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Abstract—In this paper, the redundancy of both variable and
fixed rate Slepian–Wolf coding is considered. Given any jointly
memoryless source-side information pair ����� ����

�

��� with finite
alphabet, the redundancy ������ of variable rate Slepian–Wolf
coding of ��

� with decoder only side information � �
� depends on

both the block length � and the decoding block error probability
��, and is defined as the difference between the minimum average
compression rate of order � variable rate Slepian–Wolf codes
having the decoding block error probability less than or equal
to ��, and the conditional entropy ����� �, where ����� � is
the conditional entropy rate of the source given the side informa-
tion. The redundancy of fixed rate Slepian–Wolf coding of ��

�

with decoder only side information � �
� is defined similarly and

denoted by ��
� ����. It is proved that under mild assumptions

about ��� �
����� � �� � ��� ��	� � 
� � ��� ��	�� and

��
� ���� � �� � ��� ��	� � 
� � ��� ��	��, where �� and ��

are two constants completely determined by the joint distribution
of the source-side information pair. Since �� is generally smaller
than �� , our results show that variable rate Slepian–Wolf coding
is indeed more efficient than fixed rate Slepian–Wolf coding.

Index Terms—Compression rate, error probability, lossless data
compression, redundancy, side information, Slepian–Wolf coding,
source coding.

I. INTRODUCTION

L ET be a pair of random variables taking values in
finite alphabets and , respectively. Let

denote a sequence of independent copies of . For brevity,
the memoryless sources and are sometimes
referred to as the sources and , respectively. Suppose that
the source is to be compressed without essential loss of in-
formation, and is available only to the decoder as a helper,
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or in other words, the side information. This problem of source
coding with decoder only side information was first introduced
and studied by Slepian and Wolf in their ground breaking paper
[13], and is now commonly referred to as the Slepian–Wolf
(SW) coding problem (with one encoder). It was shown in [13]
that for any memoryless pair , there exist SW codes that
can compress with the decoder-only side information arbi-
trarily close to (asymptotically) while still recovering

with vanishing error probability , which is defined as
the probability that the source’s message differs from the re-
constructed message at the decoder. In other words, one can do,
asymptotically, as well as in the case where the side information

is also available at the encoder. This result is one of the first
and remains as one of the most influential results in network in-
formation theory ever obtained.

Beyond its significant impact on network information theory,
SW coding has also attracted a lot of attention from a prac-
tical side; recently there have been significant advances in con-
structing practical SW codes [11], [7], [12], [14], [16], and re-
searching their use in various applications (see [8] and the refer-
ences therein). A natural consequence of this surge of interest in
the practice of SW coding is a renewed interest in understanding
better the fundamental limitations of finite block length codes
from an information theoretical point of view. For this purpose,
we define the redundancy of an (order ) SW code
as , where denotes the decoding error prob-
ability of , and denotes the average compression rate
in bits per letter resulting from using the code to compress

. Further define

(1.1)

where the minimization is taken over all (order ) variable rate
SW codes with decoding error probability no greater than .
The quantity is called the redundancy of variable rate
SW coding of with the decoder only side information
and decoding block error probability . If the minimization in
(1.1) is limited to the set of all (order ) fixed rate SW codes
with decoding error probability no greater than , the resulting
quantity (denoted by )) is called the redundancy of fixed
rate SW coding of with the decoder only side information

and decoding block error probability .
Previous research efforts in understanding the performance

of finite block length SW codes have been mainly focused on
fixed rate codes. Specifically, Wolfowitz’s treatment [15] of SW
coding demonstrates the existence of fixed rate codes that op-
erate within of the conditional entropy for some
function . Classic results by Gallager [6], Csiszár and
Körner [5] (obtained also with K. Marton), describe good upper
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and lower bounds on the error exponent of fixed rate SW coding1

(the best exponential rate of decay of the decoding error proba-
bility as a function of the rate provided). More recently, Baron et
al. [2] studied for a pair of uniform binary random vari-
ables connected through a binary symmetric channel.

In contrast, other than the fact that

(1.2)

little progress has been made towards fully understanding the
redundancy of variable rate SW. The purpose of this
paper is to characterize this quantity and , and hence
gain insights into the performance of SW codes in practice. We
shall show that under mild assumptions2 about

(1.3)

(1.4)

where and are two constants completely determined by
the joint distribution of . The exact formulae to compute

and are provided later in Sections II and III, respectively.
A couple of implications can be drawn immediately from

(1.3) and (1.4). First, the redundancy of SW coding is signifi-
cantly larger than that of conditional coding given the side in-
formation available to both the encoder and decoder, which is

. This difference might explain why designing efficient
SW codes, in comparison to designing conditional source codes,
is so challenging. Second, the design of practical SW codes
with finite block length is not simply a matter of approaching
the conditional entropy rate ; instead, it is more about
the tradeoff among the compression rate, decoding error proba-
bility, and block length. Third, since is strictly less than in
general, variable rate SW coding is indeed more efficient than
fixed rate SW coding for finite block length, which could not be
revealed by the first order performance analysis.

