme in the low memory regime is indeed expected. More-
over, it was shown in [7] that the scheme in [1] is strictly
sub-optimal in this range, and as a consequence the scheme
proposed in our work is strictly better than that in [1] when
M ≤ 1

K , however as M increases, the advantage appears
to decrease gradually and then vanishes. The precise amount
of improvement and the exact transition point between the
proposed scheme and that in [1] turn out to be quite difficult
to characterize, mainly due to the fact that both are represented
as the convex envelopes of some discrete memory-rate pairs.
Nevertheless we can form a new upper bound to the optimal
memory-rate tradeoff by taking the lower convex envelope of
the union of the memory-rate tradeoff points in Theorem 1
and those in [1], as illustrated more explicitly in Fig. 3.

III. PRELIMINARIES

In this section we review some existing results on the
caching problem, and then provide some necessary back-
ground information on maximum distance separable (MDS)
codes and rank metric codes.

A. Known Caching Schemes and Memory-Rate Tradeoffs

Theorem 2 (Maddah-Ali and Niesen [1]): For N ∈ N files
and K ∈ N users each with a cache of size M ∈
{0, N/K , 2N/K , . . . , N}, the rate

R = K (1 − M/N) · min

�
1

1 + K M/N
,

N

K

�
(2)

is achievable. For general 0 ≤ M ≤ N, the lower convex
envelope of these memory-rate (M, R) points is achievable.

The first value in the minimization is achieved by the
scheme of uncoded placement together with coded transmis-
sion [1], while the latter value is by simple uncoded placement
and uncoded transmission. Though this theorem is indeed
correct, it can be slightly misleading since it may give the
impression that the simple uncoded placement and uncoded
transmission scheme can be effective in certain regime when
N < K . A close examination reveals that this trivial scheme
only provides one operating point (N, 0) in the convex enve-
lope when N ≤ K , as illustrated in Fig. 2. Thus a good caching
strategy for the low memory case is still lacking.

As mentioned early, in a recent work [7], Chen et al.
extended a special scheme for the case N = K = 2
discussed in [1] to the general case N ≤ K , and showed
that the memory-rate tradeoff pair

�
1
K , N(K−1)

K

�
is achievable.

It should be noted that the scheme given in [1] uses uncoded
placement with coded transmission, while the scheme in [7]
uses coded placement and coded transmission. Both schemes
use only binary coding, in contrast to the codes we propose
in this work. As noted in [1], the caching problem is related
to the well known index coding problem [10], however, this
connection has not led to any concrete results on the caching
problem.

B. Maximum Distance Separable Codes

A linear code of length n and dimension k is called an
(n, k) code. The Singleton bound (see e.g., [11]) is a well
known upper bound on the minimum distance for any (n, k)
code, given as

dmin ≤ n − k + 1. (3)

An (n, k) code that satisfies the Singleton bound with
equality is called a maximum distance separable (MDS) code.
A key property of an MDS code is that it can correct any
(n − k) or fewer erasures [11]. For any (n, k) pairs where
n ≥ k, MDS codes exist in any finite field Fq when q ≥ n.

C. Linearized Polynomial and Rank Metric Codes

In order to handle the competing coding requirements in the
caching problem, we use rank metric codes based on linearized
polynomials (see [12]), for which the following lemma is
particularly relevant; see, e.g., [13].

Lemma 1: A linearized polynomial in the finite field Fqm

f (x) =
P�

i=1

vi xqi−1
, vi ∈ Fqm (4)

can be uniquely identified from evaluations at any P points
x = θi ∈ Fqm , i = 1, 2, . . . , P, that are linearly independent
over Fq.

Another relevant property of linearized polynomials is that
they satisfy the following condition

f (ax + by) = a f (x) + b f (y), a, b ∈ Fq , x, y ∈ Fqm , (5)

which is the reason that they are called “linearized”. This
property implies the following lemma.

Lemma 2: Let f (x) be a linearized polynomial in Fqm as
given in (4), and let θi ∈ Fqm , i = 1, 2, . . . , Po, be linearly
independent over Fq . Let G be a Po × P full rank (rank P)
matrix with entries in Fq , then f (x) can be uniquely identified
from

[ f (θ1), f (θ2), . . . , f (θPo)] · G. (6)

Proof: We slightly abuse the notation by allowing the
function f (x) to take vector input in F

P0
qm , and define the output

as the vector obtained by concatenating the output of f (x) on
each input component. Then by the linearized property,

[ f (θ1), f (θ2), . . . , f (θPo)] · G = [ f (θ1, θ2, . . . , θPo)] · G

= f [(θ1, θ2, . . . , θPo) · G].
Recall when each θi is viewed as a vector in F

m
q ,

the (θ1, θ2, . . . , θPo) vectors are linearly independent. Since G
has rank P , (θ1, θ2, . . . , θPo)·G has rank P in Fq , i.e., we have
P evaluations of f (x) at P linearly independent values, and
thus by Lemma 1, f (x) can be uniquely identified.

With a fixed set of θi ∈ Fqm , i = 1, 2, . . . , Po,
which are linearly independent, we can view (v1, . . . , vP )
as information symbols to be encoded, and the evaluations
[ f (θ1), f (θ2), . . . , f (θPo)] as the coded symbols. This is a
(Po, P) MDS code in terms of rank metric [12], where
Po ≥ P . More importantly, the above lemma says any full rank



TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1551

TABLE I

CACHING CONTENT FOR (N, K ) = (2, 4)

(rank P) Fq linear combinations of the coded symbols are
sufficient to decode all the information symbols. This linear-
transform-invariant property had been utilized previously in
other coding problems such as network coding with errors and
erasures [14], locally repairable codes with regeneration [15],
and layered regenerating codes [16].

The codes thus obtained are not systematic, but they can
be converted to systematic codes by viewing the informa-
tion symbols (w1, w2, . . . , wP ) as the first P evaluations
[ f (θ1), f (θ2), . . . , f (θP)], which can be used to find the
coefficients of the linearized polynomial (v1, v2, . . . , vP ),
and then the additional parity symbols can be generated by
evaluating this linearized polynomial at the remaining points
(θP+1, . . . , θPo). Systematic rank-metric codes are instrumen-
tal in our construction.

IV. THREE EXAMPLES

In this section, we provide three examples to illustrate the
placement and transmission mechanism and discuss several
critical observations. These observations provide important
intuitions, which are used to design the placement and the
transmission strategy for the general case.

A. A (2, 4) Code: The Rank Counting Perspective

This example is the main prototype code that leads to the
discovery of the general code construction, and we present
it next in an explicit and symmetric form in a specific
small alphabet. This form bears certain similarity to the
code in both [1] and [7], and readers familiar with those
works may find this connection of interest. The intuitions
behind this code will then be discussed from a more general
viewpoint.

In this example, the two files are denoted as A and B , each
of which is partitioned into 6 segments of equal size, denoted
as Ai and Bi , respectively, i = 1, 2, . . . , 6. This example
corresponds to t = 2, and the number of segments being 6
is deduced from

	K
t



, for reasons soon to be made clear in

the sequel. The contents in the cache of each user are given
in Table I. By the symmetry of the cached contents, we only
need to consider the demand (A, A, A, B), i.e., the first three
users requesting A and user 4 requesting B , and the demand
(A, A, B, B), i.e., the first two users requesting A and the
other two requesting B . Assume the file segments are in
F5, which is the field we operate in. This code we present
next can achieve (M, R) = ( 2

3 , 1) which is strictly outside
the known achievable memory-rate tradeoff, as illustrated
in Fig. 2.

