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Lattice-Based Robust Distributed Source Coding
Dania Elzouki, Sorina Dumitrescu , Senior Member, IEEE, and Jun Chen , Senior Member, IEEE

Abstract— In this paper, we propose a lattice-based robust
distributed source coding system for two correlated sources and
provide a detailed performance analysis under the high resolution
assumption. It is shown, among other things, that, in the asymp-
totic regime where: 1) the side distortion approaches 0 and 2) the
ratio between the central and side distortions approaches 0, our
scheme is capable of achieving the information-theoretic limit of
quadratic multiple description coding when the two sources are
identical, whereas a variant of the random coding scheme by
Chen and Berger with Gaussian codes has a performance loss
of 0.5 bits relative to this limit.

Index Terms— Distributed source coding, lattice quantization,
high resolution analysis.

I. INTRODUCTION

D ISTRIBUTED source coding is a crucial category of
source coding problems, which has received significant

attention over the past few decades. In distributed source
coding, multiple correlated sources are encoded separately and
sent to a central decoder for joint decoding. For the case
when the central decoder is required to recover both sources
losslessly, Slepian and Wolf [1] characterized the achievable
rate region. The case when one source is available as side
information at the decoder, while the other source may be
recovered with some distortion, was solved by Wyner and
Ziv [2]. A general formulation of the distributed source coding
problem in the lossy case was provided by Berger [3] and
Tung [4]. However, the solution has been found only in certain
special cases [5]–[10].

A closely related problem is the CEO problem introduced
in [11], where the correlated sources are noisy observations of
a single remote source, whose reconstruction is required at the
joint decoder. The rate-distortion region for this problem has
been completely characterized in the quadratic Gausian case
by Oohama [12] and Prabhakaran et al. [13].

Most of past work assume that the central decoder receives
the information sent by all separate encoders. However,
in practice this may not be true. For instance, in the case
of wireless communications, the quality of the channels may
be fluctuating. If the channel connecting some encoder with
the fusion center becomes very bad, the decoder is no longer
able to recover the transmitted information. In such cases a
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robust system is desired. The robust version of the distributed
source coding problem was considered in the CEO setting
by Ishwar al. [14] and Chen and Berger [15]. The design of
practical schemes was addressed in [16]–[18], where iterative
algorithms were employed for locally optimal designs. On the
other hand, the work of Heegard and Berger [19] considers
the robust version of the Wyner-Ziv problem and provides a
characterization of the rate-distortion region.

The robust distributed source coding (RDSC) problem for
the case of two correlated sources is considered in this paper.
We propose a structured coding scheme based on lattices and
provide a detailed performance analysis under the high resolu-
tion assumption. Note that when the two sources are identical,
the setting being considered coincides with that of the clas-
sical multiple description coding (MDC) problem [20]–[29].
For this case, our analysis indicates that, in the asymptotic
regime where 1) the side distortion approaches 0 and 2) the
ratio between the central and side distortions approaches 0,
the proposed lattice-based scheme is capable of achieving the
information-theoretic limit of quadratic MDC. For comparison
we consider a variant of the random coding scheme originally
proposed by Chen and Berger [15] for the robust CEO problem
and prove that the sum-rate of the latter system with Gaussian
codes is 0.5 bits higher than the sum-rate of our proposed
approach in the same asymptotic regime.

Our design is inspired by the prior work on mul-
tiple description lattice vector quantizers (MDLVQ) of
Vaishampayan et al. [30] and Huang and Wu [31]. It is worth
pointing out that lattices have been used in prior work in
other distributed source coding problems [33]–[36]. Most of
the aforementioned papers use dithered lattice quantization,
except for the work of Servetto [34], which performs the
analysis under the assumption of very high rate and very high
correlation.

The paper is structured as follows. Section II presents the
formulation of the RDSC problem. In Section III we analyze
the performance of a random-coding-based RDSC scheme
(similar to the one proposed in [15]) with Gaussian codes
and prove that it does not achieve the information-theoretic
limit of quadratic MDC in the asymptotic regime where the
side distortion and the ratio between the central and side
distortions approach 0. Section IV introduces definitions and
notations related to lattices. Section V presents the main results
of this work, namely the asymptotic performance analysis of
the proposed lattice-based RDSC scheme. It is shown, among
other things, that our design is able to achieve the fundamental
limit of quadratic MDC in the aforementioned asymptotic
regime. Section VI presents the detailed operation of the
proposed lattice-based RDSC scheme. Finally, Section VII
concludes the paper.
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Fig. 1. Block diagram of robust distributed source coding.

II. PROBLEM FORMULATION

Consider two sources X1 and X2 with joint probability
distribution fX1 X2 . The two sources generate a jointly i.i.d.
random process (X1,k, X2,k)k∈N

. We will consider an RDSC
system as illustrated in Fig. 1. The system consists of two
encoders and three decoders. Encoder i , i = 1, 2, has access
only to source Xi , while the side decoder i receives only
the information sent by encoder i and aims at reconstructing
source Xi , i = 1, 2. The central decoder receives the infor-
mation from both encoders and aims at reconstructing both
sources X1 and X2.

For each i = 1, 2, let di : Xi × X̂i → [0,∞) be a
distortion measure, where Xi and X̂i are the source alphabet
and the reconstruction alphabet for source Xi , respectively.
The distortion measures are extended to sequences of length n
as follows

di (xn
i , x̂ n

i ) = 1

n

n∑

k=1

di(xi,k , x̂i,k ),

where xn
i = (xi,1, · · · , xi,n), x̂ n

i = (x̂i,1, · · · , x̂i,n).
A six-tuple (R1, R2, ds,1, ds,2, dc,1, dc,2) is said achievable,

if for any � > 0 and all sufficiently large n, there exist
encoding functions

f (n)
i : X n

i → {1, 2, · · · , �2n(Ri+�)�}, i = 1, 2,

and decoding functions

g(n)
s,i : {1, 2, · · · , �2n(Ri +�)�} → X̂ n

i , i = 1, 2,

g(n)
c,i : {1, 2, · · · , �2n(R1+�)�}×{1, 2, · · · , �2n(R2+�)�}→X̂ n

i ,

i = 1, 2,

such that

E

[
di (Xn

i , X̂n
t,i )

]
≤ dt,i + �, i = 1, 2, t = s, c,

where E[·] denotes the expectation operator and

X̂n
t,i = g(n)

t,i ( f (n)
i (Xn

i )), i = 1, 2, t = s, c.

The RDSC rate-distortion region, denoted by RD, is the set
of all such achievable six-tuples.

Furthermore, if Y is a random variable over some dis-
crete alphabet Y , with probability mass function pY , and∑

y∈Y pY (y) log2 pY (y) is finite, then the entropy of Y
is H (Y ) � − ∑

y∈Y pY (y) log2 pY (y). If Xn ∈ R
n is

a continuous random vector with probability density func-
tion (pdf) fXn , and the quantity

∫
Rn fXn (xn) log2 fXn (xn)dxn

is finite, then the differential entropy of Xn is h(Xn) �
− ∫

Rn fXn (xn) log2 fXn (xn)dxn .

III. A RANDOM-CODING-BASED RDSC SCHEME

In this section, we adapt a random coding scheme originally
proposed by Chen and Berger [15] for the robust CEO problem
to the current setting and analyze the asymptotic performance
of this scheme when specialized to the MDC scenario.

Theorem 1: We have RDin ⊆ RD, where RDin denotes
the set of rate-distortion tuples (R1, R2, ds,1, ds,2, dc,1, dc,2)
for which there exist auxiliary random variables
U1, U2, W1, W2 (jointly distributed with the generic source
variables X1 and X2) satisfying the following Markov chain

W1 ↔ U1 ↔ X1 ↔ X2 ↔ U2 ↔ W2, (1)

and deterministic mappings gs,i : Wi → X̂i , gc,i : U1 ×U2 →
X̂i , i = 1, 2, such that

R1 ≥ I (X1; W1) + I (X1; U1|U2, W1, W2),

R2 ≥ I (X2; W2) + I (X2; U2|U1, W1, W2),

R1 + R2 ≥ I (X1; W1) + I (X2; W2)

+ I (X1, X2; U1, U2|W1, W2),

ds,i ≥ E[di(Xi , gs,i(Wi ))], i = 1, 2, (2)

dc,i ≥ E[di(Xi , gc,i (U1, U2))], i = 1, 2. (3)
The inner bound RDin in Theorem 1 is achievable by

the following random coding scheme. Roughly speaking,
encoder i produces (Wi , Ui ), where Wi is a (lossy) description
of Xi , and Ui is a refinement of Wi , i = 1, 2. Moreover, Wi

is encoded using the conventional lossy source code while Ui

is encoded using the Berger-Tung code [3], [4] with (W1, W2)
as the decoder side information, i = 1, 2. Side decoder i can
recover Wi and use gs,i(Wi ) as an estimate of Xi , i = 1, 2. The
central decoder can recover (U1, U2) (as well as (W1, W2)) and
use gc,i (U1, U2) as an estimate of Xi , i = 1, 2. The proof of
Theorem 1 is similar to [15, Th. 1] and is thus omitted.

In the rest of this paper, we assume X1 = X2 = X̂1 =
X̂2 = R and adopt the squared distance as the distortion
measure unless specified otherwise. To facilitate the evaluation
of the achievable rate-distortion tuples in Theorem 1, we shall
focus on so-called Gaussian codes (in the sense of [37]), which
correspond to the following construction. Let

Ui = Xi + Zi , Wi = Ui + Z ′
i , i = 1, 2, (4)

where Z1, Z2, Z ′
1, Z ′

2 are zero-mean mutually independent
Gaussian random variables and are independent of (X1, X2).
It is clear that U1, U2, W1, W2 constructed according to (4)
satisfy the Markov chain condition (1). Moreover, we restrict
gs,i and gc,i , i = 1, 2, to be linear MMSE estimators; as such,
(2) and (3) can be rewritten as

ds,i ≥ LMMSE(Xi |Wi ), i = 1, 2, (5)

dc,i ≥ LMMSE(Xi |U1, U2), i = 1, 2, (6)

where LMMSE denotes the squared distortion induced by the
linear MMSE estimate.

Now consider the special case where X1 = X2 = X , ds,1 =
ds,2 = ds , and dc,1 = dc,2 = dc. This is exactly the setting of
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the symmetric MDC problem. We shall assume that the source
variable X is of mean zero, variance σ 2

X , and finite differential
entropy h(X). It is well-known (see, e.g., [37], [38]) that in
the asymptotic regime

ds → 0,
dc

ds
→ 0, (7)

the minimum sum-rate of symmetric MDC is given by

RM D(ds, dc) = 2h(X) − 1

2
log2(4(2πe)2dsdc) + o(1). (8)

We shall show that in the same asymptotic regime the min-
imum sum-rate of the random-coding-based RDSC scheme
in Theorem 1 with Gaussian codes as defined by (4)–(6) is
given by

RRC (ds, dc) = 2h(X) − 1

2
log2(2(2πe)2dsdc) + o(1), (9)

therefore is 0.5 bits away from the fundamental limit.
First note that in the current setting (5) and (6) can be

written equivalently as

ds ≥
⎛

⎝ 1

σ 2
X

+ 1

σ 2
Zi

+ σ 2
Z ′

i

⎞

⎠
−1

, i = 1, 2, (10)

dc ≥
(

1

σ 2
X

+ 1

σ 2
Z1

+ 1

σ 2
Z2

)−1

, (11)

which implies

σ 2
Zi

+ σ 2
Z ′

i
≤ (1 + o(1))ds, i = 1, 2, (12)

σ 2
Z1

σ 2
Z2

σ 2
Z1

+ σ 2
Z2

≤ (1 + o(1))dc, (13)

in the asymptotic regime (7). It can be verified that

I (X; W1) + I (X; W2) + I (X; U1, U2|W1, W2)

= I (X; W1) + I (X; W2) + I (X; U1, U2) − I (X; W1, W2)

= h(W1) − h(Z1 + Z ′
1) + h(W2) − h(Z2 + Z ′

2) + h(U1, U2)

− h(Z1, Z2) − h(W1, W2) + h(Z1 + Z ′
1, Z2 + Z ′

2)

= h(W1) + h(W2) + h(U1, U2) − h(Z1, Z2) − h(W1, W2).

