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Abstract—The capacity region of the finite-state multiple-access
channel (FS-MAC) with feedback that may be an arbitrary time-
invariant function of the channel output samples is considered. We
characterize both an inner and an outer bound for this region,
using Massey’s directed information. These bounds are shown to
coincide, and hence yield the capacity region, of indecomposable
FS-MACs without feedback and of stationary and indecomposable
FS-MACs with feedback, where the state process is not affected by
the inputs. Though “multiletter” in general, our results yield ex-
plicit conclusions when applied to specific scenarios of interest. For
example, our results allow us to do the following.

• Identify a large class of FS-MACs, that includes the additive
���� noise MAC where the noise may have memory, for
which feedback does not enlarge the capacity region.

• Deduce that, for a general FS-MAC with states that are not
affected by the input, if the capacity (region) without feedback
is zero, then so is the capacity (region) with feedback.

• Deduce that the capacity region of a MAC that can be decom-
posed into a “multiplexer” concatenated by a point-to-point
channel (with, without, or with partial feedback), the capacity
region is given by

�
�� � � , where � is the capacity of

the point to point channel and� indexes the encoders. More-
over, we show that for this family of channels source–channel
coding separation holds.

Index Terms—Capacity region, causal conditioning, code-tree,
directed information, feedback capacity, multiple-access channel
(MAC), source–channel coding separation, sup-additivity of sets.

I. INTRODUCTION

T HE multiple-access channel (MAC) has received much
attention in the literature. To put our contributions in

context, we begin by briefly describing some of the key results
in the area. The capacity region for the memoryless MAC
was derived by Ahlswede in [1]. Cover and Leung derived
an achievable region for a memoryless MAC with feedback
in [2]. Using block Markov encoding, superposition, and list
codes, they showed that the region ,

, and where
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is achiev-
able for a memoryless MAC with feedback. In [3], Willems
showed that the achievable region given by Cover and Leung
for a memoryless channel with feedback is optimal for a class
of channels where one of the inputs is a deterministic function
of the output and the other input. More recently, Bross and
Lapidoth [4] improved Cover and Leung’s region, and Wu et
al. [5] extended Cover and Leung’s region for the case where
noncausal state information is available at both encoders.

Ozarow derived the capacity of a memoryless Gaussian MAC
with feedback in [6] and showed it to be achievable via a modifi-
cation of the Schalkwijk–Kailath scheme [7]. In general, the ca-
pacity in the presence of noisy feedback is an open question for
the point-to-point channel and a fortiori for the MAC. Lapidoth
and Wigger [8] presented an achievable region for the case of
the Gaussian MAC with noisy feedback and showed that it con-
verges to Ozarow’s noiseless-feedback sum–rate capacity as the
feedback–noise variance tends to zero. Other recent variations
on the Schalkwijk–Kailath scheme of relevance to the themes of
our work include the case of quantization noise in the feedback
link [9] and the case of interference known noncausally at the
transmitter [10].

Verdú characterized the capacity region of a MAC of the form

without feedback in [11]. Verdú further showed in that work that
in the absence of frame synchronism between the two users, i.e.,
there is a random shift between the users, only stationary input
distributions need be considered. Cheng and Verdú built on the
capacity result from [11] in [12] to show that for a Gaussian
MAC there exists a water-filling solution that generalizes the
point-to-point Gaussian channel.

In [13], [14], Kramer derived general capacity results for
discrete memoryless networks with feedback. In particular, by
using the idea of code-trees instead of codewords, Kramer de-
rived a “multiletter” expression for the capacity of the discrete
memoryless MAC. One of the main results we develop in the
present paper extends Kramer’s capacity result to the case of
a stationary and indecomposable finite-state MAC (FS-MAC)
without ISI (intersymbol interference), to be formally defined
below.

In [15], [16], Han used the information-spectrum method to
derive the capacity of a general MAC without feedback, when
the channel transition probabilities are arbitrary for every
symbols. Han also considered the additive - MAC, which
we shall use here to illustrate the way in which our general
results characterize special cases of interest. In particular, our
results will imply that feedback does not increase the capacity
region of the additive - MAC.

0018-9448/$25.00 © 2009 IEEE

Authorized licensed use limited to: McMaster University. Downloaded on September 2, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 



2456 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 55, NO. 6, JUNE 2009

Fig. 1. Channel with feedback that is a time-invariant deterministic function of the output.

In this work, we consider the capacity region of the FS-MAC,
with feedback that may be an arbitrary time-invariant function
of the channel output samples. We characterize both an inner
and an outer bound for this region. We show that these bounds
coincide, and hence yield the capacity region, for the important
subfamily of FS-MACs with states that evolve independently of
the channel inputs. If feedback is not allowed the bounds coin-
cide simply if the FS-MAC is indecomposable. Our derivation
of the capacity region is rooted in the derivation of the capacity
of finite-state channels in Gallager’s book [17, Ch. 4,5]. More
recently, Lapidoth and Telatar [18] have used it in order to derive
the capacity of a compound channel without feedback, where
the compound channel consists of a family of finite-state chan-
nels. In particular, they have introduced into Gallager’s proof
the idea of concatenating codewords, which we extend here to
concatenating code trees.

Though “multiletter” in general, our results yield explicit con-
clusions when applied to more specific families of MACs. For
example, we find that feedback does not increase the capacity
of the - additive noise MAC (where is the size of the
common alphabet of the input, output and noise), regardless of
the memory in the noise. This result is in sharp contrast with the
finding of Gaarder and Wolf in [19] that feedback can increase
the capacity even of a memoryless MAC due to cooperation be-
tween senders that it can create. Our result should also be con-
sidered in light of Alajaji’s work [20], which showed that feed-
back does not increase the capacity of discrete point-to-point
channels with - additive noise. Thus, this part of our con-
tribution can be considered a multiterminal extension of Ala-
jaji’s result. Our results will in fact allow us to identify a class
of MACs larger than that of the - additive noise MAC for
which feedback does not enlarge the capacity region.

Further specialization of the results will allow us to deduce
that, for a general FS-MAC with states that are not affected by
the input, if the capacity (region) without feedback is zero, then
so is the capacity (region) with feedback. It will also allow us
to identify a large class of FS-MACs for which source–channel
coding separation holds.

The remainder of this paper is organized as follows. We con-
cretely describe our channel model and assumptions in Sec-
tion II. In Section III, we introduce some notation, tools, and
results pertaining to directed information and convergence of
sub/sup-additive regions that will be key in later sections. We
state our main results in Section IV. In Section V, we apply
the general results of Section IV to obtain the capacity region
for several interesting classes of channels, as well as establish a
source–channel separation result. The validity of our inner and
outer bounds is established, respectively, in Sections VI and VII.
In Section VIII, we show that our inner and outer bounds coin-
cide, and hence yield the capacity region, when applied to the
FS-MAC without feedback. This result can be thought of as a
natural extension of Gallager’s derivations [17] of the memory-
less MAC without feedback, and Kramer’s derivation [14] of
memoryless MAC with feedback, to channels with states. In
Section IX, we characterize the capacity region for the case
of arbitrary (time-invariant) feedback and FS-MAC channels
with states that evolve independently of the input, as well as
the FS-MAC with limited ISI (which is the natural MAC ana-
logue of Kim’s point-to-point channel [21]), by showing that
our inner and outer bounds coincide for this case. We conclude
in Section X with a summary of our contribution and a related
future research direction.