• For the demands (A, A, A, B), the transmissions are

Step 1: B1, B2, B4;
Step 2: A3 + 2A5 + 3A6, A3 + 3A5 + 4A6;
Step 3: A1 + A2 + A4.

After Step 1, user 1 can recover (A1, A2); furthermore, he
has (A3 + B3, A3 + 2B3) by eliminating known symbols
(A1, A2, B1, B2), from which A3 can be recovered. After
Step 2, he can obtain (2A5 +3A6, 3A5 +4A6) to recover
(A5, A6). Using the transmission in Step 3, he can obtain
A4 since he has (A1, A2). User 2 and user 3 can use a
similar strategy to reconstruct all file segments in A. User
4 only needs B3, B5, B6 after Step 1, which he already
has in his cache, however they are contaminated by file
segments from A. Nevertheless, he knows A3 + A5 + A6
by recognizing

(A3 + A5 + A6) = 2
�

i=3,5,6

(Ai + Bi)

−[A3 + A5 + A6 + 2(B3 + B5 + B6)]. (7)

Together with the transmission in Step 2, user 4 has three
linearly independent combinations of (A3, A5, A6). After
recovering them, he can remove the interference from the
cached content for (B3, B5, B6).

• For the demand (A, A, B, B), we can send

Step 1: B1, A6;
Step 2: A2 + 2A4, A3 + 2A5, B2 + 2B3, B4 + 2B5.

User 1 has A1, B1, A6 after Step 1, and he can also form

B2 + B3 = [A2 + A3 + 2(B2 + B3)]
− (A2 + B2) − (A3 + B3),

and together with B2 +2B3 in the transmission of Step 2,
he can recover (B2, B3), and thus A2, A3. He still needs
(A4, A5), which can be recovered straightforwardly from
the transmission (A2 + 2A4, A3 + 2A5) since he already
has (A2, A3). Other users can use a similar strategy to
decode their requested files.

This example may seem rather complicated and arbitrary at
first sight, however, we can make a few observations which
should clarify the purpose of each transmission.

The placement of the file segments has certain similarity to
the scheme in [1]. Each file is partitioned into segments, and
each segments are given to multiple users, however, they are
stored only as linear combinations with segments from other
files. The first several (3 in this example) cached symbols can
be viewed as semi-systematic, as they are simple summations



1552 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

of the corresponding file segments, while the last symbol is a
local parity symbol. However, it is not necessary to classify
the cached contents at a user into these two categories, but
we choose this form to facilitate presentation. In the next two
examples and the general construction, we present the code in
a more general manner.

Transmissions in Step 1 are uncoded which provide certain
segments to users that request it, but at the same time help
to eliminates some interference at other users. A segment
from a file is transmitted uncoded only when it is not present
at any users1 that are requesting this file. Step 2 is coded
transmission, and it also serves the dual role of interference
elimination and content delivery. In this step, we only transmit
linear combinations of segments, each of which is formed by
linearly combining segments from a single file; in fact, each
such combination is formed with symbols present at a single
user that is not requesting this file. For example, for the case
(A, A, A, B), the transmission A3 + 2A5 + 3A6 has symbols
in the cache of user 4, but user 4 is not requesting file A.
The coefficients of the linear combinations in the placement
and the transmission need to be chosen carefully to guarantee
certain full rank property; cf. again, the transmissions by user
4 for the case (A, A, A, B) in the example.

The most important observation is the following alternative
view of the transmission and decoding process. Take for
instance the case with demand (A, A, A, B): user 4 receives
symbols (A3 + 2A5 + 3A6, A3 + 3A5 + 4A6), together with
4 cached symbols, all of which are linear combinations of
basis (A3, A5, A6, B3, B5, B6). If these linear combinations
are linearly independent, then all these symbols can be
solved. A close inspection reveals they are indeed linearly
independent, and in fact the decoding process at any given
user can be understood this way. The precise linear com-
bination coefficients are not important, however, the linear
independence (or the coding matrix being full rank) directly
leads to the resolution of all interference. For this reason,
in the next example we do not explicitly specify the linear
combination coefficients, but only the basis of the subspace
and the dimension. For this purpose, we introduce the linear
subspace notation of

L[subset of files; index subset; dimension], (8)

which means a subspace of the given dimension with the
basis being the segments from the given files with the given
subscript indices. For example, the subspace spanned by
(A3 + 2A5 + 3A6, A3 + 3A5 + 4A6) shall be written as
L[A; {3, 5, 6}; 2], which means a dimension 2 linear sub-
space in the subspace with basis (A3, A5, A6). Further notice
that if the dimension is chosen to be the same as the
dimension of the subspace, it is equivalent to the uncoded
transmissions of this basis in its entirety. We shall assume
in the next example all necessary full rank properties can
be satisfied by properly choosing the coefficients, and in
the general scheme, we show that one particular choice

1In the proposed scheme, a file segment is present in a user’s cache only
as a component in some linear combinations, however we shall simply refer
to it as “present” at the user.

TABLE II

INTERFERENCE PATTERN FROM FILE A FOR (N, K ) = (3, 6)

of such coefficients based on linearized polynomials indeed
exists.

B. A (3, 6) Code: Efficient Interference Elimination

Given the observations above, we shall from here on adopt
the indexing method in [1], and enumerate the file segments
by the subset of users’ caches that they are present in.
For example when (N, K ) = (3, 6), file A has segments
A1,2,3, A1,2,4, etc., and A1,2,3 is present at users 1, 2, and 3
in some linear combinations; i.e., we choose to place any file
segment at t = 3 users, possibly as a component of some
linear combinations. In this example, we reserve the letter S
to enumerate some subset S ⊆ {1, 2, . . . , 6} and |S| = t = 3,
where | · | is used to denote the cardinality of a set. For the
case of K = 6, the k-th user caches the following linear
combinations of files (A, B, C):

L[A, B, C; {S : k ∈ S}; 18],
where the dimension 18 is chosen because the memory usage
at this point is 9/10 as in Theorem 1, and each file is
partitioned into

	6
3


 = 20 segments, which implies that each
user should cache 20 × 9/10 = 18 symbols.

We shall not discuss all the cases of file demands for this
example because it is rather lengthy, but will consider one
case, since it brings out a very important ingredient in our
transmission strategy.

Let us consider the case when the users request
(A, A, A, B, B, C). The transmissions in Step 1 are uncoded
transmissions similar as in the previous case, however let us
focus our attention on users 4, 5, 6 which are not requesting A,
in the subsequent steps. After the transmissions in Step 1, these
users still have the file segments in Table II as interference,
among many others (such as A1,2,4, A2,3,4, . . . for user 4).
Though we can transmit linear combinations of the basis

A1,4,5, A2,4,5, A3,4,5, A1,4,6, A2,4,6, A3,4,6, (9)

directly to eliminate this interference at user 4, this strat-
egy is not very efficient. Observe the following: the
basis (A1,4,5, A2,4,5, A3,4,5), which are underlined in the
table, are present in both user 4 and user 5; the basis
(A1,4,6, A2,4,6, A3,4,6) are at both user 4 and user 6;
(A1,5,6, A2,5,6, A3,5,6), which are overlined in the table, are
at user 5 and user 6. We can thus alternatively transmit

L[A; {{1, 4, 5}, {2, 4, 5}, {3, 4, 5}}; 2],
L[A; {{1, 4, 6}, {2, 4, 6}, {3, 4, 6}}; 2],
L[A; {{1, 5, 6}, {2, 5, 6}, {3, 5, 6}}; 2],



TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1553

TABLE III

CACHING CONTENT FOR THE EXAMPLE (N, K ) = (3, 4)

where because of the change of indexing method, we need
to specify the segments for a file by a collection of subsets;
for example the first row means 2 linear combinations of
(A1,4,5, A2,4,5, A3,4,5). Each of these subspaces provides 2
dimensional reduction of the interference at 2 users simul-
taneously. This results in a total of dimension 4 interference
reduction at each user with transmission of 6 symbols, which
is difficult to accomplish without taking advantage of these
subspace intersections.