(14)

We have

h(U1, U2) − h(W1, W2)

= −I (Z ′
1, Z ′

2; X + Z1 + Z ′
1, X + Z2 + Z ′

2)

= −I (Z ′
1, Z ′

2; Z1 + Z ′
1 − Z2 − Z ′

2, X + Z2 + Z ′
2)

= −I (Z ′
1, Z ′

2; Z1 + Z ′
1 − Z2 − Z ′

2)

− I (Z ′
1, Z ′

2; X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2). (15)

Substituting (15) into (14) gives

I (X; W1) + I (X; W2) + I (X; U1, U2|W1, W2)

= h(W1) + h(W2) − h(Z1, Z2)

− I (Z ′
1, Z ′

2; Z1 + Z ′
1 − Z2 − Z ′

2)

− I (Z ′
1, Z ′

2; X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2). (16)

Note that

h(Z1, Z2) + I (Z ′
1, Z ′

2; Z1 + Z ′
1 − Z2 − Z ′

2)

= h(Z1, Z2) + h(Z1 + Z ′
1 − Z2 − Z ′

2) − h(Z1 − Z2)

= 1

2
log2

⎛

⎝
(2πe)2σ 2

Z1
σ 2

Z2
(σ 2

Z1
+ σ 2

Z ′
1
+ σ 2

Z2
+ σ 2

Z ′
2
)

σ 2
Z1

+ σ 2
Z2

⎞

⎠

≤ 1

2
log2

(
2(2πe)2dsdc

)
+ o(1) (17)

in the asymptotic regime (7), where (17) is due
to (12) and (13). Moreover,

I (Z ′
1, Z ′

2; X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2)

= h(X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2)

− h(X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2, Z ′

1, Z ′
2)

= h(X + Z2 + Z ′
2|Z1 + Z ′

1 − Z2 − Z ′
2)

− h(X + Z2|Z1 − Z2)

= h(X + Z̃1) − h(X + Z̃2), (18)

where Z̃1 = Z2 + Z ′
2 − E[Z2 + Z ′

2|Z1 + Z ′
1 − Z2 − Z ′

2] and
Z̃2 = Z2 − E[Z2|Z1 − Z2]. It can be shown [39] that in the
asymptotic regime (7)

h(Wi ) = h(X) + o(1), i = 1, 2,

h(Z̃i ) = h(X) + o(1), i = 1, 2,

which together with (16), (17), and (18) proves that

I (X; W1) + I (X; W2) + I (X; U1, U2|W1, W2)

≥ 2h(X) − 1

2
log2

(
2(2πe)2dsdc

)
+ o(1).

The tightness of this lower bound can be established by
choosing σ 2

Zi
, σ 2

Z ′
i
, i = 1, 2, that satisfy (10) and (11) with

equalities. This completes the proof of (9).
There are two possible reasons why the performance of

this random-coding-based RDSC scheme with Gaussian codes,
when specialized to the symmetric MDC setting, is bounded
away from the fundamental limit. Firstly, the restriction to
Gaussian codes might be suboptimal. Secondly and more
importantly, the random-coding-based RDSC scheme itself
might be suboptimal. It is well known [20], [22] that the El
Gamal-Cover (EGC) inner bound is tight for the quadratic
Gaussian MDC problem. However, the inner bound RDin in
Theorem 1, when specialized to the MDC setting, does not
(at least expression-wise) coincide or subsume the EGC inner
bound, therefore is unlikely to be tight. For the EGC inner
bound, no Markov chain condition is imposed on the relevant
auxiliary random variables. On the other hand, it is very
difficult (if not impossible) to establish a single-letter inner
bound of RD without a Markov chain condition similar to (1).
In other words, the conventional random coding argument
seems to fall short of providing an RDSC scheme that does not
have a performance gap when specialized to the MDC setting.
This motivates us to develop an alternative RDSC scheme
based on lattices that is able to close the gap in the MDC
scenario.
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IV. LATTICE-RELATED DEFINITIONS AND NOTATIONS

Before introducing the proposed scheme we need to clarify
the lattice-related definitions and notations to be used through-
out this work, which is the purpose of this section.

We will denote by xn row vectors in R
n . For xn =

(x1, · · · , xn) ∈ R and yn = (y1, · · · , yn) ∈ R
n , let 〈xn, yn〉 �∑n

i=1 xi yi , and ‖xn‖ �
√〈xn, xn〉. We will use 0 for the all-

zero n-dimensional vector. For any set S ⊆ R
n , any σ ∈ R,

and any xn ∈ R
n , denote

xn + S � {xn + yn|yn ∈ S},
σS � {σ yn |yn ∈ �}.

If S is a measurable set then ν(S) denotes its volume, i.e.,

ν(S) �
∫

S
dxn.

An n-dimensional lattice � is the set of all possible
integer linear combinations of the rows of G, for some
n × n non-singular matrix G. In other words, we have

� � {λ ∈ R
n|λ = i n · G, i n ∈ Z

n}.
The nearest-neighbor quantizer associated with the lattice �
is a function Q�(·) which maps each xn ∈ R

n to its nearest
lattice point, i.e.,

Q�(xn) � arg min
λ∈�

‖xn − λ‖. (19)

For every λ ∈ � the set of all points mapped by Q� to λ is the
Voronoi region V�(λ) of λ in �. Note that the ties in (19) are
broken in a systematic manner such that the following relation
holds

V�(λ) = λ + V�(0), ∀λ ∈ �.

For any set S ⊆ R
n , let S denote the closure of the set S,

i.e., the union of S with its boundary. Then the following holds

V�(λ) = {xn ∈ R
n|‖xn − λ‖ ≤ ‖xn − λ′‖ for any λ′ ∈ �}.

It is worth pointing out that, according to our definition of the
Voronoi region, which follows [40], not all the points on the
boundary of V�(λ) are included in V�(λ), therefore V�(λ) �=
V�(λ). We say that two Voronoi regions V�(λ1) and V�(λ2),
where λ1, λ2 ∈ �, are adjacent if their closures have points
in common.

Further, for any xn ∈ R
n define

xn mod � � xn − Q�(xn).

A fundamental cell of the lattice � is a bounded set C0
which, when shifted by the lattice points, generates a partition
of R

n [40]. In other words, the sets λ + C0, for all λ ∈ �,
form a partition of R

n . All measurable fundamental cells of a
lattice have the same volume [40]. This value is denoted by
ν� and we have ν� = ν(V�(0)). Further, for any set S ⊂ R

n ,
denote

r̄(S) � sup
xn∈S

‖xn‖.
The open ball of radius r centered in the origin is denoted
by Br , i.e.,

Br � {xn ∈ R
n|‖xn‖ < r}.

The covering radius of the lattice � is r̄� � r̄(V�(0)).
Additionally, we will denote by r� the inscribed radius of
the lattice �, which is defined as the radius of the largest ball
centered at the origin and included in V�(0).

The normalized second moment of a measurable set S ⊆ R
n

is defined as

G(S) �
∫
S ‖xn‖2dx

nν(S)
2
n +1

.

It is important to notice that the normalized second moment
is invariant to scaling. The normalized second moment of the
lattice �, denoted by G�, is the normalized second moment
of the Voronoi region of 0, i.e.,

G� � G(V�(0)).

A pair of lattices (�1,�2) are said to be nested if �2 ⊂ �1,
i.e., if �2 is a sublattice of �1. The lattice �1 is termed the
fine lattice, while �2 is termed the coarse lattice. The index
of �2 with respect to �1 is N(�2 : �1) � ν�2

ν�1
. For any

λ1 ∈ �1, the set λ1 + �2 is called a coset of �2 relative to
�1. A set F ⊂ �1 is called a set of coset representatives of
�2 relative to �1 if the following two conditions hold

�1 = ∪λ1∈F (λ1 + �2),

(λ1 + �2) ∩ (
λ′

1 + �2
) = ∅ for any λ1 �= λ′

1 ∈ F .

The above conditions imply that any point λ ∈ �1 can be
written in a unique way as λ = λ1 + λ2 where λ1 ∈ F and
λ2 ∈ �2. As shown in [40], if C0 is a fundamental cell of
the coarse lattice �2, then the set C0 ∩ �1 is a set of coset
representatives of �2 relative to �1.

We use the squared error as a distortion criterion. For any
quantizer Q defined on R

n and any random vector Xn ∈ R
n

we denote by D(Q, Xn ) the per sample expected distortion,
i.e.,

D(Q, Xn ) � 1

n
E

[
‖ Q(Xn) − Xn ‖2

]
.

V. MAIN RESULTS

As stated earlier in the paper, the main contribution of this
work is the development of an RDSC scheme based on lattices,
which is able to approach the theoretic performance limit
of MDC in the asymptotic regime discussed in Section III.
In this section we present the main results pertaining to the
performance analysis of the proposed scheme while the details
of the scheme operation are deferred to the next section.

We will assume for the rest of the paper that the marginal
pdfs fX1 and fX2 are continuous with finite marginal differen-
tial entropies h(X1) and h(X2). We additionally assume that
X1 and X2 have mean zero and correlation coefficient ρ.

An n-dimensional lattice robust distributed source code
(LRDSC, for short) operates on input sequences of length n
and is specified by a positive number r0 and a triple of nested
lattices in R

n , L(n,r0) = (�s ,�in ,�c), where �s ⊂ �in ⊂
�c. The finest lattice, �c, called the central lattice, is used for
the reconstruction at the central decoder. The coarsest lattice,
�s , called the side lattice, is used for the reconstruction at the
side decoders. The lattice �in is an auxiliary lattice used in
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the design; it is called the intermediate lattice, and is chosen
such that the condition

r0 + 2r̄c ≤ rin (20)

is satisfied, where rin denotes the inscribed radius of the lattice
�in , and r̄c denotes the covering radius of the lattice �c.
We point out that �s = μ�in for some even positive integer μ.
The lattice �s/2 � 1

2�s , called the fractional lattice, is also
used in the operation of the scheme. Note that �s ⊂ �s/2.
Since μ is an even number, we also have �s/2 ⊂ �in .

The proposed LRDSC is designed such that when the input
sequences xn

1 , xn
2 are within distance r0 from one another,

the central decoder is able to refine the reconstruction of each
source using the information received from the other encoder.
On the other hand, when the above condition is violated, the
reconstruction at the central decoder has essentially the same
quality as the reconstruction at the side decoder. For this reason
the probability

PX1 X2(r0) � P[Xn
2 − Xn

1 /∈ Br0] (21)

plays a crucial role in the performance of the scheme. As we
will see shortly, the choice of r0 governs the trade-off between
the quality of the reconstruction at the central decoder and the
encoder sum-rate.

In order to evaluate the performance of the LRDSC L(n,r0),
we assume that there are m consecutive sequences xn

i fed to
each encoder i , one at a time. The outputs corresponding to
all m input sequences are further encoded losslessly. The rate
and distortion of the LRDSC L(n,r0) are defined in the limit
of m approaching ∞. The notation R(L(n,r0)) will be used
for the sum-rate at the two encoders. Further, the notations
ds,i(L(n,r0)) and dc,i (L(n,r0)) are employed for the distortions
of source Xi at the side decoder i and at the central decoder,
respectively, for i = 1, 2. We will refer to ds,i(L(n,r0)) and
dc,i (L(n,r0)) as the side distortion and the central distortion of
source i , respectively, for i = 1, 2.