II. CHANNEL MODEL

In this paper, we consider a FS-MAC with a time-invariant
feedback as illustrated in Fig. 1.

The MAC setting consists of two senders and one receiver.
Each sender chooses an index uniformly
from the set and independently of the other
sender. The input to the channel from encoder is denoted by

, and the output of the channel is denoted
by . The state at time , i.e., , takes
values in a finite set of possible states. The channel is homoge-
nous (does not change over time) and is characterized by a
conditional probability that satisfies

(1)
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where the superscripts denote sequences in the following way:
. Later in the paper, we

also discuss more specific families of FS-MAC, such as inde-
composable FS-MAC and FS-MAC without ISI. The definition
of indecomposable FS-MAC is a straightforward extension of
indecomposable FSC [17] where the effect of the initial state
vanishes with time, for any given input sequence . More
precisely:

Definition 1: An FS-MAC is indecomposable if, for every
, there exists an such that for

(2)

for all , , , , and .

If feedback is allowed, then the initial state may influence
the future state through influencing the input. Because of that
reason, we also define an FS-MAC without ISI, for which the
state process is not affected by the input.

Definition 2: An FS-MAC without ISI is an FS-MAC that
satisfies

(3)

Gallager also provides in [17, Theorem 4.6.3] a necessary and
sufficient condition for verifying that the channel is indecom-
posable. For FS-MAC without ISI, the condition is simply an
existence of a state such that

(4)

for some fixed . This condition can be verified in a
finite time, and it also implies [22, Theorem 6.3.2] that there
exists a unique steady-state distribution (stationary distribution),
i.e.,

(5)

where is the stationary distribution. Combining the defini-
tions above we have

Definition 3: A stationary and indecomposable FS-MAC
without ISI is an FS-MAC that satisfies

(6)

and

(7)

where is the unique stationary distribution that satis-
fies (5).

Throughout the paper, we assume a communication scheme
with feedback where the element is a time-invariant func-
tion of the output . For example, could equal (perfect
feedback), or a quantized version of , or null (no feedback).
The encoders receive the feedback samples with one unit delay.

A code with feedback consists of two encoding functions
, where the th

coordinate of is given by the function

(8)

and a decoding function

(9)

The average probability of error for a code is
defined as

sent

(10)
A rate is said to be achievable for the MAC if there
exists a sequence of codes with .
The capacity region of MAC, , is the closure of the set of
achievable rates.

III. PRELIMINARIES

In this section, we introduce two concepts that have a major
role in characterizing the capacity of FS-MAC with feedback.
The first concept is the directed information and causal condi-
tioning idea. The second concept is the sub- and sup-additivity
(a.k.a superadditive) property of sequences of regions.

A. Directed Information and Causal Conditioning

Throughout this paper we use the Causal Conditioning no-
tation . We denote the probability mass function (pmf) of

causally conditioned on , for some integer , as
which is defined as

(11)

(if then is set to null). In particular, we extensively
use the cases where

(12)

(13)

where the letters and are both used for denoting pmfs.
Directed information was defined by Massey

in [23] as

(14)

It has been widely used in the characterization of capacity
of point-to-point channels [21], [24]–[29], compound chan-
nels[30], network capacity [13], [14], rate distortion [31]–[33],
and computational biology [34], [35]. Directed information can
also be expressed in terms of causal conditioning as

(15)
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where denotes expectation. The directed information from
to , conditioned on , is denoted as

and is defined as

(16)

Directed information between and causally condi-
tioned on is defined as

(17)

where .
In this paper, we are using several properties of causal con-

ditioning and directed information that follow from the defini-
tions and simple algebra. Many of the key properties that hold
for mutual information and regular conditioning carry over to di-
rected information and causal conditioning, where is re-
placed by and is replaced by .
Specifically, we have the following.

Lemma 1: (Analogue to .)
For arbitrary random vectors

(18)

(19)

Lemma 2: (Analogue to
.) For arbitrary random vectors and variables

(20)

(21)

The proofs of Lemmas 1 and 2 can be found in [27, Sec.
IV], along with some additional properties of causal condi-
tioning and directed information. The next lemma, which is
proved in Appendix I, shows that by replacing regular pmf
with causal conditioning pmf we get the directed informa-
tion. Let us denote the mutual information
as a functional of and , i.e.,

. Consider
the case where the random variables are independent,
i.e., , then, by definition, we get
(22) shown at the bottom of the page.

Lemma 3: If the random vectors and are causal-
conditionally independent given , i.e.,

then

(23)

where is defined in (22).

The next lemma, which is proved in Appendix II, shows that
in the absence of feedback, mutual information becomes di-
rected information.

Lemma 4: If then

(24)

B. Sub-, Sup-Additivity and Convergence of
Finite-Dimensional Regions

In this subsection, we define basic operations (summation and
multiplication by scalar), convergence, and sub/sup-additivity
of regions. Furthermore, we show that the limit of a sup(sub)-ad-
ditive sequence of regions converges to the union (intersection)
of all regions.

Let be sets in a finite-dimensional Euclidean space ,
i.e., and are sets of vectors in . The sum of two regions
is denoted as and defined as

(25)

and multiplication of a set with a scalar is defined as

(26)

A sequence of regions in is said
to converge to a region , written if

(27)

where

(28)

and denotes an arbitrary increasing subsequence of the inte-
gers. In words, a point in is in ( ) if and only
if the intersection of any ball around it with each set in the se-
quence is nonempty for infinitely (all but finitely) many of these
sets. For more details on convergence of sets in finite dimensions
see [36]. Let and , denote1

(29)

1Closure is not needed in the definition of �, since throughout the paper the
sets � are closed and intersection of arbitrary many closed sets is closed.

(22)
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We say that a sequence is bounded, if
where denotes a norm in . The next two lemmas es-

tablish convergence of sub-additive and sup-additive sequences,
and their proof can be found in Appendix III.

Lemma 5: Let , , be a sequence of bounded
sets in that includes the origin, i.e., . If is sup-
additive, i.e., for all and all

(30)

then

(31)

Lemma 6: Let , , be a sequence of convex,
closed, and bounded sets in . If is sub-additive, i.e., for
all and all

(32)

then

(33)

Corollary 7: For a sup-additive sequence, as defined in
Lemma 5, the limit is convex.

This corollary follows immediately from the definition of the
sup-additivity property, (32) where , , and

goes to infinity.
The (Hausdorff) distance between two sets and , is de-

fined as

(34)

where the distance between a set and a point is given by

(35)

An alternative and equivalent definition to and
based on distance notation may be found in [37, Ch. 1]

(36)

A straightforward consequence of this definition is the following
lemma.