The rest of the paper is organized as follows. In Section II,
we introduce the concept of intrinsic entropy and prove some
preliminary results which will facilitate our later discussions.
Section III is devoted to establishing lower bounds to
and . In Section IV, we show that the lower bounds
in Section III are indeed tight by establishing matching upper
bounds. In Section V, we compare the compression perfor-
mance of variable rate SW coding with that of fixed rate
Sleapian–Wolf coding for finite block lengths. Final discus-
sions are given in Section VIII.

1The tradeoff between compression rate and decoding error probability in
fixed rate SW coding is interestingly related to that in fixed rate classic source
coding with side information available to both the encoder and the decoder.
Specifically, it is eloquently argued in [6] that at rates within a certain range,
there exists at least one fixed rate SW code performs (in terms of error expo-
nent) as good as the best classic fixed rate code using the side information at
the encoder; and at rates higher than the certain range, the error exponent of
fixed rate SW coding is unknown and might be inferior to that of classic fixed
rate coding. Similarly, it is not hard to see that when � is in a certain range,
� �� � is the same as the redundancy of fixed rate classic source coding with
side information available at the encoder.

2As ���, � will go to 0 fast enough, but not exponentially.

II. INTRINSIC CONDITIONAL ENTROPY

Motivated and inspired by [17], in this section, we introduce
and analyze the concept of intrinsic entropy, which will play
a fundamental role in our performance analysis of SW coding
in terms of the tradeoff between the redundancy and decoding
error probability.

We first describe the notation to be used throughout this
paper. Let be a finite set. The notation
stands for the cardinality of , and for any finite sequence
from denotes the length of . For any positive integer

denotes the set of all sequences of length from .
For convenience, we will sometimes write as

, where are two integers, or simply as when
. A similar convention will be applied to sequences of

random variables as well. We use to denote the set of all
probability distributions on , and to denote the subset
of where probability distributions with zero entries are
excluded. Let denote a probability distribution in .
The marginal distributions of over and are referred to
as and , respectively. The conditional distribution
is defined by

for when

for when

Occasionally, we shall also write as for con-
venience. Unless specified otherwise, log denotes the logarithm
to base , denotes the natural logarithm, and denotes the
base of the natural logarithm.

Our analysis in this paper makes heavy use of the method of
types [4]. An -tuple

is said to be an -type if for any
. The set of all -types on is de-

noted by . The type of a sequence is defined

as which is an -type

on , where . For
denotes the set of all length- sequences from with type ,
i.e., .

We now introduce the notion of intrinsic entropy. For
and , we define the intrinsic -entropy of as

(2.1)

Throughout this paper, denotes the relative entropy be-
tween two distributions, i.e.

if both and are defined over . Observe that the set

is convex and compact. Since the entropy function is continuous,
the supremum in (2.1) is attainable.
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From (2.1), it is easy to see that

For any , let
. We then have the following result.

Lemma 1: The intrinsic entropy has the following
properties:

1) is a concave function of ;
2) is continuous in ; and
3) for any fixed is a strictly

increasing function in .

The proof of Lemma 1 folllows immediately from the defini-
tion of in (2.1).

Extending the notion of intrinsic entropy, we define the in-
trinsic -conditional entropy of as follows:

(2.2)

where denotes the marginal of over . Note that

Similarly, the intrinsic -conditional entropy of with a con-
strained marginal is defined by

(2.3)

The definitions (2.2) and (2.3) will be used later to analyze the
redundancy of fixed rate and variable rate SW coding, respec-
tively.

From (2.2) and (2.3), it is easy to see that
, and

. For any , let

, and

. We have the
following result.

Lemma 2: The intrinsic conditional entropy
( , respectively) has the following properties:

1) it is a concave function of ;
2) it is continuous in ; and
3) for any fixed , it is a strictly increasing

function in ( , respectively).
Proof of Lemma 2: We briefly show Property 1) for

by proving

where , and . Let
be two distributions such that

i) and ; and
ii) and .

For brevity, let . From the convexity of
relative entropy, we have that

(2.4)

Note that if and , then . We get

(2.5)

In the above, the first equality is due to

and a similar expansion of ; and the last inequality fol-
lows from applying the log-sum inequality to and

. Inequalities (2.4) and (2.5) together imply Property
1). Similarly, we can prove Property 1) for . Prop-
erties 2) and 3) follow immediately from (2.2) and (2.3) and
Property 1). This completes the proof of Lemma 2.

In order to gain insights into intrinsic entropy and intrinsic
conditional entropy, and more importantly, to see how they can
be used to analyze the redundancy in source coding, we re-
late them to classical conditional entropy. Let be a pair
of random variables with joint distribution and alphabet

. Let and denote the marginals of over and
, respectively; and let and denote the conditional

probability distributions of given and given , respec-
tively. The following two lemmas are proved in Appendices A
and B, respectively.