In order to simplify the notations related to the lattices
involved in the scheme, we will use in the sequel only the
subscript c, in, s/2, respectively s, instead of �c, �in , �s/2,
respectively �s . For instance, we will use νc instead of ν�c .
Let us denote K � N(�in : �c) = νin

νc
and M � N(�s :

�in) = νs
νin

. Since �s = μ�in , it follows that M = μn .
In this work, we evaluate the performance of the pro-

posed lattice-based scheme in the high resolution regime for
fixed dimension n unless stated otherwise. More specifically,
we require that the following relations hold simultaneously

Mνs → 0, M → ∞, K is constant. (22)

Note that this asymptotic regime is similar in spirit to that
considered in the prior work on MDLVQ [30]–[32]. Clearly,
the conditions specified in (22) imply that νs , νin and νc

approach 0. Further, since �in is a sublattice of �c such that
r0 + 2r̄c ≤ rin , we also have that

r0 = O(rc) = O(ν
1
n

c )

as (22) holds.

In the formulations of the results in this section, we will use
the statement that we have a family of LRDSCs satisfying (22).
This statement means that the family is parameterized by μ
and θ > 0 and its members are the LRDSCs L(n,r0) =
(�s,�in ,�c) satisfying

�c = θ�c,0, �in = θ�in,0, �s = μθ�in,0,

for some fixed lattices �in,0 ⊂ �c,0 in R
n . Then the asymp-

totic regime specified by (22) is equivalently stated in terms
of the parameters μ and θ as follows

θ → 0, μ → ∞, μ2θ → 0.

Now we are ready to present the main result of this section.
Theorem 2: Consider a fixed pair of correlated sources

(X1, X2), a fixed positive integer n and a family of
LRDSCs L(n,r0) satisfying (22). For i = 1, 2, let Ui �
Qc(Xn

i ) mod �in . Then in the asymptotic regime specified
by (22),

ds,i(L(n,r0)) = 1

4
Gs/2(Mνs)

2
n (1 + o(1)), i = 1, 2,

(23)

Gcν
2
n
c (1 + o(1)) ≤ dc,i (L(n,r0)) ≤ 1

n
κ2

0PX1 X2(r0) (Mνs)
2
n

+ Gcν
2
n

c (1 + o(1)), i = 1, 2, (24)

R(L(n,r0)) = h(X1) + h(X2) − 2

n
log2

νs

K 1/2

+ 1

n
H (U2|U1) + o(1), (25)

where κ0 is a positive constant. Additionally, we have

H (U2|U1) ≤ log2 K , (26)

while, if r0 ≤ rc,

H (U2|U1) ≤ 1+
(

1−
(

1− r0

rc

)n

+PX1 X2(r0)

)
log2 K +o(1)

(27)

in the limit of (22). Furthermore, in each of relations (23)-(25)
and (27), the term hidden in the little-o notation can be
upperbounded by a function which does not depend on the
joint pdf fX1 X2 and approaches 0 under (22).

The following corollary deals with the case when PX1 X2(r0)
is small enough to make the central distortion dominated by

Gcν
2
n
c . In this case, the correlation coefficient between X1

and X2 must be close to 1, therefore we will assume that
the marginal pdfs are equal.

Corollary 1: Consider a fixed pdf fX , a fixed positive
integer n and a family of LRDSCs L(n,r0) satisfying (22). Each
LRDSC is applied to a pair of correlated sources (X1, X2)
with marginal pdfs equal to fX , satisfying the condition

PX1 X2(r0) ≤ �

M
4
n

, (28)
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where lim(22) � = 0. For i = 1, 2, let Ui � Qc(Xn
i ) mod �in .

Then in the limit of (22),

dc,i (L(n,r0)) = Gcν
2
n
c (1 + o(1)), i = 1, 2, (29)

R(L(n,r0)) = 2h(X) + 1

2
log2

GcGs/2

4ds,i(L(n,r0))dc,i (L(n,r0))

+ 1

n
H (U2|U1) + o(1), i = 1, 2. (30)

If, additionally, we have lim(22)
r0
rc

= 0, then

R(L(n,r0))

= 2h(X) + 1

2
log2

GcGs/2

4ds,i(L(n,r0))dc,i (L(n,r0))
+ o(1). (31)

Furthermore, in each of relations (29)-(31) the term hidden in
the little-o notation can be upperbounded by a function which
depends on the joint pdf fX1 X2 only through PX1 X2(r0) and
approaches 0 under (22).

Remark 1: Condition (28) implies that, as the limits in (22)
are approached, the correlation coefficient between X1 and X2
approaches 1, while the marginal distributions of X1 and X2
remain equal to the distribution of some random variable X.
This raises the question whether such a class of joint distrib-
utions exists. The answer is indeed positive as shown by the
following argument. Construct first X1 distributed as X. Then
construct X0 jointly distributed with X1. Further, construct
X2 jointly distributed with X1 and X0 such that X1 ↔ X0 ↔
X2 form a Markov chain and the conditional distribution
of X2 given X0 is the same as that of X1 given X0. It is
clear that X1 and X2 have the same marginal distribution,
and the correlation between X1 and X2 can be increased by
appropriately increasing the correlation between X1 and X0.

Let us assume now that the marginal pdfs of X1 and X2 are
equal to the pdf of some random variable X with variance σ 2

X .
We are interested in finding a sufficient condition on the
correlation coefficient ρ under which relation (28) holds.
To this end, we can apply Markov’s inequality to ‖Xn

2 − Xn
1‖2,

which leads to

PX1 X2(r0) = P[‖Xn
2 − Xn

1‖2 > r2
0 ]

<
nσ 2

X2−X1

r2
0

= 2n(1 − ρ)σ 2
X

r2
0

.

By imposing further the condition
nσ 2

X2−X1
r2

0
≤ �

M
4
n

and using

the fact that r0 = O(ν
1
n

c ), we obtain that

σ 2
X2−X1

= o

⎛

⎝ ν
2
n
c

M
4
n

⎞

⎠, leading to ρ = 1 − o

⎛

⎝ ν
2
n
c

M
4
n

⎞

⎠ . (32)

This implies that r0 can be chosen such that r0 = o(ν
1
n
c ),

while (28) still holds.
On the other hand, for certain distributions Markov’s

inequality yields a loose bound, rendering the sufficient condi-
tion (32) too restrictive. This may happen if the distribution of

the random variable ‖Xn
2 − Xn

1‖2 has a light tail or a bounded
support. For instance, if the random variable |X2 − X1| has as
support the interval [0, r0√

n
] for r0 such that r0

rc
is constant

under (22), then we can have σ 2
X2−X1

= �(ν
2
n
c ), while

PX1 X2(r0) = 0.
Next we will address the situation when (32) holds. In this

case, according to Theorem 2 and Corollary 1, we have

ds,i(L(n,r0)) = 1

4
Gs/2M

4
n K

2
n ν

2
n

c (1 + o(1)),

dc,i (L(n,r0)) = Gcν
2
n
c (1 + o(1)).

Then relation (32) is equivalent to (1 − ρ)
ds,i (L(n,r0))

dc,i (L(n,r0))2 → 0,
and further the limits in (22) are equivalent to

ds,i(L(n,r0)) → 0,
dc,i (L(n,r0))

ds,i(L(n,r0))
→ 0,

(1 − ρ)
ds,i(L(n,r0))

dc,i (L(n,r0))2 → 0. (33)

Let us make the notations

ds =
∑2

i=1 ds,i(L(n,r0))

2
, dc =

∑2
i=1 dc,i (L(n,r0))

2
. (34)

Then the limits in (33) imply that

ds → 0,
dc

ds
→ 0, (1 − ρ)

ds

d2
c

→ 0. (35)

Let us denote by RL(n, ds, dc)
1 the infimum of R(L(n,r0)) over

all L(n,r0) satisfying (34) for fixed n and fixed pair (X1, X2).
Assume that the lattices used in the construction achieve the
smallest second moment for the corresponding dimension,
denoted by Gopt,n. Applying this result in Corollary 1, we fur-
ther obtain that∣∣∣∣∣RL(n, ds , dc) − 2h(X) − 1

2
log2

G2
opt,n

4dsdc

∣∣∣∣∣ ≤ ζ(n, ds, dc, ρ),

(36)

where lim(35) ζ(n, ds, dc, ρ) = 0.
Let us turn our attention to the case when X1 = X2 = X ,

i.e., ρ = 1. In this case the asymptotic regime (35) is specified
only by ds → 0 and dc

ds
→ 0. We will show that in this case

our scheme achieves the fundamental limit of MDC. In order
to formalize the result, we define the operational rate-distortion
function of the proposed LRDSC in the case when ρ = 1 as
follows

RL(ds, dc) � inf
n≥1

RL(n, ds, dc).

Theorem 3: For any source X with continuous pdf, the fol-
lowing holds

lim
ds→0
dc
ds

→0

(RL(ds, dc) − RM D(ds, dc)) = 0,

where RM D(ds, dc) was defined in Section III.

1This quantity is defined for those triples (n, ds , dc) for which there exists
an LRDSC L(n,r0) achieving average side distortion ds and average central
distortion dc.
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Proof: Applying relation (36) in the case of ρ = 1 leads
to

lim
ds →0
dc
ds

→0

(
RL(n, ds , dc) − 2h(X) − 1

2
log2

G2
opt,n

4dsdc

)
= 0. (37)

Using the fact that lim
n→∞ Gopt,n = 1

2πe [43] together with
relation (8) further leads to

lim
n→∞ lim

ds →0
dc
ds

→0

(RL(n, ds , dc) − RM D(ds, dc)) = 0. (38)

The above relation implies that for every � > 0, there are
n(�) and δ(�, n), for n ≥ n(�), such that RL(n, ds, dc) −
RM D(ds, dc) < �, for all n ≥ n(�) and ds ≤ δ(�, n), dc/ds ≤
δ(�, n). Let ξ(�) = δ(�, n(�)). Then whenever ds ≤ ξ(�)
and dc/ds ≤ ξ(�), we have RL(ds, dc) − RM D(ds, dc) ≤
RL(n(�), ds, dc) − RM D(ds, dc) < �. This implies that

lim
ds→0
dc
ds

→0

(RL(ds, dc) − RM D(ds, dc)) ≤ 0.

Since the inequality RL(ds, dc) − RM D(ds, dc) ≥ 0 holds for
all pairs (ds, dc), the claim of the theorem follows.

Note that another RDSC scheme which achieves the funda-
mental limit of MDC is a scheme which uses the encoders and
decoders of an MDLVQ. Therefore, it is interesting to find out
whether there is any advantage in using the proposed LRDSC
scheme rather than directly applying an MDLVQ.

More specifically, in an MDLVQ-based RDSC system,
encoder i maps the input sequence xn

i to λc,i = Qc(xn
i ), next

applies the index assignment α = (α1, α2) : �c → �s × �s

and outputs the side lattice point αi (λc,i ). Side decoder i uses
the received side lattice point λs,i as the source reconstruction,
while the central decoder looks for the central lattice point λc

satisfying (λs,1, λs,2) = (α1(λc), α2(λc)), and uses λc as the
common reconstruction for both sources. The problem with
this scheme is that, when λc,1 �= λc,2, the central distortion
is essentially as high as the side distortion. To see this,
note first that the mappings α1, α2 are constructed such that
α1(λ

′
c) + α2(λ

′
c) = 2 Qs/2(λ

′
c) for each λ′

c ∈ �c. Assume
now that Qs/2(λc,1) = Qs/2(λc,2) = τ and λc,1 �= λc,2.
Then α1(λc,1) �= α1(λc,2) because otherwise we would also
have α2(λc,1) = α2(λc,2), contradicting the fact that α is
injective. Further, we obtain that α1(λc,1) + α2(λc,2) �= 2τ ,
which implies that the point λc chosen by the central decoder
is not in the same Voronoi region of the fractional lattice �s/2
as λc,1 and λc,2. Then if ‖λc,i −τ‖ < 1/2 rs/2, the error in the
reconstruction is at least 1/2 rs/2. If σ 2

X2−X1
= �(r2

0 ) and r0
rc

is constant as the limits in (22) are approached, the probability
that Qs/2(λc,1) = Qs/2(λc,2) = τ and λc,1 �= λc,2 does
not approach 0, thus the central distortion cannot satisfy
relation (29), while the proposed RDSC scheme can.