Lemma 8: If , then
and

IV. MAIN THEOREMS

We dedicate this section to a statement of our main results,
proofs of which will appear in the subsequent sections (Theorem
9 in Section VI, Theorem 10 in Section VII, Theorem 11 in
Section VIII-A, Theorem 12 in Section VIII-B, Theorem 13 in
Section IX).

Let denote the following region in (two–dimensional
(2D) set of nonnegative real numbers) given in (37) at the bottom
of the page, where denotes the convex hull of the region.
In order to avoid cases where is empty, we define that neg-
ative values in (37) are replaced by , hence, a more accurate
notation of the first inequality is

.
The set of three inequalities is equivalent to an intersection of

three regions, and is equivalent to . Hence, an equiv-
alent region is given in (38), also at the bottom of the page.

Theorem 9: (Inner bound.) For any FS-MAC with time-in-
variant feedback as shown in Fig. 1, and for any integer ,
the region is achievable, i.e., .

Let denote the following region in :

(39)

In the following theorem we use the standard notion of conver-
gence of sets as defined in Section III.

Theorem 10: (Outer bound.) Let be an achiev-
able pair for an FS-MAC with time-invariant feedback, as
shown in Fig. 1. Then, for any there exists a distribution

such that the following inequalities
hold:

(37)

(38)
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(41)

(40)

where goes to zero as goes to infinity. Moreover, the outer
bound can be written as , i.e., .

In the generality of time-invariant feedback, the outer bound
in Theorem 10 is given only in terms of limit. However, if feed-
back is not allowed, we obtain the following outer bound which
holds for any .

Let us denote as in (41) at the top of the page.

Theorem 11: (Outer bound for FS-MAC without feedback.)
For any FS-MAC without feedback, and for any integer ,

.

The following two theorems establish capacity for families of
FS-MAC, by showing that the bounds given above are asymp-
totically tight.

Theorem 12: (Capacity of FS-MAC without feedback.) For
any indecomposable FS-MAC without feedback, the capacity
region is
and the limits exist.

Theorem 13: (Capacity of FS-MAC with feedback.) The ca-
pacity of a stationary and indecomposable FS-MAC without
ISI, and with time-invariant feedback is

and the limits exist.

The next theorems are proved in Section V and will be seen
to be consequences of the capacity theorems given above.

Theorem 14: If the capacity without feedback of a stationary
and indecomposable FS-MAC without ISI is zero, then it is also
zero in the case in which there is feedback.

Corollary 15: For a memoryless MAC, the capacity with
feedback is zero if and only if it is zero without feedback.

Corollary 16: Feedback does not enlarge the capacity region
of a discrete additive ( - ) noise MAC.

In fact, among other results, we will see in the next section
that the (mod- ) noise MAC is only a subset of a larger family
of MACs for which feedback does not enlarge the capacity re-
gion.

V. APPLICATIONS

The capacity formula of a FS-MAC given in Theorems 12
and 13 is a multiletter characterization. In general, it is very hard
to evaluate it but, for the finite-state point-to-point channel, there
are several cases where the capacity with and without feedback
was found explicitly [38], [39], [26], [25], and [28].2

2For the Gaussian case without feedback there exists the water-filling solution
[40], and recently the feedback capacity was found analytically, for the case
where the noise is an ARMA(1)-Gaussian process (cf. [41]–[43]).

The multiletter capacity expression is also valuable for
deriving useful concepts in communication. For instance, in
order to show that feedback does not increase the capacity of
a point-to-point memoryless channel (cf. [44]), we can use the
multiletter upper bound of a channel with memory. Further, in
[27] it was shown that for the cases where the capacity is given
by the multiletter expression

the source–channel coding separation holds. It was also shown
that if the state of the channel is known at both the encoder and
decoder and the channel is connected (i.e., every state can be
reached with some positive probability from every other state
under some input distribution), then feedback does not increase
the capacity of the channel.

In this section, we use the capacity formula in order to derive
three conclusions.

1) For stationary and indecomposable channels without ISI,
the capacity is zero if and only if the capacity with feedback
is zero.

2) Identify FS-MACs that feedback does not enlarge the
capacity and show that for a MAC that can be decomposed
into a “multiplexer” concatenated by a point-to-point
channel (with, without, or with partial feedback), the
capacity region is given by , where is the
capacity of the point-to-point channel.

3) Source–channel coding separation holds for a MAC that
can be decomposed into a “multiplexer” concatenated by a
point-to-point channel (with, without, or with partial feed-
back).

As a special case of the second concept, we show that the
capacity of a binary Gilbert–Ellliot MAC is

, where is the entropy rate of the hidden Markov
noise that specifies the binary Gilbert–Ellliot MAC.

A. Zero Capacity

The first concept is given in Theorem 14 and is proved here.
The proof of Theorem 14 is based on the following lemma which
is proved in Appendix IV.

Lemma 17: For a MAC described by an arbitrary causal con-
ditioning the following holds:

(42)

and each condition also implies that
for all .

Proof of Theorem 14: Since the channel is without ISI, i.e.,

(43)
and stationary and ergodic, its capacity region is given in The-
orem 13 as . Furthermore, since the sequence
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Fig. 2. Gilbert–Elliot MAC. It has two states,“Good” and “Bad” where the
transition between them is according to a first-order Markov process. Given that
the channel is in a “Good” (or a “Bad”) state, it behaves as binary additive noise
where the noise is Bernouli(� ) (or Bernouli(� )).

is sup-additive (Lemma 27), then according to Lemma 5

; hence, if , then for all ,
, i.e.,

(44)

According to Lemma 17, the maximization of the objective in
(44) over the distribution is still zero,
hence, the capacity region is zero even if there is perfect feed-
back.

Corollary 15, which states that the capacity of a memoryless
MAC without feedback is zero if and only if the capacity with
feedback is zero, follows immediately from Theorem 14 be-
cause a memoryless MAC can be considered an FS-MAC with
one state.

Clearly, Theorem 14 also holds for the case of a stationary and
indecomposable FSC point-to-point channel without ISI, be-
cause a MAC is an extension of a point-to-point channel. How-
ever, it does not hold for the case of a broadcast channel. For
instance, consider the binary broadcast channel given by

and , where is an independent and iden-
tically distributed (i.i.d.) Bernoulli( ) and denotes addition

. The capacity without feedback is clearly zero, but if the
transmitter has feedback, namely, if it knows and
at time , then it can compute the noise
and therefore it can transmit 1 bit per channel use to the second
user.

B. Examples of Channels for Which Feedback Does Not
Enlarge Capacity

1) Gilbert–Elliot MAC: The Gilbert-Elliot channel is a
widely used example of a finite-state channel. It is often used
to model wireless communication in the presence of fading
[38], [39], [45]. The Gilbert–Elliot is a channel with two states
without ISI, and the states are denoted as “good” and “bad.”
Each state is a binary-symmetric channel and the probability
of flipping the bit is lower in the “good” state. In the case of
the Gillber–Elliot MAC (Fig. 2), each state is an additive MAC
with i.i.d. noise, where in the “good” channel the probability
that the noise is “ ” is lower than in the “bad” channel. This
channel can be represented as an additive MAC as in Fig. 2,
where the noise is a hidden Markov process.