C. A (3, 4) Code: Degenerate File Requests

In this example, there are three files (A, B, C), and we
choose the parameter t = 2, i.e., each file is partitioned into 6
segments and each segment is placed at two users. We wish to
show that the memory-rate pair (M, R) = ( 5

6 , 3
2 ) is achievable

by extending the code given in the previous examples, though
this memory-rate point is actually worse than known results
in the literature. Note that since R ≤ 2, the types of demands
where only two files are requested cannot be satisfied by
simply transmitting these files directly. As it turns out, these
cases can be considered as degenerate from the cases when
all files are being requested by the users.

The three users cache the contents as shown in Table. III.
Only the following three types of requests need to be consid-
ered due to symmetry:

• For the case (A, A, B, C), the transmissions are:

Step 1: A3,4, B1,2, B1,4, B2,4, C1,2, C1,3, C2,3;
Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1].

• For the case (A, A, B, B), the transmissions are:

Step 1: A3,4, B1,2, B1,4, B2,4;
Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1];
Step 4: B1,3, B2,3, C1,2.

• For the case (A, A, A, C), the transmissions are:

Step 1: A3,4, C1,2, C1,3, C2,3;
Step 2: L[A; {{1, 3}, {2, 3}}; 1],L[A; {{1, 4}, {2, 4}}; 1];
Step 4: A1,2, A1,4, B2,4.

It can be verified that these transmissions indeed fulfill all
the demands by counting the rank reduction for the purpose
of interference elimination, as discussed in the first example.
Next let us make a few more observations in this solution.

The transmission for the first case follows the strategy we
have identified in the first example, but the other two cases
require additional attention. For those two cases, the first
two steps are still in line with our previous example for

(N, K ) = (2, 4), but there is an additional Step 4 (Step 3 is
void in this specific example), where uncoded transmissions
are used. In fact, the transmissions in the first two steps
for the latter two cases are precisely those in the first two
steps for the first case, except that the transmissions involving
files not being requested are omitted. In the transmissions
of Step 4, instead of transmitting the segments of the file
not being requested, the corresponding file segments from
another file are transmitted, with a few exceptions when those
substituted segments have already been transmitted; if this
occurs, the corresponding segments from the file not being
requested are in fact transmitted.

We can view the transmissions in the latter two cases as a
variation from that in the first case. Let us focus on the case
(A, A, B, B): the only difference from the case (A, A, B, C)
is that user 4 is requesting file B instead of C . A closer exam-
ination of the case (A, A, B, C) reveals that all transmissions
involving file C are uncoded. Now to build the transmissions
for the case (A, A, B, B) from the transmissions for the case
(A, A, B, C), we replace these uncoded transmissions with
the matching transmissions of segments of file B , however,
only when there is no redundancy in such transmissions. For
example, the last symbol to be transmitted should have been
B1,2 with such a straightforward substitution, but since we
have already transmitted B1,2, retransmitting it is unnecessary
and wasteful; instead the file segment C1,2 is transmitted.
In this case although no user is requesting file C , the last
transmission does not cause any essential loss. In summary,
a case when only a subset of files are requested can be viewed
as degenerate, for which the transmission strategy can be
deduced from some other case when all files are requested.

V. THE GENERAL CACHING SCHEME

Before presenting the general coding scheme, let us reex-
amine the intuitions obtained from the three example cases
given above. Firstly, we should for now focus on the cases
where all files are requested, because the last example suggests
that other cases may be viewed as degenerate. Secondly,
during the delivery phase, we need to choose carefully for
each transmission an appropriate basis (i.e., which symbols
to form the linear combinations), and in particular, attempt
to take advantage of the common subspaces which can be
extracted from the linear combinations cached at different
users, as suggested by the second example. The last but also
the most technical issue is that we need to choose two sets of
coding coefficients, one for forming the linear combinations
of the cached contents, and the other for forming the delivery
transmissions which are also linear combinations of certain
symbols of the aforementioned basis.

The first example in the previous section suggests that the
coding coefficients need to be assigned such that a set of
full rank conditions are satisfied which can guarantee that
all involved file symbols can be decoded from their coded
form. However, specifying them explicitly turns out to be
difficult for generic parameters. In the construction we present
next, this issue is resolved by a combination of MDS codes
and rank metric codes. The apparent main advantage of this



1554 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

approach is that the construction is indeed explicit, instead of
only an existence proof if we were to argue directly that a
valid coefficient assignment exists (see, e.g., [17]). In fact,
even if we were to adopt the latter approach directly, one
needs to show that certain coding matrices are not always rank
deficient (i.e., the determinant is not identically zero). Though
this can be done, it is not only notationally tedious but also
conceptually less revealing. Using rank metric codes in the
construction also resolves this issue as a byproduct, since its
validity alone guarantees the existence of non-rank-deficient
coefficient assignments. In Section 6.4, we indeed invoke this
fact to show that the alphabet size bound sufficient to guarantee
the construction based on rank metric codes to be valid is not
necessary, if we allow general linear codes in place of the rank
metric codes.

We next clarify the notation that will be used in the sequel.
The set of integers {1, 2, . . . , n} is written as In , and the
cardinality of a set A is written as |A|. Denote the N files as
W1, W2, . . . , WN . Fix an integer parameter t ∈ {1, 2, . . . , K }
in the proposed scheme, then each file in our scheme is
partitioned into

	K
t



segments of equal size, and each file

segment will be placed at t users, possibly as a component
of some linear combinations. Each segment Wn,S , where
n ∈ IN and S ⊆ IK with |S| = t , is in Fqm for some
sufficiently large q and m, however it will become clear
that any q ≥ 2

	 K−N+1
max(�(K−N+1)/2�,t)



, and m ≥ Po as defined

in (11) are sufficient. We reserve the calligraphic letter S
for the purpose of enumerating some of the subsets of IK

of carnality t , without explicitly writing these conditions for
notational simplicity.

To present the general scheme, a few additional coding
components are required. We first need a set of generic
systematic linear MDS codes whose generator matrices have
entries in Fq with parameters (nc, kc), for all nc ≥ kc ≥ 1
and nc ≤ q; such codes can be found for any sufficiently
large q , for example, using Cauchy matrix [18]. We also allow
the information symbols and coded symbols to be in Fqm ,
by taking the natural Fqm finite field operation, for which Fq is
a subfield of; this essentially boils down to writing the symbols
as vectors of length-m in Fq . Furthermore, fix the parameter

P =
�

K − 1

t − 1

�
N (10)

in the linearized polynomial and also fix

Po = 2

�
K − 1

t − 1

�
N −

�
K − 2

t − 1

�
(N − 1) (11)

values θi ∈ Fqm , i = 1, 2, . . . , Po, which are linearly indepen-
dent in Fq . This polynomial can be used to construct a (Po, P)
systematic rank metric code as discussed in Section III-C; we
shall refer to this code as C(Po, P). We are now ready to
present the general caching strategy.

A. Placement Strategy

The placement strategy of the proposed scheme can be
described as follows. For user k, collect the file segment
symbols:

{Wn,S , for all n ∈ IN , and all S such that k ∈ S}

and encode them using the systematic rank metric code
C(Po, P); the parity symbols are then placed in the cache of
user k. It follows that each user needs a cache to hold Po − P
symbols.