VI. DETAILED OPERATION OF THE

PROPOSED LRDSC SCHEME

This section presents in detail the operation of the proposed
LRDSC.

Fig. 2. Illustration of the lattices involved in the proposed scheme. The big
dots represent points in �s , while the small dots correspond to points in �in .
The value of μ is 12. The crosses represent the points in �s/2 which are not
in �s . The hexagon drawn with dashed lines is the boundary of Vs (0). The
centers of the four hexagons drawn with solid lines form the set T . Each
such hexagon is the boundary of a Voronoi region with respect to the lattice
�s/2. The point λ represented by a diamond is an example of a point in the
set U , while τ = Qs/2(λ).

A. Preliminaries

First we prove a key property, enabled by condition (20),
which is essential in the operation of the LRDSC.

Lemma 1: If xn
2 − xn

1 ∈ Br0 , then

‖Qc(xn
1 ) − Qc(xn

2 )‖ < rin ,

‖Qin(Qc(xn
1 )) − Qin(Qc(xn

2 ))‖ < 3r̄in .
Proof: Let λc,i � Qc(xn

i ) and λi � Qin(λc,i ), for
i = 1, 2. Using the triangle inequality repeatedly, followed
by (20), one obtains that

‖ λc,1−λc,2 ‖ ≤ ‖ λc,1−xn
1 ‖+‖ xn

1 −xn
2 ‖+‖ xn

2 −λc,2 ‖
< r0 + 2r̄c ≤ rin .

Additionally,

‖ λ1−λ2 ‖ ≤ ‖ λ1−λc,1 ‖+‖ λc,1−λc,2 ‖+‖ λc,2 − λ2 ‖
< rin + 2r̄in < 3r̄in,

which completes the proof.
Next we define the labeling function βi : �in → �s used

at encoder i = 1, 2. For this we need to introduce some more
notations as follows. Let T � Vs(0) ∩ �s/2. Then T is a set
of coset representatives of �s relative to �s/2. Thus, we have
|T | = N(�s : �s/2) = 2n and

�s/2 =
⋃

τ∈T
(τ + �s) .

It can be easily seen that the set ∪τ∈T Vs/2(τ ) is a fundamental
cell of �s . Denote U � ∪τ∈T Vs/2(τ ) ∩ �in . Then U is a set
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Fig. 3. Diagram describing the operation of encoder i , for i = 1, 2. IC denotes the indicator function of the set C.

of coset representatives of �s relative to �in , which implies
that |U | = N(�s : �in) = M and

�in =
⋃

λ∈U
(λ + �s) .

We will first define βi for λ ∈ U as follows

β1(λ) � μ(λ − τ ), β2(λ) � 2τ − μ(λ − τ ), (39)

where τ = Qs/2(λ). Further, the mappings β1 and β2 are
extended to �in using shifting. For arbitrary λ ∈ �in , let
λs/2 = Qs/2(λ), i.e., λ ∈ Vs/2(λs/2). Then there is a unique
pair (τ, λs ) ∈ T × �s such that λs/2 = λs + τ . More
specifically, we have λs = Qs(λs/2) and τ = λs/2 mod �s .
Then we define

β1(λ) � β1(λ − λs) + λs = μ(λ − λs − τ ) + λs,

β2(λ) � β2(λ − λs) + λs = 2τ − μ(λ − λs − τ ) + λs .

The above definition implies that the mappings βi satisfy the
shift-invariance property, i.e., that

βi (λ + λ′
s) = βi (λ) + λ′

s , ∀λ ∈ �in , ∀λ′
s ∈ �s , i = 1, 2.

The shift-invariance property further leads to the following
relations, for i = 1, 2,

β−1
i (λs) = β−1

i (0) + λs , ∀λs ∈ �s , (40)

β−1
i (0) = {λ − βi (λ)|λ ∈ U}. (41)

Relation (40) is obvious. In order to prove (41), consider
λ′ ∈ �in and let (λ, λs) ∈ U × �s be the unique pair such
that λ′ = λ + λs . The shift-invariance property implies that
βi (λ

′) = βi (λ) + λs , which leads to λs = βi (λ
′) − βi (λ).

Further, we obtain that λ′ = λ+βi (λ
′)−βi (λ). Consequently,

the equality βi (λ
′) = 0 is equivalent to λ′ = λ− βi (λ), which

proves the claim.
We point out that the construction of the map-

pings β1 and β2 was inspired by the index assignment used
in MDLVQ [30], [31] in two ways: 1) by defining the
mappings on a set of coset representatives first and then
extending them by shifting; 2) by imposing the condition that
β1(λ) + β2(λ) = 2Qs/2(λ) for each λ ∈ �in . On the other
hand, it is important to note that we cannot simply use the
mappings α1, α2 : �in → �s that define the index assignment
for MDLVQ2 in [30] and [31] in place of our mappings β1, β2,

2The lattice �in takes here the place of the central lattice on which the
index assignment is defined for MDLVQ.

since the requirement at the central decoder in our case is
stronger than for MDLVQ. In particular, based on a received
pair of side lattice points λs,1, λs,2, the central decoder
of the MDLVQ uniquely identifies a point λ ∈ �in such
that (α1(λ), α2(λ)) = (λs,1, λs,2). However, as we will see
shortly, the central decoder in our scheme needs to uniquely
identify two points λ1, λ2 ∈ �in such that (β1(λ1), β2(λ2)) =
(λs,1, λs,2), using the additional knowledge of λ1 − λ2. Using
the pair of mappings (α1, α2) designed for the MDLVQ in
place of (β1, β2) does not guarantee that the latter requirement
is satisfied.

B. LRDSC Operation

Before describing the details of the proposed scheme
we need the following discussion. Let us denote λi =
Qin(Qc(xn

i )), i = 1, 2. Our scheme is designed such that side
decoder i will always be able to recover βi (λi ), while the
central decoder recovers λc,i = Qc(xn

i ), i = 1, 2, when the
input sequences are sufficiently close, i.e., when xn

2 −xn
1 ∈ Br0 .

However, for the central decoder to achieve this goal, some
additional information needs to be transmitted besides β1(λ1)
and β2(λ2). The amount of this additional information is
smaller when λ1 and λ2 are both in the same Voronoi cell
of the lattice �s/2. Encoder i is not able to determine all
the time if this is the case or not, since it does not have
knowledge of the other source sequence. However, based on
Lemma 1, if λi ∈ Vs/2(λs/2) and the distance from λi to the
boundary of Vs/2(λs/2) is not smaller than 3r̄in , then encoder
i can infer that the other sequence is also in Vs/2(λs/2) when
xn

2 − xn
1 ∈ Br0 . Thus, we define the set

C � ∪λs/2∈�s/2C(λs/2), (42)

where

C(λs/2) � Vs/2(λs/2) \ (
λs/2 + γ Vs/2(0)

)
,

for γ � 1 − 3r̄in
rs/2

. According to Lemma 1, if λi /∈ C, then λ3−i

is in the same Voronoi cell of �s/2 as λi , when xn
2 −xn

1 ∈ Br0 .
Now we are ready to present the details of the encoder and
decoder operation.

Encoder: Encoder i , for i = 1, 2, operates as follows
(Fig. 3). First the input sequence xn

i is quantized to the closest
central lattice point λc,i � Qc(xn

i ). Next the point λc,i is quan-
tized to the closest point in the lattice �in , λi � Qin(λc,i ).
Let ui � λc,i mod �in and λs,i � βi (λi ). Then encoder i
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outputs λs,i , ui and bi , where bi = 1 if λi ∈ C and bi = 0
otherwise. Moreover, if bi = 1, encoder i also transmits
τi � Qs/2(λi ) mod �s . The first component, λs,i , will be used
at the side decoder i , therefore, it is compressed using entropy
coding before transmission. On the other hand, u1 and u2
are used only at the central decoder, therefore they will be
compressed using Slepian-Wolf coding. Finally, bi and τi will
also be used only at the central decoder, thus they may be
compressed using Slepian-Wolf coding. However, we will use
entropy coding to encode bi and fixed length codes for τi

for simplicity of analysis, since, as shown in the proof of
Theorem 2, the rate overhead is negligible asymptotically.
Note that the aforementioned entropy coders and Slepian-
Wolf coders are applied to blocks of m symbols, where m
approaches ∞.

Decoder: Side decoder i , for i = 1, 2, outputs the recon-
struction x̂ n

s,i � λs,i . The central decoder recovers both values
λs,1 and λs,2, and additionally, u1, u2, b1, b2. First the decoder
checks if the following condition is satisfied

‖λs,1 − λs,2‖ ≤ (8 + c)r̄s + 3r̄in . (43)

If the condition is violated, then the decoder concludes that
xn

2 − xn
1 /∈ Br0 , and outputs λs,i as the reconstruction for

source i , i.e., x̂ n
c,i � λs,i , for i = 1, 2.

If condition (43) is satisfied, the decoder assumes that
xn

2 − xn
1 ∈ Br0 and proceeds as follows. First the following

is computed

λ̃ � Qin(u1 − u2). (44)

Next the decoder proceeds based on the values of b1 and b2,
and of τ1 and τ2 (if applicable), according to the following
cases.

1) If b1 = 0 or b2 = 0, the decoder evaluates

λ̃s/2 � 1/2(λs,1 + λs,2 + μλ̃), (45)

τ̃ � λ̃s/2 mod �s , (46)

λ̃1 � λ̃s/2 + 1

μ
(λs,1 − λ̃s/2 + τ̃ ), (47)

λ̃2 � λ̃s/2 + 1

μ
(τ̃ + λ̃s/2 − λs,2), (48)

and outputs the reconstructions x̂ n
c,i � λ̃i + ui , for

i = 1, 2.
2) If b1 = b2 = 1 and τ1 = τ2, the decoder proceeds as in

case 1).
3) If b1 = b2 = 1 and τ1 �= τ2, then the decoder computes

ṽ � 1/2(λs,1 + λs,2 + μλ̃ − 2τ2 − μ(τ2 − τ1)), (49)

ŵ � ṽ mod �s , (50)

w̃ � ŵ − Qs(ŵ + 1

2
(τ2 − τ1)), (51)

λ̃s � ṽ − (μ + 1)w̃, λ̃′
s � λ̃s + 2w̃, (52)

λ̃1 � λ̃s + τ1 + 1

μ
(λs,1 − λ̃s), (53)

λ̃2 � λ̃′
s + τ2 + 1

μ
(2τ2 + λ̃′

s − λs,2). (54)

Finally, the reconstructions are computed as x̂ n
c,i � λ̃i +

ui , for i = 1, 2.

Proposition 1: Let λc,i � Qc(xn
i ), λi � Qin(λc,i ), ui �

λc,i mod �in , λs,i � βi (λi ) and τi � Qs/2(λi ) mod �s , for
i = 1, 2. Then when xn

2 − xn
1 ∈ Br0 and the Slepian-Wolf

decoding of u1 and u2 is successful, we have x̂n
c,i = λc,i , for

i = 1, 2, and μ sufficiently large.
It is worth pointing out that a crucial aspect of the proposed

scheme is the use of an identical quantizer for both sources
(the quantizer defined by the central lattice). The use of a
common finite-length quantizer in the two-source distributed
coding scenario was advocated earlier by Shirani and Pradhan
in [44] who argue that such a design preserves the correlation
between sources more efficiently.

VII. CONCLUSION

We have proposed a constructive lattice-based scheme for
robust distributed coding of two correlated sources. The analy-
sis shows, among other things, that, in the asymptotic regime
where 1) the side distortion approaches 0 and 2) the ratio
between the central and side distortions approaches 0, our
scheme is capable of approaching the information-theoretic
limit of quadratic MDC when the two sources are identical,
whereas a variant of the random-coding-based RDSC scheme
by Chen and Berger with Gaussian codes is strictly sub-
optimal. Note that in standard random coding arguments,
to facilitate the joint typicality analysis, the block-length
is often sent to ∞. However, in the infinite block-length
limit, the condition needed to ensure joint typicality in the
distributed setting is much more restrictive than its counterpart
in the centralized setting; as a consequence, the resulting
distributed coding schemes, when specialized to the central-
ized setting, may fail to achieve the fundamental perfor-
mance limit. In contrast, for lattice-based schemes, the per-
formance analysis can be carried out under fixed block-length
(i.e., fixed lattice dimension), which reveals a smooth tran-
sition from the distributed setting to the centralized setting.
In this sense, our result echoes the recent finding in [44]
regarding the importance of finite block-length schemes in
distributed source coding.