Since the Gilbert–Elliot MAC is an indecomposable FS-MAC
without ISI, its capacity with feedback when the initial state
distribution over the states “good” and “bad” is the stationary
distribution is given by (Theorem 13). For the
Gilbert–Elliot MAC, the region reduces to the
simple region

(45)

where denotes the entropy rate of the hidden Markov
noise. The following equalities and inequalities upper-bound
the region and this upper bound can be achieved for any
deterministic feedback by an i.i.d. input distribution

and and
and are independent of each other.

(46)

Equality is due to the facts that is a function
of and is a deterministic function of

, i.e., and .
Equality follows from the fact that is independent of the
messages. Inequality is due to the fact that the size of the
alphabet is . Similarly, ,
and and equality is achieved
with an i.i.d. input distribution Bernoulli( ). Finally, by di-
viding both sides by and using the definition of entropy rate

we conclude the proof.
2) Multiplexer Followed by a Point-to-Point Channel: Here

we extend the Gilber–Elliot MAC to the case where the discrete
MAC can be decomposed into two components as shown in
Fig. 3. The first component is a MAC that can behave as a mul-
tiplexer and the second component is a point-to-point channel.
The definitions of those components are the following.

Definition 4: A MAC with inputs, , be-
haves as a multiplexer if the inputs and the output have common
alphabets and for all there exists a choice of input
symbols for all senders except sender , such that the output is
the th input, i.e., .

An example of a multiplexer-MAC for the binary case is a
MAC whose output is one of AND/OR/XOR of the inputs. For
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Fig. 3. Discrete MAC that can be decomposed into two parts. The first part is a MAC that behaves as a multiplexer and the second part is a point-to-point channel.

Fig. 4. Additive noise MAC with and without feedback. The random variables � � � � � �� � � � � � � � �� �� �� � � �, are from a common alphabet of size
�, and they denote the input from sender �� � � � �� , the output, and the noise at time �, respectively. The relation between the random variables is given by
� � 	 � 	 � � � � 	 � 
 where � denotes addition ���-�. The noise � , possibly with memory, is independent of the messages � � � � � �� .

a general alphabet those operations could be max/min/addi-
tion- - . For instance, if the channel is binary with two users
and it is addition- - , i.e., , then we can ensure
that by choosing .

Theorem 18: The capacity region of a multiplexer MAC fol-
lowed by a point-to-point channel with a time-invariant feed-
back to all encoders, as shown in Fig. 3, is

(47)

where is the capacity of the point-to-point channel with the
time-invariant feedback .

As shown by Dueck in [46], the capacity of a MAC, under
the constraint that the maximum probability of error (among all
messages) goes to zero, may be smaller than the capacity under
the average error constraint. However, we show in the proof, that
this theorem holds for the maximum error constraint, a fact that
will be used for establishing source–channel separation.

Proof: The achievability is proved simply by time sharing.
At each time, only one selected user sends information and the
other users send a constant input that insures that the output is
the input of the selected user. Since the time sharing is between
communication over two point-to-point channel, and since for
point-to-point channel the capacity is achieved with the max-
imum error criteria, we conclude the achievability in this the-
orem holds for the maximum criteria.

The converse is based on the fact that the maximum rate that
can be transmitted through the point-to-point channel is and

it is an upper bound sum–rate of multiplexer-MAC. If it had not
been an upper bound for the multiplexer-MAC, we could build
a fictitious multiplexer-MAC before the point-to-point channel
and achieve by that a higher rate than its upper bound which
would be contradiction.

3) Discrete Additive MAC: An immediate consequence of
Theorem 18 is an extension of Alajaj’s result [20] to the addi-
tive MAC which is given in Corollary 16. Corollary 16 states
that feedback does not enlarge the capacity region of a discrete
additive ( - ) noise MAC.

The proof of the corollary is based on the following obser-
vation. If feedback does not increase the capacity of a partic-
ular point-to-point channel then feedback also does not increase
the capacity of the multiplexer (MUX) followed by the same
particular channel. Specifically, feedback does not increase the
achievable region of an additive MAC (Fig. 4) and the achiev-
able region is given by

(48)

where is the entropy rate of the additive noise.
4) Multiplexer Followed by Erasure Channel: Consider the

case of the multiplexer–erasure MAC which is a multiplexer
followed by an erasure channel, possibly with memory.

Definition 5: A point-to-point channel is called erasure
channel if the output at time can be written as

, and the following properties hold.
1) The alphabet of is binary and the alphabet of is the

same as plus one additional symbol called the erasure.
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2) The process is stationary and ergodic and is indepen-
dent of the message.

3) If , then and if , then the output is
an erasure regardless of the input.

For the mutltiplexr–erasure channel we have the following
theorem.

Corollary 19: The capacity region of the multiplexer–erasure
MAC with or without feedback is

(49)

where is the marginal probability of having an erasure. More-
over, even if the encoder has noncausal side information, i.e., the
encoders know where the erasures appear noncausally, the ca-
pacity is still given by (49).

Proof: According to Theorem 18, the capacity region is

(50)

where is the capacity of the erasure point-to-point channel.
Diggavi and Grossglauser [47, Theorem 3.1] showed that the
capacity of a point-to-point erasure channel, with and without
feedback, is given by . Since the probability of
having an erasure does not depend on the input to the channel,
we deduce that even in the case where the encoder knows the
sequence noncausally, which is better than feedback, the
transmitter can transmit only a fraction of the time, hence,
the capacity cannot exceed .

5) Multiplexer Followed by the Trapdoor Channel: In this
example, feedback increases the capacity. Based on the fact that
the capacity of the trapdoor channel with feedback[28] is the
logarithm of the Golden ratio, i.e., , the achievable re-
gion of a multiplexer followed by the trapdoor channel is

(51)

C. Source–Channel Coding Separation

Cover, El-Gamal, and Salehi [48] showed that, in general, the
source–channel separation does not hold for MACs even for a
memoryless channel without feedback. However, for the case
where the MAC is a discrete multiplexer followed by a channel
we now show that it does hold.

We want to send the sequence of symbols over
the MAC, so that the receiver can reconstruct the sequence
losslessy. To do this, we can use a joint source–channel coding
scheme where we send through the channel the symbols

and . The receiver looks at his
received sequence and makes an estimate . The
receiver makes an error if or if , i.e., the
probability of error is

Theorem 20: (Source–channel coding theorem for a mul-
tiplexer followed by a channel.) Let be a finite
alphabet, jointly stationary and ergodic pair of processes and
let the MAC channel be a multiplexer followed by a point-to-
point channel with time invariant feedback and capacity

(e.g., a memoryless
channel, an indecomposable FSC without feedback, stationary
and indecomposable FSC without ISI). For the source and the
MAC described above we have the following.