Lemma 3 (Intrinsic Versus Classical): Suppose
. There exists a constant such that

for all less than some threshold.

Lemma 4 (Intrinsic Conditional vs Classical Conditional):
Assume . Then the following results hold:

• If or is not uniformly distributed over ,
then there exists a such that for any
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where

(2.6)

• If , then for any , there exists
a depending only on and such that for any

and any distribution satisfying
for all

where and

(2.7)

Remark 1:
Lemma 3 can be strengthened to have an expression similar

to that of Lemma 4.

Remark 2: The quantity inside the bracket of the equa-
tion defining can be interpreted as the variance of

(taken with respect to ). Similarly,
the quantity inside the bracket of the equation defining
can be interpreted as the average (over ) of the variance of

(taken with respect to ). The conditions on
assumed in Lemma 4 above are made so that these two

variances are bounded away from , respectively.

In the following, we will make use of intrinsic entropy, in-
trinsic conditional entropy, and the above lemmas to investigate
the performance of SW coding of with decoder side infor-
mation in terms of the tradeoff between the redundancy and
decoding error probability.

III. LOWER BOUNDS

Let be a memoryless source-side information pair
with finite alphabet . In this section, we establish a lower
bound on the compression rate of SW coding of with decoder
side information and a given decoding error probability.

We begin with the formal definition of variable rate SW
coding. Let denote a set of finite binary codewords satisfying
the prefix condition. An order SW code is described by
a pair , where , acting as an
encoder, maps source sequences of block length from to
binary codewords in , and , acting
as a decoder, reconstructs the encoded source sequences upon

receiving codewords and with the help of the side information
sequences. Since the mapping is often many-to-one, we
sometimes refer to an entry as a bin index as in the
literature of SW coding. The order SW code is called a
fixed rate code if consists of binary codewords of the same
length, and a variable rate code if codewords may have different
lengths. Clearly, the class of all (order ) variable rate SW
codes includes that of all (order ) fixed rate SW codes as a
strict subclass.

When is applied to encode , the resulting
average compression rate is given by

where denotes the length in bits of the binary sequence . On
the decoder side, let denote the decoder
output. The decoding error probability of is given by

In [13], it was shown that can be made arbitrarily close to
while maintaining a small decoding error probability

when is large enough. On the other hand, it is clear
that the smaller , the larger . Therefore, to fully
understand the performance of SW coding, it is desirable to in-
vestigate the best tradeoff between and among all
order SW codes . Under the condition that ,
a prescribed threshold, we first derive lower bounds on
in Theorems 1 and 2 below for variable rate and fixed rate SW
coding, respectively. The proofs of these two theorems are de-
ferred to Section VI.

Theorem 1: Assume and
. Let be a sequence of positive real numbers satisfying

and . Then for sufficiently
large and any order variable rate code with

(3.1)

one has

(3.2)

where

(3.3)

Theorem 2: Assume . Let
be defined as in Section II. Then for sufficiently

large , the following hold.
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a) For any order fixed rate code with de-
coding error probability

whenever , where and
are constants depending only on .

b) If or is not uniformly distributed over
, then for any order fixed rate code with decoding

error probability

whenever , where is specified in
Part 1 of Lemma 4, and is given by (2.6).

Remark 3: We say that the above coding theorem is proved
from the encoder’s perspective because the center of argument
is placed on the encoder, where we are mainly concerned that
under a probability constraint, the encoder can pack how many
distinct source sequences into one bin. The careful reader might
have found out that this type of packing argument is similar to
the sphere packing method in channel coding. Indeed, our proof
above clearly demonstrates that the underlying connection be-
tween SW coding and channel coding: each bin performs like a
channel code where every sequence in the same bin is mapped
to a set of side information sequences equivalent to channel re-
alizations.

The coding theorem above can also be proven from the de-
coder’s perspective [9]. From this perspective, the center of ar-
gument is placed on the decoder, where we are mainly con-
cerned that under a probability constraint, the decoder has to
receive enough bits to decode a sufficient number of distinct
source sequences. As a result, the argument relies more on the
classical Kraft’s inequality as in the analysis of classical lossless
source codes. From this perspective, the connection between
SW coding and classical source coding becomes apparent: for
each typical side information sequence, one can extract an good
embedded source code from a good SW code.

Remark 4: The assumption that has
intuitive explanations in addition to being viewed as the log-
ical consequence of our technical argument above. When

, one can construct a code (see Remark 7 in
Section IV) that achieves the conditional entropy
from below by discarding some atypical source types whose

probability is in the order of , and the reduction in
rates cannot be offset by the redundancy needed for encoding
the typical types. Thus, in contrast to fixed rate coding, there
is no redundancy in variable rate SW coding. This
clearly demonstrates the fundamental difference between fixed
rate and variable rate SW coding in the regime of slow decaying
error probabilities.

Remark 5: Theorems 1 and 2 can be extended to the case
where satisfying the following condition.

C1: is strictly less than the minimum zero-error
coding rate of achievable asymptotically with de-
coder only side information [18], [1], [10].