APPENDIX A
PROOF OF PROPOSITION 1

Proof of Proposition 1: Assume that xn
2 − xn

1 ∈ Br0 and
that the Slepian-Wolf decoder employed at the central decoder
is able to recover u1 and u2 correctly. First we need to prove
that condition (43) is satisfied. To this end, we first show that

r̄(β−1(0)) ≤ (4 + μ/2)r̄s . (55)

Note that relation (41) leads to

r̄(β−1
i (0)) ≤ r̄(U) + r̄(βi (U)). (56)

Further, since T ⊂ Vs(0) and Vs/2(0) ⊂ Vs(0), we obtain
that U ⊂ ∪τ∈T (τ + Vs/2(0)) ⊂ 2Vs(0). Thus, r̄(U) ≤ 2r̄s .
Moreover, from the definition of βi given in (39), we obtain
that r̄(βi (U)) ≤ 2r̄(T ) + μr̄s/2 ≤ 2r̄s + μr̄s/2. The above
discussion, together with relation (56) and the fact that
r̄s/2 = 1/2r̄s , implies (55).
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By applying the triangle inequality and the fact
that ‖λ − βi (λ)‖ ≤ r̄(β−1(0)), together with Lemma 1,
we obtain

‖λs,1 − λs,2‖ ≤ ‖λs,1 − λ1‖ + ‖λ1 − λ2‖ + ‖λ2 − λs,2‖
≤ 2r̄(β−1(0)) + 3r̄in .

Combining the above with (55) proves relation (43).
Using Lemma 1 and the fact that λc,i = λi + ui , i = 1, 2,

we obtain that

rin > ‖λc,1 − λc,2‖ = ‖u1 − u2 − (λ2 − λ1)‖,
which, together with the fact that λ2 − λ1 ∈ �in , implies that
u1 − u2 ∈ Vin(λ2 − λ1), i.e., λ2 − λ1 = Qin(u1 − u2). This
further implies that λ̃ computed in (44) satisfies the equality

λ̃ = λ2 − λ1. (57)

Let λs � Qs(Qs/2(λ1)) and λ′
s � Qs(Qs/2(λ2)). Using the

fact that τi � Qs/2(λi ) mod �s , for i = 1, 2, it follows that
λ1 ∈ Vs/2(λs + τ1) and λ2 ∈ Vs/2(λ

′
s + τ2). Moreover, since

λs,i = βi (λi ) for i = 1, 2, we obtain that

λs,1 = μ(λ1 − λs − τ1) + λs, (58)

λs,2 = λ′
s + 2τ2 − μ(λ2 − λ′

s − τ2). (59)

Assume now that case 1) holds. According to Lemma 1,
we have λs + τ1 = λ′

s + τ2. Since τ1, τ2 ∈ T , it follows
that λs = λ′

s and τ1 = τ2. Using further equations (45), (46),
(57), (58) and (59), we obtain that λ̃s/2 = λs +τ1. This implies
that τ1 = λ̃s/2 mod �s , i.e., τ̃ = τ1. Equations (47) and (48)
imply that λ̃i = λi and further that x̂ n

c,i = λc,i , for i = 1, 2.
Assume now that b1 = b2 = 1. Let �s/2 denote the smallest

distance between two points belonging, respectively, to the
closures of two non-adjacent Voronoi regions of lattice �s/2.
When μ is large enough,

�s/2 > 3r̄in . (60)

Recall that, according to Lemma 1, we have ‖λ1−λ2‖ < 3r̄in .
Condition (60) further ensures that ‖λ1 − λ2‖ < �s/2,
which implies that Vs/2(λs + τ1) and Vs/2(λ

′
s + τ2) are either

identical or adjacent. Further, if τ1 = τ2, it follows that
λ′

s +τ2 −(λs +τ1) ∈ �s . Thus, Vs/2(λs +τ1) and Vs/2(λ
′
s +τ2)

cannot be adjacent. Consequently, the equality λ′
s + τ2 =

λs + τ1 holds and the proof proceeds as in case 1).
Assume now that τ1 �= τ2. Then λs + τ1 �= λ′

s + τ2.
Denote �λs/2 � λ′

s + τ2 − (λs + τ1). Then 0 and �λs/2 are
adjacent points of the lattice �s/2 (i.e., their Voronoi regions
are adjacent). It follows that

�λs/2 ∈ Vs(0). (61)

Let w � 1
2 (λ′

s − λs). Using equations (49), (50), (57), (58)
and (59), we obtain that

ṽ = λs + μ

2
(λ′

s − λs) + w. (62)

Since μ is even, it follows that μ
2 (λ′

s − λs) ∈ �s . Thus,
w mod �s = ṽ mod �s = ŵ. It follows that w = λ̄s + ŵ
for some λ̄s ∈ �s . Then �λs/2 = 2w + τ2 − τ1 = 2(λ̄s +
ŵ) + τ2 − τ1. Using further (61) leads to 1

2�λs/2 = λ̄s +

ŵ + 1
2 (τ2 − τ1) ∈ 1

2 Vs(0) ⊂ Vs(0), which further implies that
−λ̄s = Qs(ŵ+ 1

2 (τ2 −τ1)). It follows that w̃ = w, where w̃ is
defined in (51). Combining this with (52) and (62), we obtain
that λ̃s = λs and λ̃′

s = λ′
s . Finally, equations (53) and (54)

imply that λ̃i = λi and further that x̂ n
c,i = λc,i ,

for i = 1, 2.

APPENDIX B
PROOF OF RESULTS IN SECTION V

Before proceeding to the proof of Theorem 2, we need a
few more notations and some auxiliary results.

Consider an LRDSC L(n,r0) = (�s ,�in ,�c). For each
λs ∈ �s and i = 1, 2, let Ai (λs) � {xn

i |x̂ n
s,i = λs}. Further,

for each λ ∈ �in , denote M(λ) � ∪λc∈Vin (λ)∩�c Vc(λc).
Then Ai (λs) = ∪λ∈β−1

i (λs)
M(λ). Clearly, we have M(λ) =

λ+M(0) for all λ ∈ �. This fact, together with relation (40),
implies that

Ai (λs) = Ai (0) + λs, ∀λs ∈ �s . (63)

Obviously, we have ds,i(L(n,r0)) = D(QAi , Xn
i ), where QAi

denotes the quantizer which maps each input sequence xn
i ∈

Ai (λs) to λs , for λs ∈ �s . Since ‖xn
i − x̂ n

c,i‖ ≥ ‖xn
i −Qc(xn

i )‖,
it follows that

dc,i (L(n,r0)) ≥ D(Qc, Xn
i ).

Further, let us denote �i,sup(L(n,r0)) � supxn
i ∈Rn ‖xn

i − x̂ n
c,i‖,

i = 1, 2. Additionally, let Pe,SW denote the probability that
the Slepian-Wolf decoder fails. In view of the definition
of PX1 X2(r0) (see (21)) and Proposition 1, it follows that,
for i = 1, 2,

dc,i (L(n,r0)) ≤ 1

n
(PX1 X2(r0) + Pe,SW )�2

i,sup + D(Qc, Xn
i ).

The following lemma, proved in Appendix D, gives an upper
bound for �i,sup .

Lemma 2: There is some constant κ0 such that, for
each i = 1, 2, each positive integer n, and each
LRDSC L(n,r0),

�i,sup(L(n,r0)) ≤ κ0 (Mνs )
1
n .

It is known that the probability that the Slepian-Wolf
decoder fails can be made arbitrarily small by increasing
the block length used for Slepian-Wolf encoding. Since
�i,sup(L(n,r0)) is bounded, it follows that the impact on the
distortion of the Slepian-Wolf decoder failure can also be made
arbitrarily small. Therefore, in the limit as the block length of
the Slepian-Wolf encoder approaches infinity,

D(Qc, Xn
i ) ≤ dc,i (L(n,r0)) ≤ 1

n
κ2

0PX1 X2(r0) (Mνs)
2
n

+ D(Qc, Xn
i ). (64)

In order to evaluate the quantity D(Qc, Xn
i ) at high resolution,

we can directly use [41, Lemma 1], which leads to

D(Qc, Xn
i ) = Gcν

2
n

c (1 + o(1)) as νc → 0. (65)

Furthermore, in order to evaluate the rate, we need the
following notation, for i = 1, 2,

Pi � P[Qin(Qc(Xn
i )) ∈ C],
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where C is defined in (42). We will use the following lemma,
which is proved in Appendix D.

Lemma 3: For i = 1, 2, we have lim
(22)

Pi = 0.

Proof of Theorem 2: Relation (23) is proved in
Appendix C. Relation (24) follows based on (64) and (65).
Let us prove now equality (25). For this notice that the rate
used to transmit βi (λi ) is 1

n H (QAi (Xn
i )). The rate needed for

bi is 1
n

(−(1 − Pi ) log2(1 − Pi ) − Pi log2 Pi
)
. The rate used

for encoding τi equals 1
nPi log2 |T | = Pi . Finally, the rate

needed for encoding u1 and u2 using Slepian-Wolf coding
equals 1

n H (U1, U2). As a consequence,

R(L(n,r0)) = 1

n

2∑

i=1

[H (QAi (Xn
i )) − (1 − Pi ) log2(1 − Pi )

+Pi (− log2 Pi + n)] + 1

n
H (U1, U2). (66)

Since lim(22) r̄(Ai (0)) = 0, as shown in the proof of rela-
tion (23), we can apply Lemma 4 stated at the end of this
appendix, which is due to Csiszar [42]. Thus, using the fact
that ν(Ai (0)) = νs , we obtain that

lim
(22)

1

n

(
H (QAi (Xn

i )) + log2 (νs)
) = h(Xi ). (67)

Equations (66), (67) and Lemma 3 imply that

lim
(22)

(
R(L(n,r0)) + 2

n
log2 (νs) − 1

n
H (U1, U2)

)

= h(X1) + h(X2).

Relation (25) follows using the following equality, which is
proved in Appendix C,

lim
(22)

H (Ui) = log2 K , for i = 1, 2. (68)

Further, inequality (26) is based on H (U2|U1) ≤ H (U2) =
log2 K , while inequality (27) is proved in Appendix C.
Finally, the claim that, in each of relations (23)-(25) and (27),
the term hidden in the little-o notation can be upperbounded
by a function which does not depend on the joint pdf fX1 X2

and approaches 0 under (22) follows from the proofs of the
aforementioned relations.

Proof of Corrollary 1: Notice that (Mνs )
2
n = (M2 Kνc)

2
n .

By plugging (28) in (24) and using the fact that K and κ0
are constants, relation (29) follows. Further, equalities (23)
and (29) imply that

ds,i(L(n,r0))dc,i (L(n,r0)) = 1

4
Gs/2Gc(Mνsνc)

2
n (1 + o(1))

= 1

4
Gs/2Gc

(
ν2

s

K

) 2
n

(1 + o(1)).

By substituting this in (25), relation (30) follows.
In order to prove (31), we first apply Fano’s inequality and

obtain that

H (U2|U1) ≤ Hb(P[U1 �= U2]) + P[U1 �= U2] log2 K , (69)

where Hb(·) denotes the binary entropy function. Next we
assume that r0 ≤ rc and use the following inequality proved

in Appendix C (in the proof of relation (27))

P[U1 �= U2] ≤ 1 −
(

1 − r0

rc

)n

+ PX1 X2(r0) + o(1),

where the term hidden in the little-o notation does not depend
on the joint pdf fX1 X2 . The fact that lim

(22)

r0
rc

= 0, together with

lim
(22)

PX1 X2(r0) = 0, further implies that lim
(22)

P[U1 �= U2] = 0.