(direct part): There exists a source–channel code with
, if , where is the entropy

rate of the sources and is the capacity of the point-to-point
channel with a time-invariant feedback.

(converse part): If , then the probability of
error is bounded away from zero (independent of the block
length).

Proof: The achievability is a straightforward consequence
of the Slepian–Wolf result for ergodic and stationary processes
[49] and the achievability of the multiplexer followed by a
point-to-point channel. First, we encode the sources by using
the Sepian–Wolf achievability scheme, where we assign every

to one of bins according to a uniform distribution
on , and, independently, we assign every
to one of bins according to a uniform distribution on

. Second, we encode the bins as if they were
messages, as shown in Fig. 5. The error is bounded by the
sum of the maximum error (among all messages) at the MAC
decoder and the error at the source decoder, namely, the error
in the sequence decoding from the bin’s number. Both errors
diminish as .

In the converse, we assume that there exists a sequence
of codes with , and we show that it implies that

. Fix a given coding scheme and consider the
following:

(52)
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Fig. 5. Source–channel coding separation in a discrete multiplexer followed by a point-to-point channel.

Inequality is due to Fano’s inequality, where
. Inequality follows from the data pro-

cessing inequality because form
a Markov chain. Equality is due to the fact that, for a given
code, is a deterministic function of and, similarly,

is a deterministic function of . Equality is
due to the Markov chain .
The notation denotes the output of the multiplexer which
is also the input to the point-to-point channel at time . The
inequality in is due to the data processing inequality which
can be invoked thanks to the fact that given we have the
Markov chain .

By dividing both sides of (52) by , taking the limit ,
and recalling that
we have

(53)

We would like to emphasize that the source–channel coding
separation theorem does not hold when the reconstruction of
the sources is lossy3 (as opposed to the lossless case as in The-
orem 20).

VI. PROOF OF ACHIEVABILITY (THEOREM 9)

The proof of achievability for the FS-MAC with feedback is
similar to the proof of achievability for the point-to-point FSC
given in [27, Sec. V], but there are two main differences.

1) In the case of FSC, only one message is sent, and in the case
of FS-MAC, two independent messages are sent, which
requires that we analyze three different types of errors: the
first type occurs when only the first message is decoded
with error, the second type occurs when only the second
message is decoded with error, and the third type occurs
when both messages are decoded with error.

2) In both cases, we generate the encoding scheme
(code-trees) randomly but the distribution that is used
is different. In the case of FSC we generate, for each
message in a code-tree of length by using
the causal conditioning distribution

, and here we

3Such an example was shown in a talk by Nazar and Gastpar [50], where
the sources � �� are i.i.d. Bernoulli( ), independent of each over, the MAC
channel is � � � �� , and the reconstruction needs to be � � �

rather then the sources themselves. It is easy to see that this can be achieved by
having � � � and � � � , but it cannot be achieved by transmitting
messages through the MAC.

generate for each message in a
code-tree of length by concatenating inde-
pendent code-trees where each one is created with a causal
conditioning distribution .

Encoding Scheme: Randomly generate for encoder
code-trees of length by drawing it

with the fixed distributions . In other words, given
a feedback sequence , the causal conditioning probability
that the sequence will be mapped to a given message is

(54)

where denotes the vector

Note, that such a construction is well defined, since the feed-
back is deterministic and time-invariant. Fig. 6 illustrates the
concatenation of trees graphically. In order to shorten the
notation, we will sometimes use the notation to denote

and we will express the concate-
nation of pmfs in (54) as .

Decoding Errors: For each code in the ensemble, the de-
coder uses maximum-likelihood (ML) decoding and we want
to upper-bound the expected value for this ensemble. Let

be defined as follows:
(type 1 error): probability that the decoded pair

satisfies ;
(type 2 error): probability that the decoded pair

satisfies ;
(type 3 error): probability that the decoded pair

satisfies .
Because the error events are disjoint we have

(55)

In the next sequence of theorems and lemmas, we upper-bound
the expected value of each error type and show that if
satisfies the three inequalities that define then the corre-
sponding goes to zero and hence goes
to zero.

Theorem 21: Suppose that an arbitrary message
enters the encoder with feedback

and that ML decoding is employed. Let denote
the probability of decoding error averaged over the ensemble
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Fig. 6. Illustration of coding scheme for setting without feedback, setting with feedback as used for point-to-point channel [27], and a code-tree that was created
by concatenating smaller code-trees. In the case of no feedback, each message is mapped to a codeword, and in the case of feedback each message is mapped to a
code-tree. The third scheme is a code-tree of depth � created by concatenating two trees of depth �.

of codes when the messages were sent. Then for any
choice of , we get (56)–(58) shown at the bottom
of the page.

The proof is given in Appendix V and is similar to
[27, Theorem 9] only that here we take into account
the fact that there are two encoders rather than one. For
the memoryless MAC, this theorem has been proved
by Kramer [14, eq. (61)], [13, eq. (5.32–5.34)]. There,
the author used the fact that

which holds
for a memoryless channel. The theorem coincides with
Kramer’s result, if we consider the case and .
The remainder of the proof of achievability, given in this
section, diverges from the memoryless case.

Let be the probability of error of type
given that the initial state of the channel is . Also let

and be the rate of the code and

be the sum rate, i.e., . The following theorem
establishes exponential bounds on .

Theorem 22: The average probability of error over the en-
semble, for all initial states , and all , , is bounded
as

(59)

where we get (60)–(63) at the top of the following page.

The proof is based on algebraic manipulation of the bounds
given in (56)–(58). It is similar to the proof of Theorem 9 in
[27] and therefore omitted. There are two differences between
the proofs (and both are straightforward to accommodate): Here
the input distribution is arbitrary
while in [27] we chose the one that maximizes the error expo-
nent. Second, here we bound the averaged error over the en-

(56)

(57)

(58)
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(60)

(61)

(62)

(63)

semble and in [27] we have an additional step where we claim
that there exists a code that has an error that is bounded by the
expression in (59). Because of this difference, the bound on the
probability of error in [27] has an additional factor of .

The following theorem presents a few properties of the func-
tions , such as positivity of the
function and its derivative, convexity with respect to , and an
upper bound on the derivative which is achieved for .

Theorem 23: The term has the following
properties:

(64)

(65)

(66)

Furthermore, equality holds in (64) when , and equality
holds on the left sides of (65) when for .

The proof of the theorem is the same as [51, eq. (2.20)], [17,
Theorem 5.6.3]. In [51] the arguments of
are regular conditioning i.e., , and the channel
is given by , hence the derivative of

with respect to is upper-bounded by
. Here we replace with

and with
and, according to Lemma 3, the upper

bound becomes . The next lemma
establishes the sup-additivity of .

Lemma 24: Sup-additivity of . For any finite-
state channel, , as given by (60), satisfies

(67)

The proof steps are identical to the proof of the sub-additivity
for the point-to-point channel [27, Lemma 12].