In [1], [10], the minimum zero-error coding rate of achievable
asymptotically with decoder only side information is shown
to be given by the complementary graph entropy ,
where denotes the characteristic graph associated with

[18]. Together with the fact that ,
Condition C1 implies that

To extend the two theorems to satisfying
Condition C1, one can follow an argument similar to that used to
prove Theorem 1 in Section VI. Some necessary modifications
are in order, which begin with the definitions of the intrinsic
-conditional entropy, , and the intrinsic -condi-

tional entropy with a constrained marginal ,
in (2.2) and (2.3), respectively. Specifically, the maximum in
(2.2) and (2.3) is now taken over all whose support set [1] is
a subset of the support set of . The rest of the changes follow
accordingly, and the details are omitted as they do not provide
much new insight.

IV. UPPER BOUNDS

In this section, the lower bounds established in Section III are
shown to be tight by establishing the respective matching upper
bounds. Specifically, we have the following two theorems.

Theorem 3: Assume and
. Let be a sequence of positive real numbers such that

and . Then there exists a se-
quence of variable rate SW codes with
such that for sufficiently large

(4.1)

where is given by (3.3).

Theorem 4: Assume . Further assume
either or is not uniformly distributed. Let
be a sequence of positive real numbers such that

and . Then there exists a sequence of fixed
rate codes with such that for sufficiently
large

(4.2)

where is given by (2.6).

The proofs of Theorem 3 and 4 are provided in Section VII.

Remark 6: Combining the proof of Theorem 1 with that of
Theorem 3, we see that an efficient variable rate SW code should
assign the same average decoding error probability to each bin,
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and the same decoding error probability to each sequence with
the same type.

Remark 7: In view of Theorem 3 and its proof in Section VII,
we see that for any constant (not depending upon ), there
exists a sequence of variable rate SW codes such that
for sufficiently large

(4.3)

where is a constant. Briefly, the construction of
is similar to that in the proof of Theorem 3 with the following
modifications. Let be the sequence to be encoded with type
. In Step 2 on the encoder side, if where is

a constant selected so that

the encoder sends nothing to the decoder in this step; otherwise,
select so that

and perform random binning of with bins. Step 2
on the decoder side is modified accordingly to reconstruct an
arbitrary sequence whenever . An argument
similar to that used in the proof of Theorem 3 can then be used
to prove (4.3). Further generalizing the construction of , one

sees there exist SW codes with that
achieve from below, echoing Remark 4.

Remark 8: It is well known that in classical lossless coding,
the redundancy of zero-error variable rate coding, which is in
the order , is much better than that of fixed rate coding,

which is in the order , where denotes the de-
coding error probability. Though one might expect a similar re-
sult in SW coding, Theorem 1 in Section III and Theorem 4
paint a different picture: for a wide range of error probabilities,
the redundancy of variable rate SW coding and that of fixed rate

SW coding are in fact in the same order . Since the
redundancy of variable rate SW coding was never fully charac-
terized before, this result, to the best knowledge of the authors,
is the first of its kind in the literature showing that one cannot
distinguish variable rate SW coding from fixed rate SW coding
simply by their respective redundancy order. In order to demon-
strate that variable rate SW coding is indeed more efficient than
fixed rate SW coding in general, in the next section we shall take
a closer look at the constant terms and .

V. VARIABLE RATE VS FIXED RATE

Having established tight performance upper and lower
bounds for both variable rate and fixed rate SW coding, we are
now in a position to compare the performance of variable rate
SW coding with that of fixed rate SW coding for large finite
block lengths.

Assume and . Let be
a sequence of positive real numbers satisfying

and . From Sections III and IV, it follows that
for large , the best compression performance in bits per symbol
of order variable rate SW coding with the decoding error prob-
ability less than or equal to and that of order fixed rate SW
coding with the decoding error probability are equal to

and

respectively. Thus the comparison between them for large finite
block lengths boils down to comparing with . To this
end, we have the following result.

Theorem 5: Assume . Then we have

with equality if and only if

is a constant, i.e., does not depend on the actual symbol .
Proof of Theorem 5: In view of the definitions of and

in (3.3) and (2.6), respectively, we see that in order to prove The-
orem 5, it suffices to compare against . It
is not hard to verify that
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In the above, the inequality 1) is due to the nonnegativity of
variance with equality if and only if

is a constant. This completes the proof of Theorem 5.

Remark 9: Theorem 5 implies that even though variable rate
SW coding and fixed rate SW coding approach asymptotically
the same compression limit at a speed of the same

order , for finite block lengths , variable rate SW
coding is indeed more efficient than fixed rate SW coding in
general.

Remark 10: It is also interesting and surprising to see that for
sources for which is a con-
stant, variable rate SW coding and fixed rate SW coding have
the same compression performance up to the second order in-
clusive. This implies that for these types of sources, there is no
need to use variable rate SW coding in practice.

We conclude this section with an example to demonstrate the
difference between and .