B. Transmission Strategy When All Files are Requested

Fix a parameter t ∈ {1, 2, . . . , K − 1}. Let us first consider
the case when all the files are being requested; the cases t = 0
or t = K are omitted for which the scheme is trivial. For a
given set of file requests from all the users, we define

I [n] � {k ∈ IK : user k requests file Wn},
n = 1, 2, . . . , N, (12)

and mn = |I [n]| ≥ 1, n = 1, 2, . . . , N . Furthermore, define
the complementary set Ī [n] � IK \ I [n].

For each file Wn , we classify its segments Wn,S by its
intersection with Ī [n], and address them differently. More
precisely, there are three steps of transmissions:

• Step 1: All the file segments in the set {Wn,S : S ⊆ Ī [n]}
are transmitted uncoded directly;

• Step 2: For each subset A ⊆ Ī [n] with max(1, t − mn) ≤
|A| ≤ min(t − 1, K − mn), we encode the set of file
segments

Wn,A � {Wn,S : S ∩ Ī [n] = A} (13)

using a
�

2

�
mn

t − |A|
�

−
�

mn − 1

t − |A| − 1

�
,

�
mn

t − |A|
��

=
��

mn

t − |A|
�

+
�

mn − 1

t − |A|
�

,

�
mn

t − |A|
��

(14)

systematic MDS code (whose coding coefficients are in
Fq ), and then transmit all the parity symbols; here we
take the convention of

	n
k


 = 1 when k = 0.
• Step 3: Encode all the file segments in the set Wn,∅ �

{Wn,S : S ⊆ I [n]} using a
�

2

�
mn

t

�
−

�
mn − 1

t − 1

�
,

�
mn

t

��

=
��

mn

t

�
+

�
mn − 1

t

�
,

�
mn

t

��
(15)

systematic MDS code (whose coding coefficients are in
Fq ), and then transmit all the parity symbols.

For the required MDS codes to exist, a trivially sufficient
finite field size is q ≥ 2

	 K−N+1
max(�(K−N+1)/2�,t)



. For the required

rank metric codes to exist, we can choose any m ≥ Po.
It is clear that each file segment Wn,S either belongs to a

singleton set {Wn,S } when S ⊆ Ī [n], or one of the sets Wn,A
for some subset A ⊆ Ī [n], which includes the case A = ∅; in
other words, for each n, the transmission strategy provides a
classification of all the subsets S for S ⊆ IK and |S| = t (and
also induces a classification of all the file segments Wn,S ).
For each n, we denote the mapping from a subset S to the
corresponding subset that specifics the partition it belongs to
as AI [n] (S), i.e., Wn,S ∈ Wn,AI [n] (S).



TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1555

C. Transmission Strategy When Some Files are Requested

Again fix a parameter t ∈ {1, 2, . . . , K − 1}, and consider
the case when N∗ < N files are requested. Without loss
of generality, let us assume that the first N∗ files are being
requested, and I [n], mn and Ī [n] are defined similarly as in the
last subsection, but only for n = 1, 2, . . . , N∗. To describe the
transmission strategy, we first find another set of “enhanced
demands”, parametrized by İ [1], İ [2], . . . , İ [N] , where all files
are being requested; i.e., | İ [n]| ≥ 1 for n = 1, 2, . . . , N . Addi-
tionally, these enhanced demands must satisfy the following
properties:

• | İ [n]| = 1 for n = N∗ + 1, . . . , N ;
• For any k ∈ {1, 2, . . . , K }, if k ∈ I [n], then either k ∈

İ [n], or k ∈ İ [n�], for some n� ∈ {N∗ + 1, . . . , N}; for the
latter case, denote the mapping from n� to n as f (n�) = n,
and denote the mapping from n� to k as u(n�).

We also write | İ [n]| = ṁn for simplicity. The enhancement
replaces some users’ requests with requests for files that
originally are not being requested, and each of these files is
now being requested by only one user in the enhanced version.
Note that this enhancement can always be found under the
condition N ≤ K .

A set of counters need to be initialized before presenting
the transmission strategy, which is given as

τn,A �
�

ṁn − 1

t − |A| − 1

�
, n = 1, 2, . . . , N∗ and A ⊆ ¯̇I [n].

(16)

Note that the set A can be ∅, and in fact in the proposed
scheme we only need to consider the sets A where |A| ≤ t−1,
though the definition is still valid for other cases, by taking
the convention

	n
k


 = 0 if k < 0.
The transmission strategy is as follows:
• For each file Wn , n = 1, 2, . . . , N∗, transmit according

to Steps 1-3 for the enhanced demands;
• Step 4: for each n, n = N∗ + 1, . . . , N , perform the

following operations. For each S, where u(n) /∈ S, reduce
the counter τ f (n),A İ [ f (n)] (S) by 1, and then transmit

�
W f (n),S , if τ f (n),A İ [ f (n)] (S) ≥ 0
Wn,S , otherwise.

(17)

D. Revisiting the (N, K ) = (2, 4) Example

Let us revisit the example code for the (2, 4) case within
the context of the general caching scheme. The two indexing
methods now have the following mapping

A1 → W1,{1,2}, A2 → W1,{1,3}, A3 → W1,{1,4},
A4 → W1,{2,3}, A5 → W1,{2,4}, A6 → W1,{3,4},

and similarly for file segments of file B .
The scheme presented earlier is for t = 2. Let us consider

replacing the coding coefficients with that of a rank metric
code. The parameters can be determined as P0 = 10 and
P = 6, and thus P0−P = 4 symbols are generated and cached
at each user. It is also sufficient to choose q = 7 and m = 10;
as such, each information and coded symbol is in F710 , which
is considerably larger than F5 used in the example.

Now consider requests (A, A, A, B), for which m1 = 3
and m2 = 1. It is clear that the uncoded transmissions in the
general scheme match exactly what we have presented. Next
consider the transmission in Step 2 for W1 = A, A = {4} for
which we have

W1,{4} = {W1,{1,4}, W1,{2,4}, W1,{3,4}} = {A3, A5, A6}, (18)

and the parities of a (2
	3

1


 − 	2
0



,
	3

1



) = (5, 3) MDS code,

whose coefficients are in F7, are transmitted; one choice is
exactly as that given previously, i.e., the symbols (A3 +2A5 +
3A6, A3 + 3A5 + 4A6). In Step 3, we have the following
segments

W1,∅ = {W1,{1,2}, W1,{1,3}, W1,{2,3}} = {A1, A2, A4}, (19)

and the parity symbol of a (2
	3

2


 − 	2
1



,
	3

2



) = (4, 3) MDS

code, whose coefficients are in F7, is transmitted; one choice is
exactly as that given previously, i.e., the symbol A1+ A2+ A4.
For file W2 = B , we can only take |A| = 1 in Step 2 since
max(1, t − m2) = min(t − 1, 4 − 1) = 1, however in this
case, a (2

	1
1


− 	0
0



,
	1

1



) = (1, 1) MDS code does not have any

parity symbols, and thus no transmission of file B is required
in Step 2; there is also no transmission of file B in Step 3.

We can similarly walk through the example for (N, K ) =
(3, 4) using the general transmission strategy; this simple
exercise is left to interested readers.

VI. PROOF OF THE MAIN THEOREM

We establish the correctness and the performance of the
caching scheme in three propositions, and Theorem 1 follows
directly from them. Two related issues are then discussed,
regarding the format of the cached linear combinations and
the required field size of the code.

A. Correctness

Proposition 1: For any t ∈ {1, 2, . . . , K − 1}, the afore-
given placement strategy can be used to satisfy any demands
that request all files with the afore-given transmission strategy.

Proof: To show that any demands that request all N
files can be satisfied, we need to consider any single user.
Without loss of generality, we can consider the first user
and assume it requests file W1. Let us count the number of
linear combinations he receives which consist of interference
symbols in his cache in the first two transmission steps.