Invoking this lemma on the pmf where
we get

(68)

Let us define

(69)

(70)

(71)

where the joint distribution of conditioned on
is given by

Theorem 9 (inner bound) given in Section IV states that for
every and (recall,

) and every there exists an and an
code with a probability of error

(averaged over the messages) that is less than for all initial
states .

Proof of Theorem 9: The proof consists of the following
three steps.

• Showing that for a fixed if
then there exists such that

(72)

• We choose and
show that for sufficiently large

(73)

• From the last step we deduce the existence of a
code s.t.

(74)
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(82)

First Step: for any pair , we can rewrite (59) for
as

(75)

By using (68), which states that ,
we get

(76)

Note that and therefore is contin-
uous in , so there exists a maximizing . Let us show
that if , then

(the cases are identical to ). Let
us define . From Theorem 23, we have that

is zero when , is a continuous function of
, and its derivative at zero with respect to is equal or greater

to , which satisfies . Thus, for each
state , there is a range such that

(77)

Moreover, because the number of states is finite, there exists a
for which the inequality (77) is true for all . Thus,

from the definition of given in (60) and from (77)

(78)

Second Step: We choose a positive number such that
. It follows from (76) that for

every that satisfies

(79)

and according to the first step of the proof, the exponent
is strictly positive.

Third Step: According to the previous step, for all
there exists an such that

for all all and all messages. Since

, then ;
furthermore, for all . By using the
Markov inequality, we have

(80)

and by using the union bound we have

for some

(81)

Because the probability over the ensemble of codes of having
a code with error probability (averaged over all messages) that
is less than for all initial states is positive, there must exist at
least one code that has an error probability (averaged over all
messages) that is less than for all initial states.

Remark: (Extending the proof to feedback with states): In
general, it is not possible to extend the proof of achievability to
the general case where the feedback is any time-varying func-
tion of the channel output. The proof does not carry on because
of two reasons: first, in the generation of random concatenated
code-trees (54), we assumed that the feedback is time-invariant,
and second we used a time-shift in the proof of Lemma 24 (sub-
additivity of ) . However, it is possible to extend
the proof to the case where the feedback has a finite number of
states.

Assume that the feedback is of the form ,
, and , where

are time-invariant deterministic functions and .
This, for instance, includes the case where the feedback

is a function of the –tuple . All the results
above hold for this kind of feedback, only that the state of the
system at time is now , and in all the places,
needs to be replaced with . Hence, the inner region

for this case is given in (82) at the top of the page.

VII. PROOF OF THE OUTER BOUND (THEOREM 10)

The first part of Theorem 10, states that for any FS-MAC,
and any achievable rate-pair , there exists a distribution

such that the following inequalities
hold:

(83)

where goes to zero as goes to infinity.
The proof is identical to the converse proof for memoryless

MAC given by Kramer in [14, Sec. VII-A] or in [13, Proposition
5.1] and is therefore omitted. The proof is based on Fano’s in-
equality and in the proof satisfies ,

where is the inverse binary entropy function. Clearly, if
then also . The second part of Theorem is

stated in the following corollary.

Corollary 25: The outer bound given in (83) implies that
is an outer bound for the capacity region.

Proof: Recall the definition of in (39). Let be
an achievable rate pair. We will create a sequence of rate pairs

that converges to and, therefore,
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by the definition of of a sequence of sets
.

If then we choose .
Otherwise, we choose the closest point in to . Be-
cause of inequality (83), the distance

and, therefore, the sequence converges to
.

We would like to point out that if the probability of initial
state, , is positive for all , then the error prob-
ability given the initial state , i.e., , needs to go to
zero for all . Further, since the messages are indepen-
dent of the initial state, we obtain that for any FS-MAC, and
any achievable rate-pair , there exists a distribution

such that the following inequalities
hold:

(84)

for all , and satisfies

Equation (84) implies that if , then
is an outer bound. (It is easy to observe this from the definition of

that is given in (38).) Finally, since is also achievable
(Theorem 9), we conclude that if , the
capacity region is

VIII. FS-MAC WITHOUT FEEDBACK

The inner and outer bounds given in Theorems 9 and 10 spe-
cialize to the case where there is no feedback, i.e., are
null. The outer bound from Theorem 10, which is given in terms
of limit, can be used to establish a sequence finite-letter outer
bounds for the FS-MAC without feedback. Furthermore, the
inner and the outer bounds can be used in order to extend Gal-
lager’s results [17, Ch. 4] on the capacity of indecomposable
FSCs to indecomposable FS-MACs.

A. Finite-Letter Outer Bound

In order to establish a finite-letter outer bound, we
would like to show that the sequence

, induced by an input distribution of the
form , is sub-additive. However,
unlike the FSC case, the fact that

(85)

does not necessarily imply that for any input distri-
bution , there exist two

input distributions and
, where that satisfies

(86)

The Inequality (85) does not imply (86), since an input distribu-
tion of the form cannot be always
decomposed as

(87)

Even if there is no feedback, namely, and are null for
all , (87) still does not necessarily hold. Because of this fact,
we introduce the idea of union over distribution ,
rather then maximizing over the initial state .

Recall the definition of . in (41). The following lemma
establishes the subadditivity of and its proof is provided in
Appendix VI.

Lemma 26: (sub-additivity of .) For any FS-MAC, the se-
quence , is sub-additive, i.e.,

(88)

Proof of Theorem 11: The theorem states that for any , the
region is an outer bound, namely, . The following
relation proves the theorem:

(89)

Step follows from Theorem 10. Step follows from
the fact that, for any , . This is easy to observe
since by Lemma 2, we have

. Finally, Step is due to the sub-ad-
ditivity of (Lemma 26). Since is also convex,
closed, an bounded, we can apply Lemma 6 and conclude that

.

B. Capacity of Indecomposable FS-MAC

Since there is no feedback, according to Lemma 4, directed
information becomes mutual information and causal condi-
tioning becomes regular conditioning in all the expressions in
the inner bound (Theorem 9) and outer bound (Theorem 10).

First we establish the sup-additivity of , which is proved
in Appendix VII.

Lemma 27: (sup-additivity of ) For any FS-MAC, the se-
quence , which is defined in (37), is sup-additive, i.e.,

(90)

and therefore exists. Moreover, for an inde-
composable FS-MAC without feedback

, where is defined (39).

Now, recall that Theorem 12 states that for any FS-MAC
without feedback

(91)
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(98)

(99)

Proof of Theorem 12: Since

it is enough to show that if the channel is indecomposable, then
in the limit doe not influence the objective, and
hence, .

Let us denote

(92)

Let and be
the mutual information induced by and

, respectively.
We are proving the theorem by showing that exists a func-

tion that depends on but not on
such that

(93)
and . We have

(94)

and

(95)

where equalities (94 ) and (95 ) are due to the chain rule
of mutual information and equalities (94 ) and (95 ) are

obtain by first conditioning on and then using [17, Lem-
ma 4A.1, p. 112] and the facts that . In
(94 ) we also use the fact that

, which holds because for any FS-MAC,
.