Example: Consider the case where takes values in the
binary alphabet with , and the channel
from to is a binary symmetric channel (BSC) with
crossover probability i.e.

if
if

(5.1)

We will assume that . When ,3

When ; Fig. 1 shows the curves of and
as a function of for .

3The redundancy of fixed rate SW coding for the case where � � ��� was
considered in [2, Theorem 2], where the term ���� � ��	� �� is obtained
by using an argument based on the central limit theorem.

VI. PROOF OF THEOREMS 1 AND 2

In this section, we prove Theorems 1 and 2.

Proof of Theorem 1: Let be an order
variable rate code with

(6.2)

where . Let be a positive
number to be specified later. Define

where the constant is chosen so that

(6.3)

Throughout the paper, denotes the L1 distance. For brevity,
let denote the subset of such that

From Markov’s inequality, it follows that
, which, together with (6.3), implies

(6.4)

Define a binary random variable such that is equal to 1 if
and 0 otherwise. Furthermore, for any and

, define

and

Since is a prefix set, it is easy to see that

(6.5)
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Fig. 1. Comparison of redundancy constants � and � .

Note that when . Consequently, we shall
consider only the case where . In view of the definition
of entropy, we have for any

which, together with (6.5), implies

(6.6)

where the last inequality is due to the fact that

Since each sequence in is equally probable, it follows
that in (6.6)

Define

and

We are then led to upper bound .
Fix and . Since

(6.7)

we can think of as a channel code for the memoryless
channel given by with the average decoding error proba-
bility given by . Specifically, for each , define

Then the set mapping from to specifies a
channel code for with acting as a decoding set
in for and the average decoding error probability .
Since the sets , are disjoint, we can use a
sphere packing argument to upper bound . This is essen-
tially the line we shall follow below.

Applying the sphere packing argument directly to ,
however, encounters two problems: (1) the cardinalities of the
sets may not have a tight uniform lower bound, and (2)
the cardinality of the union of the sets over all

may not have a tight upper bound. To overcome these two
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problems, we shall limit our attention to a subset of good “code-
words” and the intersection of with some

type classes. To this end, define
. From Markov’s inequality, it follows that
.4 For any -type with its marginal

over given by and any , let

where is a positive constant. Instead of , we shall
consider the intersection of with below
for . In other words, we shall apply the sphere
packing argument to the set mapping from to

.
At this point, we invoke the following lemma, which will be

proved in Appendix C, and enables us to tightly lower bound
.

Lemma 5 ( -Neighborhood of a Type): Assume
. Then for any , there exists

a constant such that for any sufficiently large , any
-type , any -type with and

, and any sequence ,
the following results hold:

1) .
2) .
3) For any and any

subset of

whenever

Fix and as we did before Lemma 5. Let be
a constant to be specified later. In view of Lemma 2, let be a
distribution in such that

and

(6.8)

Note that since increases as in-
creases, such exists for sufficiently large . Regarding

4Due to Markov’s inequality,

���� � �� �� � � � �
��� �� � � �

��
�

�

�

which, together with the fact that all sequences in � are equally probable,
implies that �� � � ��� �. In the above, � stands for the standard
expecation operator.

as a matrix whose row sums equal , we can construct a type
round as follows.

S1: For every row in , move the first elements to
the nearest integer multiples of .

S2: Set the last column of the resulting matrix so that its
row sums equal .

Verify that . It then follows from
the standard Taylor’s series expansion that for all , there
exist constants and such that

and (6.9)

(6.10)

Putting (6.8), (6.9), and (6.10) together, we have

and

(6.11)

Select now . In view of Lemma 5 and its proof,
we see that for

For brevity, let us use to denote
and to denote the complement of in

. Then for

(6.12)

where the last inequality is due to . Equation (6.12),
together with Lemma 5, implies that

(6.13)

Regard as a sphere mapped to . In
order to apply a sphere packing argument as mentioned above
to upper bound (and in turn ), we need to upper
bound

Authorized licensed use limited to: Jun Chen. Downloaded on November 18, 2009 at 20:26 from IEEE Xplore.  Restrictions apply. 



5616 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 12, DECEMBER 2009

where the equality is due to the fact that is a
subset of . To this end, we observe from the definition of

that

which in turn implies

(6.14)

where is a constant. In the above, the fact that for any

is used to upper bound . Putting (6.13)
and (6.14) together, we get

(6.15)

where inequality 1) follows from (6.13), and inequality 2) is due
to the inequality derived above. It follows
immediately from (6.15) that

(6.16)

Equation (6.16) gives the desired upper bound on the
number of sequences (in with type ) which the en-
coder can place into one bin without violating the decoding
error probability constraint. From (6.16) and the fact that

, it follows that

(6.17)

where the equality 1) follows from Lemma 4, and is de-
fined in (2.7).