In Step 1, user 1 can collect all uncoded symbols for file
Wn , n = 2, 3, . . . , N, in the form

{Wn,S : 1 ∈ S ⊆ Ī [n]}, (20)

and there are a total of

T̃ (1) =
N�

n=2

�
K − mn − 1

t − 1

�
(21)

such symbols, where we have taken the convention
	n

k


 = 0
when n < k.



1556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

In Step 2, user 1 collects linear combinations of Wn ,
n = 2, 3, . . . , N , however only those in the following form.
For each such n, and each subset A ⊆ Ī [n] such that
max(1, t − mn) ≤ |A| ≤ min(t − 1, K − mn) and moreover
1 ∈ A, user 1 collects the parity symbols of encoding Wn,A
using the systematic MDS code. Thus user 1 collects a total
of

T̃ (2) =
N�

n=2

min(t−1,K−mn)�
j=max(1,t−mn)

�
K − mn − 1

j − 1

��
mn − 1

t − j

�
(22)

such symbols.
User 1 now has collected T̃ (1) + T̃ (2) useful symbols, and

has in his cache Po − P symbols of the same basis. Observe
for the summands in T̃ (1) and T̃ (2), we have

min(t−1,K−mn)�
j=max(1,t−mn)

�
K − mn − 1

j − 1

��
mn − 1

t − j

�
+

�
K − mn − 1

t − 1

�

=
�

K − 2

t − 1

�
. (23)

To see this equality holds, first consider the case 1 > t − mn ,
i.e., mn ≥ t , for which the left hand side is simply all the
possible ways of choosing t − 1 balls in a total of K − 2
balls, however counted when these balls are partitioned into
two groups of size K −2− (mn −1) and mn −1, respectively;
for the other case 1 ≤ t − mn , i.e., t ≥ mn + 1, the left hand
side reduces to
min(t−1,K−mn)�

j=t−mn+1

�
K − mn − 1

j − 1

��
mn − 1

t − j

�
+

�
K − mn − 1

t − 1

�

(24)

which again clearly gives the same result using the same ball
counting argument. It follows that

T̃ (1) + T̃ (2) + Po − P = P. (25)

These P linear combinations can be represented as the product
of the length-Po codeword (both systematic and parity sym-
bols) of the rank metric code C(Po, P) and a matrix G of size
Po × P . Recall the systematic rank metric code we used to
encode the P file segments in user 1’s cache, and by Lemma 2,
as long as the matrix G is full rank, all the P segments can be
recovered. This fact is proved in the appendix, but an outline
of the proof is given here. We recognize that if the columns
and rows of the matrix G are rearranged to

• Group the file segments W1,S in user 1’s cache together;
• For each n = 2, 3, . . . , N , group the segments of {Wn,S :

1 ∈ S ⊆ Ī [n]} together;
• For each n = 2, 3, . . . , N , and for each subset A ⊆ Ī [n]

such that max(1, t −mn) ≤ |A| ≤ min(t −1, K −mn) and
moreover 1 ∈ A, group the segments of Wn,A together,

then the resulting matrix is block diagonal, and each block is
either of size 1 × 1 with entry 1 or full rank because they are
columns of generator matrices of MDS codes. Thus the matrix
G is indeed full rank.

Thus user 1 can eliminate the interference in its cached
contents, and recover all the file segments of W1,S that are

already present in its cache. It remains to show that all the file
segments W1,S that are not present in his cache can also be
recovered.

First, observe that in Step 1, user 1 can collect all uncoded
W1 file segments that are not in the cache of any users
k ∈ I [1], i.e., {W1,S : 1 /∈ S ⊆ Ī [1]}. As mentioned earlier,
in Step 2 after eliminating the interference, user 1 can recover
all W1,S for S such that 1 ∈ S. Furthermore, for each
subset A ⊆ Ī [1] such that max(1, t − m1) ≤ |A| ≤ min(t −
1, K − m1), user 1 can collect the parity symbols of encod-
ing W1,A using the

�
2
	 m1

t−|A|

 − 	 m1−1

t−|A|−1



,
	 m1

t−|A|

�

systematic

MDS code. Since user 1 has in its cache
	 m1−1

t−|A|−1



of the total	 m1

t−|A|



symbols of W1,A, together with the collected parity
symbols, he can recover all

	 m1
t−|A|



symbols in this set. Thus

after Step 2, user 1 can also recover all file segments W1,S
where S has elements in both I [1] and Ī [1]. The only missing
segments are a subset of {W1,S : 1 /∈ S ⊆ I [1]}. However,

Step 3 transmits the parities of a
�

2
	m1

t


 − 	m1−1
t−1



,
	m1

t


�

MDS code that encodes all {W1,S : S ⊆ I [1]}, and since
user 1 already has

	m1−1
t−1



elements, he can thus also recover

the rest of the symbols in this set. At this point, we can
conclude that user 1 can recover all file segments of W1, which
completes the proof.

Proposition 2: For any t ∈ {1, 2, . . . , K − 1}, the afore-
given placement strategy can be used to satisfy any demands
that request a strict subset of all the files with the afore-given
transmission strategy.

The proof of this proposition can be intuitively explained as
follows. When we replace a file demand Wi in the enhanced
demands with a demand W j , the effect of not transmitting the
file segments involving Wi in the first three steps needs to
compensated. In order to do so, let us examine the roles that
these Wi transmissions play: firstly, they are used to eliminate
the interference by Wi at certain other users, and secondly, they
are used to provide the missing segments to the single user
that was requesting Wi in the enhanced demands. Our strategy
is to transmit the corresponding segments from W j instead
of sending the segments from Wi . With such substituted
transmissions, the first role can be fulfilled as long as it is
not a redundant transmission, and we rely on the counter τn,A
to avoid any such redundancy. The second role can clearly
also be fulfilled by any such non redundant transmissions.
When a transmission of the file segment from W j is indeed
redundant, we can safely conclude that the second role has
already been fulfilled by previous transmissions, and thus
transmitting this segment of Wi is now sufficient to serve the
first role alone. The proof below makes this intuition more
rigorous.

Proof: Without loss of generality, we only need to
consider the first user and assume his request is for file W1.
Two cases need to be examined: the first case is when in the
enhanced demands, the first user was also requesting file W1;
the second case is when in the enhanced demands, the first
user was requesting n∗, i.e., f (n∗) = 1 and u(n∗) = 1, for
some n∗ ∈ {N∗ + 1, . . . , N}.