Combining this with (69) leads to lim
(22)

H (U2|U1) = 0. By

applying this result in (30), relation (31) follows.
Lemma 4 (Csiszar [42]): 3 Let Z = (Z1, · · · , Zk) be an

R
k valued random vector with density fZ . Suppose that there

exists some Borel measurable partition B0 = {B1, B2, · · · } of
R

k into sets of finite Lesbesgue measure such that

−
∑

n

P[Z ∈ Bn] log P[Z ∈ Bn] < ∞.

Suppose furthermore, that for some ρ > 0, some positive
integer s, and for all k, the distance of Bk from any other
Bl is greater than ρ for all but at most s indexes l. Let
A = {A0, A1, · · · } be a measurable partition with equal
Lesbegue measure, i.e., λ(Ai ) = �, i = 1, 2, · · · , and let us
denote the supremum of the diameters of the sets Ai by δ(A).
Then we have

lim
δ(A)→0

(HA(Z) + log �) = h( fZ ),

where

HA(Z) = −
∑

n

P[Z ∈ An] log P[Z ∈ An],

and

h( fZ ) = −
∫

Rk
fZ (xk) log fZ (xk) dxk,

the differential entropy of Z. Moreover, if Z has no density,
then the above limit is −∞. It should be mentioned that
with the above conditions h( fZ ) is always well-defined and
h( fZ ) < ∞.

APPENDIX C
PROOF OF RELATIONS (23), (68) AND (27)

Proof of Relation (23): First let us fix i . We will split the
proof into two parts. In Part 1 we show that if lim

(22)

G(Ai (0))

M
2
n

exists, then

lim
(22)

D(QAi , Xn
i )

(Mνs )
2
n

= lim
(22)

G(Ai (0))

M
2
n

. (70)

In Part 2 we prove that

lim
(22)

G(Ai (0))

M
2
n

= 1

4
Gs/2. (71)

Part 1:4 The proof is based on the idea that, in the limit
of (22), the pdf fXn

i
can be approximated by a uniform

density function over each set Ai (λs). This density function

3The statement of this lemma is taken from [41].
4This proof uses ideas from the proof of [41, Lemma 1].
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is fθ,μ : R
n → [0,∞) defined as follows. For each λs ∈ �s

and xn ∈ Ai (λs), let

fθ,μ(xn) = P[Xn
i ∈ Ai (λs)]

ν(Ai (λs))

= 1

ν(Ai (λs))

∫

Ai (λs)
fXn

i
(yn)dyn.

Let Xn
θ,μ denote the random variable with pdf fθ,μ. Note that

|D(QAi , Xn
θ,μ) − D(QAi , Xn

i )|
≤ 1

n

∑

λs∈�s

∫

Ai (λs)
‖xn − λs‖2| fθ,μ(xn) − fXn

i
(xn)|dxn

≤ 1

n

∑

λs∈�s

r̄(Ai (0))2
∫

Ai (λs)
| fθ,μ(xn) − fXn

i
(xn)|dxn

= r̄(Ai (0))2

n

∫

Rn
| fθ,μ(xn) − fXn

i
(xn)|dxn, (72)

where the second inequality is based on the fact that
Ai (λs) = λs + Ai (0), which implies that max

xn∈Ai (λs)
‖xn −

λs‖2 = r̄(Ai (0)). Let us analyze now the quantity r̄(Ai (0)).
Recall that Ai (0) = ∪λ∈β−1

i (0)(λ + M(0)), where M(0) �
∪λc∈Vin (0)∩�c Vc(λc). Then it follows that

r̄(Ai (0)) ≤ r̄(β−1
i (0)) + r̄(M(0)). (73)

Further,

r̄(M(0)) ≤ r̄in + r̄c ≤ 2r̄in = 2θ r̄in,0. (74)

Since we are interested in computing the limits
in (70) under (22), we may assume that μ is conveniently
large. In particular, in the sequel we will assume that μ ≥ 8
so that relation (55) leads to

r̄(β−1
i (0)) ≤ μ2θ r̄in,0. (75)

Finally, relations (73)-(75), together with the fact that M = μn

and νs = μnθnνin,0, lead to

r̄(Ai (0))

(Mνs)
1
n

≤ 2θ r̄in,0 + μ2θ r̄in,0

μ2θν
1
n
in,0

→ r̄in,0

2ν
1
n
in,0

(76)

in the limit of (22). The above result also implies that
r̄(Ai (0)) → 0 under (22). This enables us to apply Lemma 5,
which is stated and proved in Appendix D, and we obtain
that fθ,μ(xn) → f n

X1
(xn), xn ∈ R

n , under (22). Using
further Scheffe’s theorem [45], it follows that

∫
Rn | fθ,μ(xn)−

fXn
1
(xn)|dxn → 0 under (22). Combining this further with

(72) and (76) gives

lim
(22)

1

(Mνs)
2
n

|D(QAi , Xn
θ,μ) − D(QAi , Xn

i )| = 0. (77)

Using now the fact that fθ,μ is uniform over each quantizer
cell Ai (λs), we obtain that

D(QAi , Xn
θ,μ)

= 1

n

∑

λs∈�s

∫

Ai (λs)
‖xn − λs‖2 fθ,μ(xn)dxn

= 1

n

∑

λs∈�s

P[Xn
i ∈ Ai (λs)]

ν(Ai (λs))

∫

Ai (λs)
‖xn − λs‖2dxn

(a)= 1

nν(Ai (0))

∫

Ai (0)
‖xn‖2dxn

∑

λs∈�s

P[Xn
i ∈ Ai (λs)]

= 1

nν(Ai (0))

∫

Ai (0)
‖xn‖2dxn

P[Xn
i ∈ R

n]

= G(Ai (0))(ν(Ai (0)))
2
n

(b)= G(Ai (0))ν
2
n
s , (78)

where (a) uses the fact that Ai (λs) = λs + Ai (0), while (b)
is based on the fact that ν(Ai (0)) = νs since Ai (0) is a
fundamental cell of the lattice �s . Relations (77) and (78)
prove the claim of Part 1.

Part 2: In order to prove (71), we will first evaluate∫
Ai (0) ‖xn‖2dxn . Using the fact that Ai (0) = ∪λ∈β−1

i (0)(λ +
M(0)) and relation (41), we obtain that

Ai (0) = ∪λ∈U (λ − βi (λ) + M(0)) . (79)

Using further Lemma 6, which is stated and proved in Appen-
dix D, we obtain that∫

λ−βi (λ)+M(0)
‖xn‖2 dxn

= ‖λ − βi (λ)‖2ν(M(0))

+ 2〈
∫

M(0)
xndxn, λ − βi (λ)〉 +

∫

M(0)
‖xn‖2dxn. (80)

It is easy to see that M(0) is a fundamental cell of the lattice
�in , therefore, ν(M(0)) = νin . Further, relations (79) and (80)
lead to∫

Ai (0)
‖xn‖2 dxn = |U |

∫

M(0)
‖xn‖2 dxn

︸ ︷︷ ︸
T1

+ 2
∑

λ∈U
〈
∫

M(0)
xndxn, λ − βi (λ)〉

︸ ︷︷ ︸
T2,i

+ νin

∑

λ∈U
‖λ − βi (λ)‖2

︸ ︷︷ ︸
T3,i

.

Then
G(Ai (0))

M
2
n

= T1

nM
2
n (Mνin )1+ 2

n

+ T2,i

nM
2
n (Mνin )1+ 2

n

+ T3,i

nM
2
n (Mνin )1+ 2

n

. (81)

We will prove first that the first two terms on the right
hand side of the above equality approach 0 in the limit
of (22). Consider the first term. Note that

∫
M(0) ‖xn‖2 dxn ≤

(r̄(M(0)))2 νin . Combining this further with (74) and the fact
that |U | = M gives

T1

nM
2
n (Mνin )1+ 2

n

≤ 4Mθ2r̄2
in,0νin

nM
2
n (Mνin )1+ 2

n

= 4r̄2
in,0

nM
4
n ν

2
n

in,0

→ 0 under (22). (82)

It is easy to see that the closure of a lattice Voronoi cell of
the origin is symmetric about the origin. Therefore, if �in is
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a clean sublattice of �c, i.e., there are no points of �c on
the boundary of Vin(0), then the set �c ∩ Vin (0) is symmetric
about the origin. The above considerations further imply that
the closure of the set M(0) is symmetric about the origin,
thus

∫
M(0) xndxn = 0. Then the second term in (81) is 0.

When �in is not a clean sublattice of �c, the aforementioned
term still approaches 0 in the limit of (22), as we prove next.
Note that

|T2,i | = 2

∣∣∣∣∣
∑

λ∈U

∫

M(0)
〈xn, λ − βi (λ)〉dxn

∣∣∣∣∣

≤ 2
∑

λ∈U

∫

M(0)

∣∣〈xn, λ − βi (λ)〉∣∣ dxn

(a)≤ 2
∑

λ∈U

∫

M(0)

∥∥xn
∥∥ ‖λ − βi (λ)‖ dxn

= 2
∫

M(0)

∥∥xn
∥∥ dxn

∑

λ∈U
‖λ − βi (λ)‖

(b)≤ 2r̄(M(0))νin M(max
λ∈U

‖λ‖ + max
λ∈U

‖βi (λ)‖)
(c)≤ 4θ r̄in,0νin Mμ2θ r̄in,0

(d)= 4θ2νin M1+ 2
n r̄2

in,0. (83)

Here (a) follows from the Cauchy-Schwarz inequality and (b)
is based on the fact that

∫
M(0) ‖xn‖dxn ≤ r̄(M(0))νin and

|U | = M; additionally, (c) follows from (74) and the discus-
sion in the paragraph below equation (56); finally, (d) is based
on the fact that μ = M

1
n . Further, relation (83) implies that

|T2,i |
nM

2
n (Mνin )1+ 2

n

≤ 4θ2νin M1+ 2
n r̄2

in,0

nM1+ 4
n νinθ2ν

2
n
in,0

= 4r̄2
in,0

nM
2
n ν

2
n
in,0

→ 0 under (22). (84)

Let us evaluate now T3,i
νin

. We need to treat separately the
cases i = 1 and i = 2. Recall that U = ∪τ∈T Vs/2(τ ) ∩ �in .
We will denote V̂s/2(τ ) � Vs/2(τ ) ∩ �in . Using further (39),
we obtain that

T3,1

νin
=

∑

τ∈T

∑

λ∈V̂s/2(τ )

‖λ − μ(λ − τ )‖2

=
∑

τ∈T

∑

λ∈V̂s/2(τ )

‖(1 − μ)(λ − τ ) + τ‖2

=
∑

τ∈T

∑

λ∈V̂s/2(τ )

(‖(1 − μ)(λ − τ )‖2 + ‖τ‖2

+ 2〈(1 − μ)(λ − τ ), τ 〉)
=

∑

τ∈T

∑

λ∈V̂s/2(τ )

(1 − μ)2‖λ − τ‖2 +
∑

τ∈T

∑

λ∈V̂s/2(τ )

‖τ‖2

+ 2
∑

τ∈T

∑

λ∈V̂s/2(τ )

〈(1 − μ)(λ − τ ), τ 〉
︸ ︷︷ ︸

T4

(a)= (1 − μ)2|T |
∑

λ∈V̂s/2(0)

‖λ‖2

︸ ︷︷ ︸
T5

+ M

|T |
∑

τ∈T
‖τ‖2

︸ ︷︷ ︸
T6

+T4,

(85)

where (a) is based on the fact that V̂s/2(τ ) = τ + V̂s/2(0) and
|V̂s/2(0)| = M

|T | . Relation (85) leads to

T3,1

nM
2
n (Mνin)1+ 2

n

= T4

nM1+ 4
n ν

2
n
in

+ T5

nM1+ 4
n ν

2
n
in

+ T6

nM1+ 4
n ν

2
n
in

.