To proceed, note that (6.17) holds uniformly for all and
. We average (6.17) with over . Observe

that only one term on the right-hand-side of (6.17) depends on
the index bin . Note that is a convex function when

for . Thus if , we
can apply Jensen’s inequality and get

(6.18)

We continue to average (6.18) with over .
(We can do this because when ). Let us first
calculate

Observe that although is convex with re-

spect to when is concave with
respect to . To address this problem, we note that

for sufficiently large, where is a constant dependent
only on . Thus
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(6.19)

In the above, inequality 1) is due to the fact that

and inequality 2) follows from Jensen’s inequality. At this mo-
ment, we invoke the following lemma, whose proof can be found
in Appendix D.

Lemma 6: There exists a constant such that
for all .

It follows from (6.19) and Lemma 6 that

(6.20)

where .
We next calculate

Denote by . Expanding
at by using Taylor’s series, we have

where and are regarded as row vectors, and
denotes the transpose of . When , we see that

. Thus

(6.21)

In the above, inequality 1) is due to ;
and inequality follows from that

In order to see that inequality 3) holds, we observe that for any

if
if

and thus
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In view of (6.18), (6.20), and (6.21), we see that

(6.22)

Since

we have

(6.23)

where the last inequality follows from the observation that
for . Putting (6.23) back

into (6.22), we finally get

(6.24)

Because of (6.24) and Lemma 4, this completes the proof of
Theorem 1.

Proof of Theorem 2: Theorem 2 can be proved in various
ways. Here we only sketch a proof that is simplified from the

proof of Theorem 1 and that of Lemma 5. Let
be any fixed rate code as specified in Theorem 1. In view of the
definition of the conditional intrinsic entropy in Section II and
Lemma 2, we let be a distribution in such that

and

where is a positive number to be specified later. Around ,
we define a type set

Following an argument similar to that used to prove Lemma 5,
we can show that

(6.25)

Select now so that the right-hand-side of (6.25) is equal to
, where . That is

Since

we have

(6.26)

For brevity, let us define

It then follows from (6.26), the definition of , and an argu-
ment similar to that used in the proof of Lemma 5 that

(6.27)

where is a positive constant. Observe that there are at most
side information sequences in the set , where

is a positive constant. This implies that the code needs at
least

(6.28)

distinct codewords (or equivalently bins) to encode the source
sequences in . Equation (6.28), coupled with the fact that

is a fixed rate code and the definition of above, further
implies that
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Because of our selection of and Lemma 4, this completes the
proof of Theorem 2.

VII. PROOF OF THEOREMS 3 AND 4

In this section, we prove Theorems 3 and 4.
Proof of Theorem 3: Let and denote the marginals

of over and , respectively. Let denote the
conditional probability distribution of given . To prove
this theorem, we shall construct a sequence of codes
with desired decoding error probability and redundancy. Our
construction directly reflects the knowledge that we learned
from the analysis of the redundancy lower bound of SW coding
in Section III, and makes conscious use of the marginal type
of .

To describe , it suffices to see how and
work. For any , and with type , the encoder
encodes as follows.

Step 1: Encode by using

bits (7.29)

Step 2: If where is a constant
selected so that

(7.30)

encode losslessly by using

(7.31)

otherwise, selects

(7.32)

where , and are two

positive numbers to be specified later. Construct
bins. then randomly selects a bin with probability

, places into the bin, and encodes the bin index
by using bits. Note that the random bin selection is
independent of , and the codeword length
depends only on the type of .

On the decoder side, the decoding function works as fol-
lows.
Step 1: Decode the type from the transmitted codeword.
Step 2: If , decode the source

sequence from the transmitted codeword; oth-
erwise, decode the bin index from the transmitted
codeword, and continue to Step 3 below.

Step 3: This step is executed only if
. For any side information sequence

and any , define by

Note that could be empty. Our code then
reconstructs as a sequence in the bin specified by
the transmitted bin index that is also in .5 That
is, if we use to denote the set of all sequences
from in the th bin, then

if is non-empty, where denotes the
bin index sent from the encoder; otherwise, is
selected arbitrarily. If the set consists
of more than one sequence, selects an arbitrary
one in as .

Suppose that , where .
In view of the encoding and decoding process of described
above, we see that a decoding error happens if either one of the
following two events occurs.

i) .
ii) , but there exist other sequences in that

also fall in the bin containing .
In view of these, we have for

(7.33)

In the following, our job is to upper bound the two terms on the
right hand side of (7.33). The derivation of these bounds makes
use of the concept of intrinsic conditional entropy.

To upper bound , we define

and

Let denote a sequence in . Then

(7.34)

5The decoding rule described in Step 3 of the decoding function � is similar
to the standard joint typicality decoding rule with two subtle differences: 1) the
joint type must satisfy the marginal constraint, i.e., the set � consists of
only sequences with the same type known to the decoder; 2) and the typicality
is evaluated by using relative entropy instead of L1 norm. The main reason for
these subtle touches on the decoding rule is to derive a sharp upper bound of
the redundancy of SW coding, while at the same time maintains the simplicity
compared to the maximum a posteriori(MAP) decoding rule.
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In the above, the last equality follows from Stirling’s approxi-
mation of integer factorials (see (C3) in Appendix C for details).