Let us consider the proof for the first case, which is similar
to the proof for the Proposition 1. In Step 1, user 1 collects all



TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1557

uncoded symbols for file Wn , n = 2, 3, . . . , N∗, in the form

{Wn,S : 1 ∈ S ⊆ ¯̇I [n]}, (26)

and there are a total of

˜̇T (1) =
N∗�

n=2

�
K − ṁn − 1

t − 1

�
(27)

such symbols.
In Step 2, user 1 collects linear combinations of Wn ,

n = 2, 3, . . . , N∗, however only those in the following form.
For each such n, and each subset A ⊆ ¯̇I [n] such that
max(1, t − ṁn) ≤ |A| ≤ min(t − 1, K − ṁn) and moreover
1 ∈ A, user 1 collects the parity symbols of encoding Wn,A
using the systematic MDS code. Thus user 1 collects a total
of

˜̇T (2) =
N∗�

n=2

min(t−1,K−ṁn)�
j=max(1,t−ṁn)

�
K − ṁn − 1

j − 1

��
ṁn − 1

t − j

�
(28)

such symbols.
In Step 4, user 1 collects for each n = N∗ + 1, . . . , N ,

for any A ⊆ ¯̇I [n] where |A| = t − 1 and 1 ∈ A, either
Wn,A∪{u(n)} or W f (n),A∪{u(n)}, whichever was transmitted in
Step 4. Note that in this case u(n) �= 1 for any n = N∗ +
1, . . . , N , which implies that |A ∪ {u(n)}| = t . Thus user
1 collects another total of

˜̇T (4) = (N − N∗)
�

K − 2

t − 1

�
(29)

uncoded symbols.
User 1 now has collected ˜̇T (1)+ ˜̇T (2) + ˜̇T (4) useful symbols,

and has in his cache Po − P symbols of the same basis. It is
seen that

T̃ (1) + T̃ (2) + T̃ (4) + Po − P = P. (30)

These P linear combinations, which can again be represented
as the product of the length-Po output (both systematic and
parity symbols) of the rank metric code C(Po, P) and a matrix
G∗ of size Po × P . As long as the matrix G∗ is full rank, user
1 can recover all the file segments W1,S where 1 ∈ S, and the
rest of file segments from W1 can be recovered as in the case
of Proposition 1. The fact of the matrix G∗ being full rank is
obvious for the similar reason that the G matrix is full rank
under the enhanced demands; in fact, since the transmissions in
Step 4 are all uncoded, the full-rank property directly follows
from the full-rank property of the corresponding generator
matrix of the MDS codes when encoding the file segments of
files W f (n), n = N∗+1, . . . , N . User 1 can indeed recover any
missing file segments, since the transmissions for the enhanced
demands for n = 1, . . . , N∗ in the first three steps guarantee
the completion of this task.

Now let us now consider the second case, where user 1 is
demanding W1, but in the enhanced demands, he was request-
ing file n∗ for some n∗ ∈ {N∗ + 1, . . . , N}. By a similar
argument as above, user 1 can recover all segments W1,S
present in his cache, i.e., for W1,S where 1 ∈ S, by eliminating

the interference. More precisely, in Step 1, user 1 collects all
uncoded symbols for file Wn , 1, 2, . . . , N∗, in the form

{Wn,S : 1 ∈ S ⊆ ¯̇I [n]}, (31)

and there are a total of

˜̇T (1�) =
N∗�

n=1

�
K − ṁn − 1

t − 1

�
(32)

such symbols. In Step 2, user 1 collects linear combinations
of Wn , n = 1, 2, . . . , N∗, however only those in the following
form. For each such n, and each subset A ⊆ ¯̇I [n] such that
max(1, t − ṁn) ≤ |A| ≤ min(t − 1, K − ṁn) and moreover
1 ∈ A, user 1 collects the parity symbols of encoding Wn,A
using the systematic MDS code. Thus user 1 collects a total
of

˜̇T (2�) =
N∗�

n=1

min(t−1,K−ṁn)�
j=max(1,t−ṁn)

�
K − ṁn − 1

j − 1

��
ṁn − 1

t − j

�
(33)

such symbols. In Step 4, user 1 collects for each n = N∗ +
1, . . . , n∗−1, n∗+1, . . . , N , for any A ⊆ ¯̇I [n] where |A| = t−
1 and 1 ∈ A, either Wn,A∪{u(n)} or W f (n),A∪{u(n)}, whichever
was transmitted in Step 4. Thus user 1 collects another total
of

˜̇T (4�) = (N − N∗ − 1)

�
K − 2

t − 1

�
(34)

uncoded symbols. User 1 now has collected ˜̇T (1) + ˜̇T (2) + ˜̇T (4)

useful symbols, and has in his cache Po − P symbols of the
same basis. It is seen that

T̃ (1�) + T̃ (2�) + T̃ (4�) + Po − P = P. (35)

It only remains to show that for the second case, the trans-
missions in Step 4 suffice to provide any missing segments
of W1 in user 1’s cache, possibly jointly with transmissions
from W1 in the first three steps. This is rather straightforward,
since all file segments W1,S ’s with 1 �∈ S are transmitted
uncoded in Step 4, unless τ1,A İ [1] (S) < 0; when the latter

scenario occurs, a total of
	 ṁ1−1

t−|A İ [1] (S)|−1



uncoded symbols

have already been transmitted in the set W1,A İ [1] (S), and

together with the
	 ṁn−1

t−|A İ [1] (S)|



parity symbols encoding the
set W1,A İ [1] (S) which were transmitted in the first three

steps, user 1 can indeed recover all
	 ṁn

t−|A İ [1] (S)|



symbols in
W1,A İ [1] (S). Thus user 1 is able to recover all segments of W1,
and the proof is complete.

B. Performance

Proposition 3: For any t ∈ {1, 2, . . . , K − 1}, the afore-
given placement strategy and transmission strategy achieve
the memory-transmission pair

(M, R) =
�

t[(N − 1)t + K − N]
K (K − 1)

,
N(K − t)

K

�
. (36)

Proof: Recall each file of unit size is partition into
	K

t



segment symbols, and each user caches Po − P symbols,



1558 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

and thus the memory usage is straightforwardly to calculate.
It remains to calculate the total number of transmitted symbols.

We only need to consider the first three steps of transmission
when all files are being requested, since for the other cases
where only a subset of files are requested, each transmission
in Step 4 corresponds to exactly one transmission in Step 3 for
the enhanced demands, and thus the rate remains the same as
for the case of the enhanced demands.

Clearly, in Step 1, the total number of transmitted uncoded
symbols of file Wn is

T (1)
n =

�
K − mn

t

�
. (37)

In Step 2, the total number of transmitted linear combinations
of file Wn is given as

T (2)
n =

min(t−1,K−mn)�
j=max(1,t−mn)

�
K − mn

j

��
mn − 1

t − j

�
.

In Step 3, the total number of transmitted linear combinations
of file Wn is given as

T (3)
n =

�
mn − 1

t

�
.

Note that

T (1)
n + T (2)

n + T (3)
n =

�
K − 1

t

�
,

because it is all the ways to choose t balls in a total of K − 1
balls. Thus the total transmissions amount to N

	K−1
t



symbols.

The proof can now be completed with a simple normalization
by the number of segments in each file.

C. The Semi-Systematic Variant of the Placement Strategy

The general placement strategy we provide does not enforce
any special structure on the linear combinations, unlike the
code given in the (2, 4) example. However, even for general
parameters (N, K ) and the same range of parameter t , we can
indeed choose to use the semi-systematic format. More pre-
cisely, the first

	K−1
t−1



semi-systematic symbols in the cache

of user k are
N�

n=1

Wn,S , k ∈ S, (38)

where the addition is in finite field Fqm . Moreover, we use the
same parameter P , but choose

P �
o =

�
K − 1

t − 1

�
(2N − 1) −

�
K − 2

t − 1

�
(N − 1), (39)

and construct a (P �
o, P) systematic rank metric code, which is

denoted as C(P �
o, P). The local parity symbols stored in user

k’s cache are the parity symbols when encoding the set of
file segment symbols {Wn,S : n = 1, 2, . . . , N, k ∈ S} using
C(P �

o, P). The transmission strategy remains the same.
In order to prove the correctness of this placement variant,

we only need to show that the corresponding matrix G�,
similarly as in the proof of Proposition 1, is also full rank.
This is again rather immediate. Since the only difference is

the columns corresponding to the semi-systematic symbols in
the cache. However, it is easily seen that although the matrix
G� is no longer block diagonal after the rearrangement of
columns and rows, the new columns has non-zero entries on
rows corresponding to W1,S (in fact it has an identity matrix
if we restrict it to these columns and rows with proper row
and column indexing), while no other columns in G� have
non-zero entries on these rows. Thus indeed this variant of
placement strategy is also valid; a more precise proof is given
in the appendix.