Entropy is uniformly continuous in distribution [52, Theorem
2.7, p. 33], i.e.,

(96)

where and denote the entropy induced by
and , respectively. Hence, we have

(97)

where is the total variation distance between

and

Now, we show that is arbitrarily small for large . See (98)
at the top of the page. Moreover, for any there exists an

such that for all , we get the expression (99)
also shown at the top of the page, where in inequality , we
used the fact that (there
is no feedback), and in inequality , we used the indecompos-
able assumption, which is given in (2). Combining (94)–(95)
and (97)–(99), we obtain (93), where

Since can be arbitrary small for large enough, it follows that
can be arbitrary small for large enough.
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IX. SUFFICIENT CONDITIONS FOR THE INNER AND OUTER

BOUNDS TO COINCIDE FOR GENERAL FEEDBACK

A. Stationary and Indecomposable FS-MAC Without ISI

A stationary and indecomposable FS-MAC without ISI satis-
fies

(100)

where the initial state distribution is the stationary distribution
. In words, the states are not affected by the

channel inputs.
For the stationary FS-MAC, the sequence is sup-addi-

tive. It follows from the fact that if we concatenate two input
distributions , then

hence . According to Lemma 5,
the limit exists and is equal to

(101)

Next, we prove Theorem 13 that states that for a stationary
and indecomposable FS-MAC without ISI, the inner bound
(Theorem 9) and the outer bound (Theorem 10) coincide and
therefore the capacity region is given by .

For the case that there is no feedback, it was enough to as-
sume that the FS-MAC is indecomposable (Theorem 12), but for
the case where feedback is allowed we need a stronger condi-
tion—that the states evolve independently of the input. To show
that the inner and the outer regions coincide we need to show

that the influence of the initial state vanishes as . If feed-
back is permitted, the initial state influences the evolution of the
channel state even when , through the input. Hence,
in order to avoid the influence of the initial state as ,
we either avoid the influence of the initial state on the input by
not having feedback (Theorem 12), or we need to avoid the in-
fluence of the input on the evolution of the channel state (The-
orem 13).

Proof of Theorem 13: Recall that the inner bound is given
in Theorem 9 as and the outer bound given in Theorem 10
and in Corollary 25 as . Next we show that the
distance between and goes to zero which implies by
Lemma 8 that both limits are equal and therefore the capacity
region can be written as .

Let us consider a specific input distribution denoted by
corresponding to the region of the

outer bound . Let us now consider an input distribution
for inputs corresponding to the inner bound ,

such that it is arbitrary for the first inputs and then it is
.

Now let us show that the term of the inner bound, i.e.,
and the term of the outer bound

are arbitrarily close to each other. This
can be seen in (102) shown at the bottom of the page, where

(a) follows from Lemma 2 that states that conditioning on
reduces or increases the directed information by at most

;
(b) follows from omitting the first elements in the sum that

defines directed information;
(c) follows from the fact that conditioning decreases entropy;
(d) follows from the fact that the Markov chain is indecom-

posable, hence for any , there exists an such that
for any and ,

where is the stationary distribution of ;

(102)

Authorized licensed use limited to: McMaster University. Downloaded on September 2, 2009 at 13:04 from IEEE Xplore.  Restrictions apply. 



PERMUTER et al.: CAPACITY REGION OF THE FINITE-STATE MULTIPLE-ACCESS CHANNEL WITH AND WITHOUT FEEDBACK 2471

(e) follows from Lemma 2 that states that conditioning on
can differ by at most ;

(f) follows from the stationarity of the channel.

Dividing both sides by we get that for any

(103)

Inequality (103) shows that the difference between the upper
bound region and the lower bound is arbitrarily small for large
enough and, hence, in the limit the regions coincide.

B. Indecomposable FS-MAC With Limited ISI

In this subsection, we consider a MAC inspired by Kim’s
point-to-point channel [21]. The conditional probability of the
MAC is given by

(104)

where the distribution of is the stationary distribution ,
and there is also some initial distribution .

This channel is an FS-MAC where the state at time is
and therefore the inner bound (The-

orem 9) and the outer bound (Theorem 10) apply to this
channel. Theorem 13 also holds for this kind of channels,
namely, the capacity region is given by The proof
is very similar, the only difference being that the input for

inputs is constructed slightly differently: it is arbitrary
for the first inputs, then it is as the initial distribution

, and then it is .
It is also possible to represent the channel with an alternative

law, identical to the law of the channel given in (104) for
but for the output is not influenced by the input

and is, with probability , a particular output . Let us
define similarly as but with the alternative law for the
channel. On one hand, it is clear that for all , and
on the other hand the difference between and is at most

because it is possible to use the distribution of the first
inputs, , to create a desired initial distribution and then

use the same input as in . Hence

(105)

The advantage of analyzing rather than analyzing is
that the sequence is sup-additive, i.e.,

, and according to Lemma 5,

. Hence, we can conclude that Theorem 14 holds
for this channel as well, namely, if the capacity of a stationary
and indecomposable FS-MAC with limited ISI is zero without
feedback then it is zero also in the presence of feedback.

X. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we have shown that directed information and
causal conditioning emerge naturally in characterizing the ca-
pacity region of FS-MACs in the presence of a time-invariant
feedback. The capacity region is given as a “multiletter” expres-
sion and it is a first step toward deriving useful concepts in com-
munication. For instance, we use this characterization to show
that for a stationary and indecomposable FS-MAC without ISI,
the capacity is zero if and only if the capacity with feedback is
zero. Further, we identify FS-MACs for which feedback does
not enlarge the capacity region and for which source–channel
separation holds.

For the point-to-point channel with feedback, recent work
has shown that, for some families of channels such as unifilar
channels [26], [28] or the additive Gaussian where the noise
is ARMA [41], [42], the directed information formula can be
computed and, further, can lead to the development of capacity-
achieving coding schemes. One future direction is to use the
characterizations developed in this paper to explicitly compute
the capacity regions of classes of MACs with memory and feed-
back (other than the multiplexer followed by a point-to-point
channel), and to find optimal coding schemes. An additional fu-
ture direction is to use the multiletter capacity region in order to
gain insight for designing good communication schemes, such
as identifying weaker sufficient conditions and, ideally, fully
characterize the conditions under which source–channel sepa-
ration holds as for the point-to-point channel without feedback
[53], [15, Ch. 3].

APPENDIX I
PROOF OF LEMMA 3

Recall that Lemma 3 states that if

(106)

then

(107)

Proof: The sequence of equalities in (108), given at the top
of the following page, proves the lemma, where

(a) follows from the assumption given in (106);
(b) follows from the definition of the functional

given in (22);
(c) follows from Lemma 1 that states that

and the assumption
given in (106);

(d) follows from the definition of directed information.

APPENDIX II
PROOF OF LEMMA 4

Lemma 4 states that if

(109)

then

(110)
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(108)

Proof: The following sequence of equalities proves the
lemma:

(111)

where

(a) follows from multiplying the numerator and denominator
by ;

(b) follows from decomposing the joint distributions
and into causal condi-

tioning distribution by using Lemma 1;
(c) follows from the fact that the assumption of the

lemma given in (109) implies that
. This can be obtained by multiplying

both sides of (109) by and then summing
over all .