To continue, we partition into a series of mutually
exclusive subsets as follows:

where . Thus
the sum on the right-hand side of
(7.34) can be upper-bounded by

(7.35)

It remains to upper bound . Exam-
ining the definition of above, we find that for

(7.36)

where the first inequality follows from the L1 bound on relative
entropy [3, Lemma 12.6.1]. This bound implies that

(7.37)

Combining (7.34), (7.35), and (7.37), we arrive at

(7.38)

where denotes the integer factorial with convention
, and the last equality follows from our assumption of finite

alphabets.
Leaving the selection of in (7.38) to a later moment, we

turn our attention to . Suppose
that . Given , the probability of the event

is upper bounded by the probability that another
sequence from is placed in the same bin as . Recall
that each bin is selected with uniform probability , and
that the bin selection is independent of . Define

and

Then a standard argument can be used to show that

(7.39)

It is clear that in order to upper bound (7.39), it suffices to
upper bound . We hint at this moment that our bound on
is related to intrinsic conditional entropy. Toward this direction,
we see that from an argument similar to that used in the proof
of Theorem 1, it follows that for any and

(7.40)

Let denote the type in such that

Then for each with nonempty , we have

(7.41)

In the above, the equality 1) is due to (7.40). Using the argument
that led to (7.37), we can upper-bound
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by

(7.42)

Putting (7.42) back into (7.41) leads to

(7.43)

where the last inequality follows from the definition of intrinsic
conditional entropy in (2.3), and the definitions of and

above. Since (7.43) holds for any and such
that , it follows that

(7.44)

which together with (7.39), implies

(7.45)

where the last inequality is due to (7.32).
For convenience, we now combine (7.33), (7.38), and (7.45)

into

(7.46)

In view of (7.46), we make the selections of and as fol-
lows:

(7.47)

where and are con-
stants selected so that the two terms on the right-hand-side of
(7.46) are upper bounded by , respectively. Consequently, it
follows from (7.46) and the description of our code above
that

(7.48)

for sufficiently large .
To finish the proof, we need to upper bound the average com-

pression rate of the code . Note that even though is a

random code by construction, the codeword length , for
each , depends only on the type of . Thus, for any real-
ization of , we have

(7.49)

In the above, the inequality 1) is due to the concavity of
with respect to (see Lemma 2); the equality

follows from Lemma 4 and its proof in Appendix B; and the
equality 3) is obtained by plugging in our selections of and

in (7.47).
Combining (7.48) with (7.49) now implies that there exists an

order deterministic variable rate SW code with the decoding
error probability less than or equal to and the average com-
pression rate upper bounded by (7.49). This completes the proof
of Theorem 3.

Proof of Theorem 4: In order to prove Theorem 4, we
modify the code constructed in the proof of Theorem 3 so that
it becomes a fixed rate code as follows. Specifically, in Step 2
of the encoder , for all type , select

where and are selected in (7.47). Our modified code
then randomly selects a bin with probability , places
into the bin, and encodes the bin index by using bits. Since
in Step 1, the type is encoded into a constant number of bits, the
modified code is indeed a fixed rate code. Using an argument
similar to that used in the proof of Theorem 3, we can easily
show that for sufficiently large

with the modified code . This, coupled with the definition of
and Lemma 4, completes the proof of Theorem 4.
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VIII. CONCLUSION

In this paper, we have characterized the compression perfor-
mance in bits per symbol of both variable rate and fixed rate
SW coding for memoryless source-side information pairs up to
the second order inclusive when the decoding error probability

goes to fast enough, but not exponentially as the block
length . The characterization, on one hand, implies
that surprisingly, variable rate SW coding and fixed rate SW
coding approach asymptotically the same compression limit at

a speed of the same order . This sharply contrasts
with the fact that in classical lossless coding, the redundancy of
zero-error variable rate coding, which is in the order ,
is much better than that of fixed rate coding, which is in the

order . On the other hand, the characterization also
implies that for large finite block lengths , variable rate SW
coding is indeed more efficient than fixed rate SW coding in gen-
eral. A necessary and sufficient condition has also been derived
under which variable rate SW coding and fixed rate SW coding
have the same compression performance up to the second order
inclusive. The design of practical SW codes with finite block
lengths is not simply a matter of approaching the conditional
entropy rate ; instead, it is more about the tradeoff
among the compression rate, decoding error probability, and
block length. During the course of proving our main results,
new information quantities called intrinsic entropy and intrinsic
conditional entropy have been introduced and analyzed. It is ex-
pected that these information quantities will have applications to
other problems in information theory as well such as SW coding
with multiple encoders.

APPENDIX A

In this section, we prove Lemma 3. For any , define
by

Note that the marginals of over and are and ,
respectively. Then on the one hand we have

(A1)

where is a positive constant. In the above, the last inequality
follows from the assumption that . On the other
hand, when is small, there exists a constant such that

(A2)

Select . Because of (A1), (A2), and the fact that
by definition, this completes the proof

of Lemma 3.