We choose to present the general construction in the last
section instead of this variant directly in order to emphasize
the fact that the semi-systematic format is not fundamentally
important in our construction. Note that in the semi-systematic
variant, the bound on the parameter m can be made smaller,
since the parameters of the rank metric code are reduced:
choosing m ≥ P �

o suffices here.

D. Reducing the Field Size With Generic Linear Codes

In the proposed code construction, we rely on rank metric
codes to guarantee certain full rank properties, and the overall
code design problem essentially reduces to a rank counting
problem on the proper basis. However, one obvious disadvan-
tage of using rank metric codes in the construction is that
the size of the field Fqm needs to be quite large. We can in
fact replace the rank metric code with a generic systematic
linear code, and directly require the full rank properties to
hold. In this section, we provide such a simple argument and
show that a reduced field size is sufficient.

Let us consider the cache encoding for the k-th user. A total
of P symbols are present at this user, and a total of Po −
P parity symbols are generated during the encoding. In this
subsection, we shall assume that the entries of this P×(Po−P)
encoding matrix are from Fq , i.e., the same finite field as the
set of MDS codes. Denote this matrix as Gk , and its entry
on the i -th row and j -th column as gk,i, j , which is to be
determined; note that this code is not necessarily a rank-metric
code any longer.

Consider a specific set of demands (d1, d2, . . . , dK ), (i.e.,
the k-th user demands file dk), where all files are requested.
In the delivery phase, the symbols user-k collects during Step
1 and Step 2 are linear combinations of all the symbols present
at this user. This can be represented also by a P ×(T̃ (1)+ T̃ (2))
encoding matrix G�

k,(d1,d2,...,dK ). The full rank condition in the
proof of Proposition 1 essentially requires that the P × P
matrix [Gk, G�

k,(d1,d2,...,dK )] being full rank. The determinant
of the matrix [Gk, G�

k,(d1,d2,...,dK )] can be expressed as a
function of the coefficients gk,i, j ’s, i.e.

det(Gn, G�
n,(d1,d2,...,dK )) = fn,(d1,d2,...,dK )({gn,i, j }).

By the proof of Proposition 2, the full rank condition
for demands where only a subset of the files are requested
is implied by the full rank condition for the enhanced
demands. Thus as long as the following polynomial has a
non-zero solution, then the choice of coefficients {gk,i, j } is



TIAN AND CHEN: CACHING AND DELIVERY VIA INTERFERENCE ELIMINATION 1559

valid

K�
k=1

�
(d1,d2,...,dK ):

all files requested

fk,(d1,d2,...,dK )({gk,i, j }). (40)

We can now invoke the following lemma.
Lemma 3 [19] (Combinatorial Nullstellansatz): Let F be

a field, and let f = f (x1, · · · , xn) be a polynomial in
F[x1, · · · , xn]. Suppose the degree deg( f ) of f is expressible
in the form

�n
i=1 ti , where each ti is a non-negative integer

and suppose that the coefficient of the monomial term
n

i=1 xti
i

is nonzero. Then if S1, . . . , Sn are subsets of F with sizes |Si |
satisfying |Si | > ti , then there exist elements s1 ∈ S1, s2 ∈
S2 . . . , sn ∈ Sn such that f (s1, s2, · · · , sn) �= 0.

In this lemma above, the condition that the coefficient of the
monomial term

n
i=1 xti

i is nonzero is equivalent to requiring
f = f (x1, · · · , xn) to be not identically zero. We note that
fn,(d1,d2,...,dK )({gn,i, j }) is indeed not identically zero, because
the code construction based on rank metric codes directly
provides a non-zero assignment.

Since the degree of any indeterminate in each of
fk,(d1,d2,...,dK )({gn,i, j }) is 1, the maximum among the degrees
of a single indeterminate of the polynomial (40) is upper
bounded by the total number of demands where all files are
requested, which is given by S(K , N)N !. Here

S(K , N) = 1

N !
N�

j=1

(−1)N− j
�

N

j

�
j K , (41)

is the Sterling number of the second kind [20], which counts
the number of ways to partition a set of K objects into N
non-empty subsets. Hence by Lemma 3, it is possible to find
a suitable assignment for {gn,i, j }, if the entries are picked from
a finite field Fq with q > S(K , N)N !. Alternatively, we can
simply count the total number of demands, instead of those
where all files are requested, and this leads to a looser bound of
N K on the field size. In contrast, recall the sufficient condition
on the field size given in Section V when rank metric codes
are used, which in the best case of t = 2 would result in a field
size of order O([(K − N + 1)(K − N)]2(K−1)N ). This large
difference suggests that there is significant potential to find
alternative code constructions in a much smaller finite field,
which is part of our ongoing work.

VII. CONCLUSION

We proposed a new coding scheme for the caching problem
when N ≤ K , based on a combination of rank metric
codes and MDS codes. The performance of the scheme has
a particularly simple form, and it provides new memory-rate
tradeoff points beyond what were known in the literature.
Compared to known coded caching schemes, the proposed
scheme uses coding for both placement and delivery, as well
as larger finite field instead of the binary field.

The file segments in a user’s cache from files that are not
being requested by the user can be viewed as interference
in the delivery phase, and in the proposed scheme, they are
resolved completely. We believe other advanced interference

alignment techniques are also applicable in the caching prob-
lem, and this is part of our ongoing research. Another imme-
diate variation of the proposed scheme is its decentralized
counterpart, motivated by the investigation of the decentralized
caching scheme [2], which is a variation of the centralized
caching scheme in [1].

After the initial publication of the codes proposed in
this work [21], more codes have been discovered for the
caching problem, the most notable ones among which are
perhaps [22] and [23]. Nevertheless, the codes given in this
work still provide the best performance at the low memory
regime as discussed in [23].

APPENDIX

FULL RANK OF MATRIX G AND G�

The key to the proof is to express the matrix G of size
Po × P in a more structured manner. For this purpose, let
us again consider the cache and decoding process at user 1.
First rearrange the systematic and parity symbols of the code
C(Po, P), such that the Po − P cached symbol are indexed in
the set IPo−P ; similarly we arrange the columns of G such that
its first Po − P columns correspond to these cached symbols.
The next rows and columns correspond to the symbols that
user 1 collected during the Step 1 transmission

{Wn,S : 1 ∈ S ⊆ Ī [n]}, n = 2, 3, . . . , N,

and there are a total of
�N

n=2 T̃ (1)
n such symbols.

The next rows and columns correspond to a fixed n ∈
{2, 3, . . . , N} and a fixed subset A ⊆ Ī [n] where max(1, t −
mn) ≤ |A| ≤ min(t − 1, K − mn) and moreover 1 ∈
A. Denote the parity check portion of generator matrix of
the

�
2
	 mn

t−|A|

 − 	 mn−1

t−|A|−1



,
	 mn

t−|A|

�

systematic MDS as Qn,A,

which has dimension
	 mn

t−|A|

 ×

�	 mn
t−|A|


 − 	 mn−1
t−|A|−1


�
, and it

is full rank since it is part of a generator matrix of an MDS
code and it has less columns than rows.

Now the matrix G can be written in the following form

G =

⎡
⎢⎢⎢⎢⎣

I
Q2,A2,1

Q2,A2,2

. . .
QN,AN,L N

⎤
⎥⎥⎥⎥⎦

(42)

where the identity matrix at the top-left has dimension (Po −
P + �N

n=2 T̃ (1)
n ) × (Po − P + �N

n=2 T̃ (1)
n ), and we have

enumerated the aforementioned matrix A’s for each n by using
the subscript as An,�, and L N is the total number of such
subsets A when n = N . It is now clear that the matrix G is
block diagonal and each block is full rank, and thus G indeed
has full rank.