APPENDIX III
PROOF OF CONVERGENCE OF SUB-, SUP- ADDITIVITY

Lemma 5, given in Section III-B, states that if is
a sup-additive sequence of regions, then

.

Proof of Lemma 5: From the definitions we have
. Hence, it is enough to show that

.
Let be a point in . Then for every there exists an
and a point such that and . By

induction we prove that for any integer , ,
and this implies that . For we choose
and we get that

(112)

Now assume that it holds for and let us show that it holds
for .

(113)
Now, for any , we can represent as where

, hence

(114)

Because is in , then it implies that it is in as well.
Following (114) and the fact that we obtain

(115)
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For any and for any we conclude the existence of
an element in for which the distance from can be upper-
bounded by

(116)

Because and are arbitrarily small, we can find a sequence
of points that converges to and therefore

, which implies that .

Lemma 6, given in Section III-B, states that if is a sub-
additive sequence of regions, convex and closed then

.

Proof of Lemma 6: From the definitions we have
. Hence, it is enough to

show that . We prove the theorem by showing
that if , then for all .

We observe that for all

(117)

where is due to the sub-additively of and due to
the convexity of . By induction, it follows that
for all .

Let . In the reminder of the proof, we show
that for any . Since , then for any

there exists an increasing sequence of indices
and a sequence of points in , , such that
and for all . This implies that for any ,
there exists an index , such that . Let be
the largest index that . Hence, we have ,
where . Due to the sub-additivity assumption we have

(118)

Equation (118) implies that there exists a point such
that

(119)

where is the maximum norm of a point in the set . Since
the sequence of sets is bounded then is finite (because of the
sub-additivity, one can choose ). Equation
(119) implies that

(120)

and since , then . The distance between
and is bounded by

(121)

were and is an arbitrary positive integer. Finally, since
is closed, then (121) implies that .

APPENDIX IV
PROOF OF LEMMA 17

Lemma 17 states that

(122)

and each condition also implies that
for all .

Proof: Proving the direction is trivial since

(123)

For the other direction, , we have the assumption that
for all input distributions ,

and in particular for the case that and are uniformly
distributed over their alphabets. Directed information can be
written as a Kullback–Leibler divergence, as shown in (124) at
the bottom of the page, and by using the fact that if the Kull-
back–Leibler divergence is
zero, then for all , we conclude that (124)
implies that for all and all

. It follows that

(125)

APPENDIX V
PROOF OF THEOREM 21

See equation (126) at the bottom of the page, where
is the error probability of decoding

(124)
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given that is decoded correctly. Throughout the re-
mainder of the proof we fix the message . For a given
tuple define the event , for each

, as the event that the message is selected in
such a way that which is
the same as , where
is a shorthand notation for and is
a shorthand notation for for .
From the definition of we have (127), also shown at the
bottom of the page, where denotes the indicator function.

any

(128)

where the last inequality is due to inequality (127). By substi-
tuting inequality (128) in (126) we obtain the last equation at
the bottom of the page. By substituting , and rec-
ognizing that is a dummy variable of summation, we obtain
(56) and complete the proof of the bound on .

The proof for bounding is identical to the proof that is
given here for , up to exchanging the indices. For ,
the upper bound is identical to the case of the point-to-point
channel with an input , as proven in [27] where the union
bound which appears here in (128) consists of
terms.

APPENDIX VI
PROOF OF LEMMA 26

Recall the definition of in (41). Lemma 26 states, that for
any FS-MAC

(129)

Proof: We denote . Let
be a fixed distribution. This distribution

induces the distributions and
as follows:

(130)

and

(131)

(132)

We establish the sub-additivity by showing that

(133)

where , ,
and results from the distributions

, , and
, respectively, and the channel.

We have

(134)

(126)

any (127)
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and the last term can be further bounded as shown in (135) at the
bottom of the page. Inequality is due to Lemma 2. Inequality

is because conditioning reduces entropy and because

(136)
for , and any FSC with and without feedback. Equality
is due to the stationarity of the channel and the construction of

, which is given in (131).
We have shown the sub-additivity property holds for the

term in the first inequality of . However, by identical
arguments, one can show that the sub-additivity property
holds for the terms in the last two inequalities, as well.
Since the construction of and

is identical for all cases, it implies
that (88) holds.

APPENDIX VII
PROOF OF LEMMA 27

Recall the definition of and in (37) and (39), respec-
tively. Lemma 27 states that

(137)

and for an indecomposable FS-MAC without feedback
.

Proof of Lemma 27: We notice that if a sequence of sets is
sup-additive then the sequence of the convex hull of the sets is
also sup-additive. Hence, it is enough to prove the sup-additivity
of the sequence without taking the convex hull.

The set is defined by three expressions that involve di-
rected information. Because each expression is sup-additive, the
whole set is sup-additive. We prove that the first expression,
i.e., , is sup-additive (the
proofs of the supper-additivity of the other expressions are sim-
ilar and therefore omitted).

Let be the input distribution that induces the expres-
sion

and

respectively. Let us choose, to be the input dis-
tribution that induces . We
show next, that under this choice of input distribution, we ob-
tain the sup-additivity property given in (138) at the top of the
following page, where

(a) follows the definition of the directed information the fact
that ;

(b) follows the fact that ;
(c) follows Lemma 2 that states that conditioning by can

differ by at most ;
(d) follows from the stationarity of the channel and the fact

that the input distribution satisfies .

According to Lemma 5, since the sequence is sup-ad-
ditive, the limit exists. In the rest of the proof we show that

. Let us denote the same re-
gion as , which is given in (37), but without taking the convex
hull. We now show that . In the first
half of the proof we showed that is sub-additive. Using this
fact, we show now, that any convex combination with rational
weights of any two points from is in

(139)

The left and the right inclusions in (139) are due to the sup-
additivity of . The left inclusion is from the definition of
the sup-additivity, and the right inclusion is due to the fact that
sup-additivity of implies that for any two positive integers

, . (This is shown by induction in (112), (113).)
From (139) we can deduce that for any we can find a

such that . This fact, together with the
trivial fact that , and the fact that the limits of both
sequences exist, allow us to deduce that the limits are the same,
i.e., .

We conclude the proof by showing that, for any input dis-
tribution , the difference between the terms in the
inequalities of and goes to zero as , hence
the distance between the sets of the sequences goes to zero as

(135)
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(138)

(140)

, and, by Lemma 8, the limits of the sequences are the
same as shown in (140) at the top of the page, where

(a) follows from Lemma 2 and the triangle inequality;
(b) follows from the fact that

(c) follows from the same arguments as the proof of The-
orem 4.6.4 in [17] that states this equality for indecompos-
able FSC without feedback (recall also that directed infor-
mation equals mutual information in the absence of feed-
back). The extension of Theorem 4.6.4 in [17] to FS-MAC
is straightforwrd.
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