(86)

We will show first that the first and last terms on the right hand
side of (86) approach 0 in the limit of (22). For this we need
to introduce the following notation. For any two nested lattices
�2 ⊂ �1 in R

n , denote C�2:�1 � ∪λ1∈V�2 (0)∩�1 V�1(λ1).
Using Lemma 7, which is stated and proved in Appendix D,
we obtain

T6

nM1+ 4
n ν

2
n
in

=
M
2n n2n

nM1+ 4
n ν

2
n
in

(
G(C�s :�s/2 )ν

2
n
s − Gs/2ν

2
n
s/2

)

= 1

M
2
n

(
G(C�s :�s/2 ) − 1

4
Gs/2

)
,

where the last equality is based on νs = Mνin and
νs/2 = Mνin/2n . As the parameters μ and θ vary, both lattices
�s and �s/2 are scaled by the same factor, therefore the set
C�s :�s/2 is scaled by that factor. Since the second moment is
invariant under scaling, it follows that G(C�s :�s/2 ) − 1

4 Gs/2
remains constant as θ and μ vary. Consequently,

lim
(22)

T6

nM1+ 4
n ν

2
n
in

= 0. (87)

Consider now the first term on the right hand side of (86).
We have

|T4| ≤ 2|μ − 1|
∑

τ∈T

∑

λ∈V̂s/2(τ )

|〈λ − τ, τ 〉|

(a)≤ 2|μ − 1|
∑

τ∈T

∑

λ∈V̂s/2(τ )

‖λ − τ‖‖τ‖

≤ 2|μ − 1|M max
τ∈T

‖τ‖ max
λ∈V̂s/2(0)

‖λ‖
≤ 2μMr̄sr̄s/2,

where (a) is based on the Cauchy-Schwartz inequality. Using
further the fact that μ = M

1
n , while r̄s/2 = r̄s/2 = M

1
n r̄in/2,

leads to

|T4|
nM1+ 4

n ν
2
n
in

≤ M1+ 3
n r̄2

in

nM1+ 4
n ν

2
n
in

= r̄2
in,0

nM
1
n ν

2
n

in,0

→ 0 as (22) holds. (88)

In order to evaluate the second term in (86), we use again
Lemma 7 and obtain that

T5

nM1+ 4
n ν

2
n
in

= (μ − 1)2nM

nM1+ 4
n ν

2
n
in

(
G(C�s/2:�in )ν

2
n

s/2 − Ginν
2
n
in

)

= (M
1
n − 1)2

M
4
n

(
G(C�s/2:�in )

M
2
n

4
− Gin

)
,
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where the last equality relies on the fact that μ = M
1
n , while

νs/2 = Mνin/2n . Further, we obtain that

lim
(22)

T5

nM1+ 4
n ν

2
n
in

= lim
(22)

G(C�s/2:�in )

4
= Gs/2

4
, (89)

where the last equality follows from Lemma 8, which is
stated and proved in Appendix D.

Relations (86)-(89) imply that

lim
(22)

T3,1

nM1+ 4
n ν

2
n +1

in

= 1

4
Gs/2. (90)

Combining the above with (81), (82) and (84), we obtain
that (71) holds for i = 1. In order to prove the claim for i = 2,
we need to evaluate now T3,2

νin
. Note that

T3,2

νin
=

∑

τ∈T

∑

λ∈V̂s/2(τ )

‖λ − 2τ + μ(λ − τ )‖2

=
∑

τ∈T

∑

λ∈V̂s/2(τ )

‖(1 + μ)(λ − τ ) − τ‖2

=
∑

τ∈T

∑

λ∈V̂s/2(τ )

(‖(1 + μ)(λ − τ )‖2 + ‖τ‖2

+ 2〈(1 + μ)(λ − τ ), τ 〉)
=

∑

τ∈T

∑

λ∈V̂s/2(τ )

(
‖(1 + μ)(λ − τ )‖2 + ‖τ‖2

)

+ 2
∑

τ∈T

∑

λ∈V̂s/2(τ )

〈(1 + μ)(λ − τ ), τ 〉.

Next the conclusion follows using similar arguments as
for i = 1. This observation concludes the proof.

Proof of Relation (68): In order to prove the claim, we will
show that Ui approaches a uniform distribution. To prove this
let u ∈ Vin(0) ∩ �c.

The general idea of the proof is that, as the limits of (22)
are approached, the pdf fXn

i
can be approximated by a pdf

which is uniform on each set M(λ). Then in the limit of (22),

P[Ui = u] =
∑

λ∈�in

∫

Vc(λ+u)
fXn

i
(xn)dxn

(a)≈
∑

λ∈�in

fXn
i
(λ)νc

=
∑

λ∈�in

fXn
i
(λ)

νin

K

(b)≈ 1

K

∑

λ∈�in

∫

M(λ)
fXn

i
(xn)dxn

= 1

K
.

Next we provide a rigorous treatment of relations (a) and (b).
Define a density function fθ,μ : R

n → [0,∞), which is
uniform on each set M(λ), as follows

fθ,μ(xn) = 1

ν(M(λ))

∫

M(λ)
fXn

i
(yn)dyn, xn ∈ M(λ).

Then in view of Lemma 5 (stated and proved in Appendix D),
we have that fθ,μ(xn) → fXn

i
(xn), xn ∈ R

n , under (22).
Further, we have

P[Ui = u] =
∫

∪λ∈�in Vc(λ+u)

(
fXn

i
(xn) − fθ,μ(xn)

)
dxn

+
∫

∪λ∈�in Vc(λ+u)
fθ,μ(xn)dxn

≤
∫

∪λ∈�in Vc(λ+u)
| fXn

i
(xn) − fθ,μ(xn)|dxn

+
∑

λ∈�in

∫

Vc(λ+u)
fθ,μ(xn)dxn. (91)

Note that
∫

∪λ∈�in Vc(λ+u)
| fXn

i
(xn) − fθ,μ(xn)|dxn

≤
∫

Rn
| fXn

i
(xn) − fθ,μ(xn)|dxn → 0 under (22),

where the last relation is valid in view of Scheffe’s
theorem [45].

Further, since fθ,μ is constant on each M(λ), we have

∑

λ∈�in

∫

Vc(λ+u)
fθ,μ(xn)dxn =

∑

λ∈�in

fθ,μ(λ)
νin

K

= 1

K

∑

λ∈�in

∫

M(λ)
fXn

i
(xn)dxn

= 1

K
. (92)

Relations (91)-(92), together with the fact that the size of the
alphabet of Ui is K and K is constant, prove the claim. With
this observation the proof is complete.

Proof of Relation (27): Using a variant of Fano’s inequal-
ity, we obtain that

H (U2|U1) ≤ 1 + P[U1 �= U2] log2 K , (93)

where we used the fact that H (U2) = log2 K . Let λc,1 =
Qc(xn

1 ). Notice that if xn
2 − xn

1 ∈ B(r0) and the distance
from xn

1 to the boundary of the Voronoi cell Vc(λc,1) is larger
than or equal to r0, then it is guaranteed that xn

2 ∈ Vc(λc,1),
thus u2 = u1. Now let us denote

E(λc) � Vc(λc) \
(

1 − r0

rc

)
Vc(λc),

for each λc ∈ �c, and E � ∪λc∈�cE(λc). It follows that

P[U1 �= U2] ≤ PX1 X2(r0) + P[Xn
1 ∈ E]. (94)

Further, we obtain

P[Xn
1 ∈ E] ≤

∫

E
| fXn

1
(xn) − fθ,c(xn)|dxn +

∫

E
fθ,c(xn)dxn,

(95)

where fθ,μ was defined in the proof of relation (68). According
to that proof, the first integral in (95) approaches 0 in the limit
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of (22). Since fθ,μ is uniform over each Voronoi region of the
central lattice, we have

∫

E
fθ,μ(xn)dxn =

∑

λc∈�c

∫

E(λc)
fθ,μ(xn)dxn

=
∑

λc∈�c

fθ,μ(λc)ν(E(λc))

=
(

1 −
(

1 − r0

rc

)n) ∑

λc∈�c

fθ,μ(λc)νc

= 1 −
(

1 − r0

rc

)n

. (96)

Relations (95)-(96), together with the fact that the first integral
in (95) approaches 0 in the limit of (22), imply that

P[U1 �= U2] ≤ 1 −
(

1 − r0

rc

)n

+ PX1 X2(r0) + o(1).

Finally, by applying the above inequality in (93), the conclu-
sion follows.

APPENDIX D
PROOFS OF LEMMAS

Proof of Lemma 2: Throughout the proof we will use
the fact that μ is an even integer and, consequently, μ ≥ 2,
which implies that r̄c, r̄in ≤ 1/2r̄s . Using further the fact that
λc,i = λi + ui and the triangle inequality, we obtain that

‖xn
i − x̂ n

c,i‖ = ‖xn
i − λc,i + ui + λi − x̂ n

c,i‖
≤ ‖xn

c,i − λc,i‖ + ‖ui‖ + ‖λi − x̂ n
c,i‖

≤ r̄c + r̄in + ‖λi − x̂ n
c,i‖

≤ r̄s + ‖λi − x̂ n
c,i‖. (97)

If condition (43) is violated, then x̂ n
c,i = λs,i . Thus, we have

‖λi − x̂ n
c,i‖ = ‖λi − λs,i‖ ≤ r̄(β−1

i (0)) ≤ (4 + μ/2)r̄s,

where the last inequality is from (55). The above relations,
together with (97), imply that

‖xn
i − x̂ n

c,i‖ ≤ (5 + μ/2)r̄s ≤ 3cr̄s,

proving that the claim holds when (43) is not true.
Let us assume now that condition (43) is satisfied and that

Case 3) holds at the decoder, i.e., b1 = b2 = 1 and τ1 �= τ2.
Thus, x̂ n

c,i = λ̃i + ui , where λ̃i is given in (53) and (54). Then

‖λi − x̂ n
c,i‖ ≤ ‖λi − λ̃i‖ + ‖ui‖ ≤ ‖λi − λ̃i‖ + r̄in . (98)

Let us consider now i = 1. Using (53), (54) and the triangle
inequality, we obtain that

‖λ1 − λ̃1‖
≤ ‖λ1 − λ̃s‖ + ‖τ1‖ + 1

μ
‖λs,1 − λ̃s‖

≤ ‖λ1 − λs,1‖ + ‖λs,1 − λ̃s‖ + r̄s + 1

μ
‖λs,1 − λ̃s‖

≤ (4 + μ/2)r̄s + r̄s +
(

1 + 1

μ

)
‖λs,1 − λ̃s‖, (99)

where the last inequality is based on ‖λ1 −λs,1‖ ≤ r̄(β−1
i (0))

and (55). Using now (52) in conjunction with the triangle

inequality leads to

‖λs,1 − λ̃s‖ ≤ ‖λs,1 − ṽ‖ + (μ + 1)‖w̃‖
≤ ‖λs,1 − ṽ‖ + 2(μ + 1)r̄s, (100)

where the last inequality follows based on (51) and the fact
that

‖w̃‖ ≤ ‖ŵ + 1

2
(τ2 − τ1) − Qs(ŵ + 1

2
(τ2 − τ1))‖

+ ‖1

2
(τ2 − τ1)‖

≤ 2r̄s .

Finally, based on (49) and (50), we obtain that

‖λs,1 − ṽ‖ =
∥∥∥∥

1

2
(λs,1 − λs,2) − 1

2
μλ̃ +

(
1 + μ

2

)
τ2 − μ

2
τ1

∥∥∥∥

≤ 1

2
‖(λs,1 − λs,2)‖ + 1

2
μ‖λ̃‖ +

(
1 + μ

2

)
‖τ2‖

+ μ

2
‖τ1‖. (101)

Notice that relation (43) implies that

‖(λs,1 − λs,2)‖ ≤ (10 + μ)r̄s . (102)

Additionally, from (44) we obtain that

‖λ̃‖ ≤ ‖u1 − u2‖ + ‖(u1 − u2) − Qin(u1 − u2)‖
≤ 2r̄in + r̄in ≤ 2r̄s . (103)

Plugging (102) and (103) in (101) leads to

‖λs,1 − ṽ‖ ≤ (5 + μ/2)r̄s + r̄s + (1 + μ)r̄s = (7 + 3μ/2)r̄s .