APPENDIX B

In this section, we prove Lemma 4. For brevity, let .
In view of (2.2) and Lemma 2, we see that in order to prove
the first part of Lemma 4, it suffices to solve the following con-
strained maximization problem

(B1)

Let . From [3, Lemma 12.6.1], we
see that

Thus, when is small, we can use Taylor’s series to expand
at , and get

(B2)

Similarly, we expand at , and get

(B3)

In view of (B2), and (B3), we see that when is small, we
can simplify (B1) into the following constrained maximization
problem.

subject to

To solve the above problem, we can use the standard Lagrange
multiplier. Define

(B4)
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The first derivative of with respect to is given by

(B5)

Letting (B5) equal zero, we have

(B6)

(B6), together with the constraints in (B4), leads to

(B7)

and

(B8)

Note that the difference within the brackets above is positive
whenever or is not uniformly distributed over

. Consequently

(B9)

This completes the proof of the first part of Lemma 4.
We now use the same strategy to prove the second part of

Lemma 4. For brevity, let from this moment on. In
view of (2.3) and Lemma 2, we see that in order to prove Lemma
4, it suffices to solve the following constrained maximization
problem:

subject to (B10)

Observe that

where and

for any . Let .
From [3, Lemma 12.6.1], we see that

where denotes the natural logarithm. Thus, when is small,
we can use Taylor’s series to expand at , and
get

(B11)

Similarly, we expand at , and get

(B12)

In view of (B11) and (B12), we see that when is small, we
can simplify (B10) into the following constrained maximization
problem:

subject to

for any (B13)

To solve the above problem, we again use the standard Lagrange
multiplier. Define

(B14)

The first derivative of with respect to is given by

(B15)
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Letting (B15) equal zero, we have

(B16)

(B16), together with the constraints in (B13), leads to (B17) and
(B18) shown at the bottom of the page. Note that the difference
within the brackets above is positive whenenver .
Consequently

(B19)

Note that , and
. Also, the above argument is valid uniformly for

all satisfying for all .
This completes the proof of Lemma 4.

APPENDIX C

In this Appendix, we prove Lemma 5. Fix and type
according to the lemma’s statement. Around

, we define the following type set:

We see that the set is equal to

(B17)

and

(B18)
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We pause at this moment to discuss some properties of the
set . When is sufficiently large, we see that is a L1 ball
centered at and is thus symmetric with respect to , i.e.

(C1)

Furthermore, observe that there are degrees of
freedom to move the entries of at step size to obtain a
type in . This implies that

(C2)

We now count the number of distinct sequences in
as follows:

(C3)

for sufficiently large . In the above, the inequality 1) is due to
the convexity of the exponential function; the equality 2) is ob-
tained from (C2); and the last equality 3) is argued in Append E.

We next lower bound the probability

Let denote a sequence in constructed above. Then

(C4)

which implies

(C5)

for sufficiently large . In the above, the equality 1) follows
from an argument similar to that applied in the derivation of
(C3) above; the inequality 2) is due to the convexity of the expo-
nential function; the equality 3) follows from (C2); and the last
equality follows from an argument similar to that in Appendix E.

It remains to lower bound the cardinality of any subset
of with probability no smaller than

, where is a real number satisfying
. Recall that

is a linear function of , where and are two distributions
defined over the same alphabet. From (C4) and the construction
of , it follows that for any

(C6)

where is a positive constant. It then follows im-
mediately from (C6) that any subset of
with probability satisfies

(C7)

for sufficiently large . Select to take care of the
terms in (C3) and (C5). We then get all the desired inequalities
of Lemma 5 from (C3), (C5), and (C7). This completes the proof
of Lemma 5.

APPENDIX D

In this Appendix, we prove Lemma 6. Let us partition the set
into a sequence of mutually exclusive subsets

defined by

For each , the probability that is upper bounded
by
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(D1)

In the above, inequality 1) is due to the L1 bound on relative
entropy [3, Lemma 12.6.1], i.e.

and equality 2) follows from observing that

Using , we rewrite

(D2)

where is a positive constant. In the above, inequality 1) fol-
lows from (D1). Let . This completes the
proof of Lemma 6.

APPENDIX E

In this appendix, we detail the derivation of the equality 3) in
(C3). Specifically, we show there exists a constant , dependent
only on , such that

(E1)

for sufficiently large .
Regard and as row vectors for brevity. Expanding

at by using Taylor’s series, we get

(E2)

where denotes the transpose of . Since the term
is linear with respect to , it follows from (C1)

that

(E3)

Let denote the smallest entry in . It is easy to verify that
the absolute value of every entry in is upper bounded
by . Consequently,

(E4)

Combining (E2), (E3), and (E4), we arrive at

(E5)

where the last inequality follows from the definition of in
Appendix C. This completes the proof of (E1).
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