For the semi-systematic variant of the caching scheme,
the matrix G� is slightly different. First index the symbols

{W1,S : 1 ∈ S} (43)

using the set I(K−1
t−1 ), and rearrange the columns and rows of G�

such that they correspond to the top
	K−1

t−1


× 	K−1
t−1



submatrix

using the same order. Next rearrange the systematic and parity



1560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 3, MARCH 2018

symbols of the code C(P �
o, P), such that the P �

o − P cached
symbol correspond to the next P �

o − P columns and rows. The
rest of the G� matrix is arranged exactly as for the case G.
It is now clear that the matrix G� has the following form

G� =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ia

Ib

F2,A2,1 Q2,A2,1

F2,A2,2 Q2,A2,2

. . .
FN,AN,L N

QN,AN,L N

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)

where the identity matrix Ia is of dimension
	K−1

t−1


 × 	K−1
t−1



,

and the identity matrix Ib is of dimension (P �
o − P +�N

n=2 T̃ (1)
n ) × (P �

o − P + �N
n=2 T̃ (1)

n ), and the Fn,An,�
matri-

ces have some nonzero entries but their exact forms are
not important here; the other off block-diagonal entries are
all zeros. It is now clear that the matrix G� also has full
rank.

REFERENCES

[1] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of caching,”
IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867, May 2014.

[2] M. A. Maddah-Ali and U. Niesen, “Decentralized coded caching attains
order-optimal memory-rate tradeoff,” IEEE/ACM Trans. Netw., vol. 23,
no. 4, pp. 1029–1040, Aug. 2015.

[3] U. Niesen and M. A. Maddah-Ali, “Coded caching with nonuniform
demands,” IEEE Trans. Inf. Theory, vol. 63, no. 2, pp. 1146–1158,
Feb. 2017.

[4] R. Pedarsani, M. A. Maddah-Ali, and U. Niesen, “Online coded
caching,” IEEE/ACM Trans. Netw., vol. 24, no. 2, pp. 836–845,
Apr. 2016.

[5] N. Karamchandani, U. Niesen, M. A. Maddah-Ali, and S. N. Diggavi,
“Hierarchical coded caching,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 3212–3229, Jun. 2016.

[6] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[7] Z. Chen, P. Fan, and K. B. Letaief, “Fundamental limits of caching:
Improved bounds for users with small buffers,” IET Commun., vol. 10,
no. 17, pp. 2315–2318, Nov. 2016.

[8] C. Tian, “Symmetry, demand types and outer bounds in caching
systems,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 825–829.

[9] C. Tian, “Characterizing the rate region of the (4, 3, 3) exact-repair
regenerating codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 967–975, May 2014.

[10] Z. Bar-Yossef, Y. Birk, T. S. Jayram, and T. Kol, “Index coding with side
information,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1479–1494,
Mar. 2011.

[11] S. Wicker, Error Control Systems for Digital Communication and
Storage. Englewood Cliffs, NJ, USA: Prentice-Hall, 1995.

[12] È. M. Gabidulin, “Theory of codes with maximum rank distance,”
Problemy Peredachi Inform., vol. 21, no. 1, pp. 3–16, 1985.

[13] R. Lidl and H. Niederreiter, Finite Fields (Encyclopedia of Mathematics
and Its Applications). Cambridge, U.K.: Cambridge Univ. Press, 1997.

[14] R. Koetter and F. R. Kschischang, “Coding for errors and erasures
in random network coding,” IEEE Trans. Inf. Theory, vol. 54, no. 8,
pp. 3579–3591, Aug. 2008.

[15] N. Silberstein, A. S. Rawat, and S. Vishwanath, “Error-correcting
regenerating and locally repairable codes via rank-metric codes,” IEEE
Trans. Inf. Theory, vol. 61, no. 11, pp. 5765–5778, Nov. 2015.

[16] C. Tian, B. Sasidharan, V. Aggarwal, P. V. Kumar, and
V. A. Vaishampayan, “Layered exact-repair regenerating codes via
embedded error correction and block designs,” IEEE Trans. Inf. Theory,
vol. 61, no. 4, pp. 1933–1947, Apr. 2015.

[17] T. Ho et al., “A random linear network coding approach to multicast,”
IEEE Trans. Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct. 2006.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1977.

[19] N. Alon, “Combinatorial nullstellensatz,” Combinat., Probab. Comput.,
vol. 8, nos. 1–2, pp. 7–29, 1999.

[20] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics.
Reading, MA, USA: Addison-Wesley, 1988.

[21] C. Tian and J. Chen, “Caching and delivery via interference elimination,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona, Spain, Jul. 2016,
pp. 830–834.

[22] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “The exact rate-
memory tradeoff for caching with uncoded prefetching,” in Proc.
IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Dec. 2017,
pp. 1613–1617.

[23] J. Gómez-Vilardebó. (Dec. 2016). “Fundamental limits of caching:
Improved bounds with coded prefetching.” [Online]. Available: https://
arxiv.org/abs/1612.09071

Chao Tian (S’00–M’05–SM’12) received the B.E. degree in Electronic
Engineering from Tsinghua University, Beijing, China, in 2000 and the
M.S. and Ph. D. degrees in Electrical and Computer Engineering from
Cornell University, Ithaca, NY in 2003 and 2005, respectively. Dr. Tian
was a postdoctoral researcher at Ecole Polytechnique Federale de Lausanne
(EPFL) from 2005 to 2007, a member of technical staff–research at AT&T
Labs–Research in New Jersey from 2007 to 2014, and an Associate Professor
in the Department of Electrical Engineering and Computer Science at the
University of Tennessee Knoxville from 2014 to 2017. He joined the Depart-
ment of Electrical and Computer Engineering at Texas A&M University as
an Associate Professor in 2017. His research interests include data storage
systems, multi-user information theory, joint source-channel coding, signal
processing, and compute algorithms.

Dr. Tian received the Liu Memorial Award at Cornell University in 2004,
AT&T Key Contributor Award in 2010, 2011 and 2013, and 2014 IEEE
ComSoc DSTC Data Storage Best Paper Award. He was an Associate Editor
for the IEEE SIGNAL PROCESSING LETTERS from 2012 to 2014, and is
currently an Editor for the IEEE TRANSACTIONS ON COMMUNICATIONS.

Jun Chen (S’03–M’06–SM’16) received the B.E. degree with honors in com-
munication engineering from Shanghai Jiao Tong University, Shanghai, China,
in 2001 and the M.S. and Ph.D. degrees in electrical and computer engineering
from Cornell University, Ithaca, NY, in 2004 and 2006, respectively.

He was a Postdoctoral Research Associate in the Coordinated Science
Laboratory at the University of Illinois at Urbana-Champaign, Urbana, IL,
from September 2005 to July 2006, and a Postdoctoral Fellow at the IBM
Thomas J. Watson Research Center, Yorktown Heights, NY, from July 2006 to
August 2007. Since September 2007 he has been with the Department of
Electrical and Computer Engineering at McMaster University, Hamilton,
ON, Canada, where he is currently an Associate Professor and a Joseph Ip
Distinguished Engineering Fellow. His research interests include information
theory, wireless communications, and signal processing.

He received several awards for his research, including the Josef Raviv
Memorial Postdoctoral Fellowship in 2006, the Early Researcher Award from
the Province of Ontario in 2010, and the IBM Faculty Award in 2010. He
served as an Associate Editor for the IEEE TRANSACTIONS ON INFORMA-
TION THEORY from 2014 to 2016.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