The above relations and (100) imply that

‖λs,1 − λ̃s‖ ≤ (9 + 7μ/2)r̄s .

Combining now the above inequality with (97), (98) and (99),
we obtain that

‖xn
1 − x̂ n

c,1‖ ≤ r̄s + 1/2r̄s + (5 + μ/2)r̄s

+
(

1 + 1

μ

)
(9 + 7μ/2)r̄s

≤ (24 + 4μ)r̄s

≤ 16μr̄s,

which proves the claim. The proof for i = 2 and for the
remaining cases follows along the same lines.

Proof of Lemma 3: Let us fix i . Denote

C̃(λs/2) � {xn
i ∈ R

n : Qin(Qc(xn
i )) ∈ C(λs/2)},

C̃ � ∪λs/2∈�s/2 C̃(λs/2).

A moment of thought reveals that

C̃(λs/2) ⊂ (
λs/2 + γ1Vs/2(0)

) \ (
λs/2 + γ2Vs/2(0)

)
,

where γ1 = 1+ r̄in+r̄c
rs/2

and γ2 = γ − r̄in+r̄c
rs/2

. The above relation
implies that

ν(C̃(λs/2)) ≤ (γ n
1 − γ n

2 )ν(Vs/2(λs/2)). (104)

Let

Ṽ(λs/2) � {xn
i ∈ R

n|Qin(Qc(xn
1 )) ∈ Vs/2(λs/2)}.
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Clearly, ν(Ṽ(λs/2)) = νs/2. The proof of the lemma hinges on
the fact that, under (22), the pdf of Xn

i can be approximated
by a pdf which is uniform over Ṽs/2(λs/2). The general idea
of the proof is as follows. We have

P[Qin(Qc(Xn
i )) ∈ C(λs/2)]

(a)≈ fXn
i
(λs/2)ν(C̃(λs/2))

≤ fXn
i
(λs/2)ν(V (λs/2))(γ

n
1 − γ n

2 ),

where the last inequality follows from (104). The above
relations lead to

P[Qin(Qc(Xn
i )) ∈ ∪λs/2∈�s/2C(λs/2)]

≤
∑

λs/2∈�s/2

fXn
i
(λs/2)ν(V (λs/2))(γ

n
1 − γ n

2 )

(b)≈ γ n
1 − γ n

2 ,

where (b) follows from the assumption that the pdf is uni-
form over Vs/2(λs/2), thus

∑
λs/2∈�s/2

fXn
i
(λs/2)ν(V (λs/2)) = 1.

Finally, it is easy to see that γ1 → 1 and γ2 → 1 under (22),
thus lim

(22)
(γ n

1 − γ n
2 ) = 0.

Next we provide a detailed proof, which includes a rigorous
treatment of relations (a) and (b). Note that the sets Ṽ(λs/2)
with λs/2 ∈ �s/2 form a partition of R

n . Define a density
function fθ,μ : R

n → [0,∞), which is uniform on each set
Ṽ(λs/2), as follows

fθ,μ(xn) = 1

ν(Ṽ(λs/2))

∫

Ṽ(λs/2)
fXn

i
(yn)dyn, xn ∈ Ṽ(λs/2).

(105)

In view of Lemma 5, which is stated and proved after the
proof of this lemma, we have that fθ,μ(xn) → fXn

i
(xn), for

xn ∈ R
n , under (22). Further, we have

P[Xn
i ∈ C̃] =

∫

C̃

(
fXn

i
(xn) − fθ,μ(xn) + fθ,μ(xn)

)
dxn

≤
∫

C̃
| fXn

i
(xn) − fθ,μ(xn)|dxn

+
∑

λs/2∈�s/2

∫

C̃(λs/2)
fθ,μ(xn)dxn.

Note that
∫

C̃
| fXn

i
(xn) − fθ,μ(xn)|dxn

≤
∫

Rn
| fXn

i
(xn) − fθ,μ(xn)|dxn → 0 under (22),

where the last relation is valid in view of Scheffe’s
theorem [45]. Further, since the density fθ,μ is uniform over
each Ṽ(λs/2) and C̃(λs/2) ⊂ Ṽ(λs/2), we obtain that

∑

λs/2∈�s/2

∫

C̃(λs/2)
fθ,μ(xn)dxn

=
∑

λs/2∈�s/2

fθ,μ(λs/2)ν(C̃(λs/2))

(c)≤
∑

λs/2∈�s/2

fθ,μ(λs/2)ν(Vs/2(λs/2))(γ
n
1 − γ n

2 )

= (γ n
1 − γ n

2 )
∑

λs/2∈�s/2

fθ,μ(λs/2)ν(Vs/2(λs/2))

(d)= (γ n
1 − γ n

2 )
∑

λs/2∈�s/2

∫

Ṽ(λs/2)
fXn

1
(yn)dyn

= (γ n
1 − γ n

2 )

∫

Rn
fXn

i
(yn)dyn = γ n

1 − γ n
2 ,

where (c) follows from (104), and (d) is based on relation (105)
and the fact that ν(Vs/2(λs/2)) = ν(Ṽ(λs/2)). This observation
concludes the proof.

Lemma 5: Let � be a lattice and σ > 0 a scale factor.
Let Cσ be a measurable fundamental cell of the scaled lattice
σ� such that lim

σ→0
r̄(Cσ ) = 0. Let f : R

n → [0,∞) be a

continuous density function. For each σ , define the function
fσ : R

n → [0,∞) as follows. For each λσ ∈ σ� and xn ∈
λσ + Cσ , let

fσ (xn) � 1

ν(Cσ )

∫

λσ+Cσ

f (yn)dyn. (106)

Then for every xn ∈ R
n,

lim
σ→0

fσ (xn) = f (xn). (107)

Proof: Let us fix xn ∈ R
n and let λσ ∈ σ� such that

xn ∈ λσ + Cσ . Then

| fσ (xn) − f (xn)| ≤ 1

ν(Cσ )

∫

λσ+Cσ

| f (yn) − f (xn)|dyn

≤ max
yn∈λσ+Cσ

| f (yn) − f (xn)|
≤ max

yn∈xn+B2r̄ (Cσ )

| f (yn) − f (xn)|. (108)

Since f is continuous and the set xn +B2r̄(Cσ ) is a neighbor-
hood of xn with diameter approaching 0 as σ → 0, it further
follows that

lim
σ→0

max
yn∈xn+B2r̄ (Cσ )

| f (yn) − f (xn)| = 0. (109)

Relations (108) and (109) imply that (107) holds.
Lemma 6: For any set A ⊆ R

n and any u ∈ R
n,

∫

u+A
‖xn‖2 dxn

=
∫

A
‖xn‖2 dxn + 2〈

∫

A
xndxn, u〉 + ‖u‖2ν(A).

Proof: Applying the change of variable xn = u + yn ,
we obtain that

∫

u+A
‖xn‖2 dxn

=
∫

A
‖yn + u‖2 dyn

=
∫

A
‖yn‖2 dyn +

∫

A
2〈yn, u〉dyn +

∫

A
‖u‖2 dyn

=
∫

A
‖yn‖2 dyn + 2〈

∫

A
xndxn, u〉 + ‖u‖2ν(A).
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Lemma 7: Let �2 ⊂ �1 be two nested lattices in R
n. Let

N0 � N(�2 : �1) and C�2:�1 � ∪λ1∈V�2 (0)∩�1 V�1(λ1). Then

∑

λ1∈V�2 (0)∩�1

‖λ1‖2 = nN0

(
G(C�2:�1)ν

2
n
�2

− G�1ν
2
n
�1

)
.

Proof: It can be easily seen that C�2:�1 is a fundamental
region of the lattice �2, thus ν(C�2:�1) = ν(�2) = N0ν(�1).
Invoking further the definition of G(C�2:�1) gives

nN0 G(C�2:�1)ν
2
n
�2

= 1

ν�1

∫

C�2:�1

‖xn‖2 dxn.

Using the fact that V�1(λ1) = λ1 + V�1(0), we obtain that

1

ν�1

∫

C�2:�1

‖xn‖2 dxn

= 1

ν�1

∑

λ1∈V�2 (0)∩�1

∫

λ1+V�1 (0)
‖xn‖2 dxn

(a)= 1

ν�1

∑

λ1∈V�2 (0)∩�1

(∫

V�1 (0)
‖xn‖2 dxn

+ 2

〈∫

V�1 (0)
xndxn, λ1

〉
+ ‖λ1‖2ν�1

)

(b)= N0

ν�1

∫

V�1 (0)
‖xn‖2 dxn +

∑

λ1∈V�2 (0)∩�1

‖λ1‖2

(c)= nN0G�1ν
2
n
�1

+
∑

λ1∈V�2 (0)∩�1

‖λ1‖2.

Here (a) is based on Lemma 6; moreover, (b) uses the fact
that

∫
V�1 (0) xndxn = 0 and |V�2(0) ∩ �1| = N0, while (c) is

based on the definition of G�1 . Now the claim follows.
Lemma 8: Consider two nested lattices �2,0 ⊂ �1,0 and

the scale coefficients ω1, ω2 such that lattices �2 = ω2�2,0
and �1 = ω1�1,0 are still nested. Let N0 � N(�2 : �1) and
C�2:�1 � ∪λ1∈V�2 (0)∩�1 V�1(λ1). Then

lim
ω2
ω1

→∞
G(C�2:�1) = G�2 .

Proof: Since the lattices �2 and �1 are scaled by different
scale factors, the value G(C�2:�1) is not constant. On the other
hand, G�2 is constant. Notice further that the set C�2:�1 is a
fundamental region of the lattice �2, thus its volume equals
ν�2 . Then the following holds

G(C�2:�1) − G�2 = 1

nν
1+ 2

n
�2

(∫

C�2:�1

‖xn‖2 dxn

−
∫

V�2 (0)
‖xn‖2 dxn

)
.

For simplicity, let us denote A = C�2:�1 , B = V�2(0) and
�ν = ν(A) − ν(A ∩ B). Since ν(A) = ν(B), it follows that
�ν = ν(B) − ν(A ∩ B). Then we obtain that

|G(A) − G(B)| = 1

nν
1+ 2

n
�2

∣∣∣∣
∫

A\A∩B
‖xn‖2 dxn

−
∫

B\A∩B
‖xn‖2 dxn

∣∣∣∣

≤ 1

nν
1+ 2

n
�2

(
r̄(A)2�ν + r̄(B)2�ν

)

≤ �ν

nν
1+ 2

n
�2

(
(r̄�2 + r̄�1)

2 + r̄2
�2

)

≤ 5r̄2
�2

�ν

nν
1+ 2

n
�2

=
5ω2

2r̄2
�2,0

�ν

nω2
2ν

2
n
�2,0

ν�2

=
5r̄2

�2,0

4nν
2
n
�2,0

�ν

ν�2

.

According to the above relations, in order to prove the claim
of the lemma, it is sufficient to show that lim

ω2
ω1

→∞
�ν
ν�2

= 0,

which is equivalent to

lim
ω2
ω1

→∞
ν(A ∩ B)

ν�2

= 1. (110)

It is easy to see that, for any point xn ∈ V�2(0) which is at a
distance larger than r̄�1 from the boundary of V�2(0), we have
Q�1(xn) ∈ V�2(0), thus xn ∈ A. This observation implies that
the interior of the set γ V�2(0) is included in A ∩ B, where

γ = 1 − r̄�1

r�2

= 1 − ω1

ω2

r̄�1,0

r�2,0

.

Then we have γ n ≤ ν(A∩B)
ν�2

≤ 1, which implies that (110)
holds. With this the proof is completed.
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