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Abstract— A distributed lossy compression network with L
encoders and a decoder is considered. Each encoder observes
a source and sends a compressed version to the decoder. The
decoder produces a joint reconstruction of target signals with
the mean squared error distortion below a given threshold. It is
assumed that the observed sources can be expressed as the sum
of target signals and corruptive noises which are independently
generated from two symmetric multivariate Gaussian distribu-
tions. The minimum compression rate of this network versus
the distortion threshold is referred to as the rate-distortion
function, for which an explicit lower bound is established by
solving a minimization problem. Our lower bound matches the
well-known Berger-Tung upper bound for some values of the
distortion threshold. The asymptotic gap between the upper and
lower bounds is characterized in the large L limit.

Index Terms— Asymptotic analysis, distributed source coding,
rate-distortion function, vector Gaussian source.

I. INTRODUCTION

ECENTLY, there has been an increase in the deployment

of sensor applications in wireless networks as parts of
the future Internet of Things (IoT), thanks to the decreasing
cost of sensors. One of the theoretical challenges that arises
in these systems is to reduce the amount of data that is
transmitted in the network by processing it locally at each
sensor. A possible solution to this problem is to exploit the
statistical dependency among the data at different sensors to
get an improved compression efficiency. The multi-terminal
source coding theory aims to develop suitable schemes for
that purpose and characterize the corresponding performance
limits. There have been significant amount of works over
the past few decades in this area, e.g., Slepian-Wolf source
coding [1] for lossless compression, more recent works on
Gaussian multi-terminal source coding and its variants [2], [3],
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[4], [5], [6], [71, [8], [9], [10], [11], [12], [13]. An interesting
regime that has received particular attention (see, e.g., [3])
is when the number of encoders in the network approaches
infinity. This asymptotic regime reflects the typical scenarios
in sensor fusion and is also relevant to some emerging machine
learning applications (esp., federated learning) that leverage
distributed compression to reduce the communication cost
between the central server and a massive number of edge
devices for training a global model.

In the present paper, we study a compression system with
L distributed encoders and a central decoder. Each encoder
compresses its observed source sequence and forwards the
compressed version to the decoder. The decoder is required to
reconstruct the target signals with the mean squared error dis-
tortion below a given threshold. It is assumed that the observed
sources can be expressed as the sum of target signals and
corruptive noises which are generated independently according
to two symmetric multivariate Gaussian distributions. We are
interested in characterizing the minimum required compres-
sion rate as a function of the distortion threshold, which is
known as the rate-distortion function. Our setup is different
from the Gaussian CEO problem [14] in two aspects. Firstly,
the target signals are assumed to form a vector process.
Secondly, the noises across different encoders are allowed to
be correlated with each other. Notice that these two relaxations
do not exist in the original Gaussian CEO problem where
the target signal is a scalar process and the noises across
different encoders are independent. A generalized version of
the Gaussian CEO problem that allows the noises to be sym-
metrically correlated across different encoders is considered
in [5], which establishes, among others, a lower bound on
the rate-distortion function. Unfortunately, this lower bound is
given in the form of a non-trivial minimization program and
consequently is not amenable to direct analytical/numerical
evaluation.

As a main contribution of this work, we derive a closed form
expression of this lower bound by solving the minimization
program explicitly and make a systematic comparison with
the well-known Berger-Tung upper bound [15, Thm 12.1].
It should be mentioned that the symmetry assumption adopted
in our setup is not critical for our analysis. It only helps us
to present the rate-distortion expressions in explicit forms.
We also provide an asymptotic analysis of the upper and lower
bounds in the large L limit, extending Oohama’s celebrated
result [3] for the Gaussian CEO problem.

The rest of this paper is organized as follows. The system
model and some preliminaries are presented in Section II. The
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main results are stated in Section III while their proofs are
given in Sections IV, V and VI. The paper is concluded in
Section VII.

Notation: We basically follow the notation in [5]. Specif-
ically, E[.], (.)7, tr(.) and det(.) represent the expecta-
tion, transpose, trace and determinant operators, respectively.
An L x L diagonal matrix with diagonal entries k1, ..., K, 1S
denoted diag(L)(m7 ...,kL). An L-dimensional all-one row
vector is written as 17. We use X" as an abbreviation of
(X1,...,X,). For a set A with elements a; < ... < ag,
(Way, )ec.a means (wq,, .. .,wq, ). The cardinality of a set X is
denoted |X|. In this paper, the base of the logarithm function
is e.

II. SYSTEM MODEL

Consider a multi-terminal source coding problem with L
distributed encoders and a centralized decoder. There are
L sources (Xi,...,Xz) € RE, which form a zero-mean
Gaussian vector. The encoders observe the noisy versions of
these sources, denoted by (Y7,...,Yr) € RZL, which can be
expressed as

Y—Z:XZ"_Zb 66{1,...,[/}, (D

where (Z1,...,7Z1,) is a zero-mean Gaussian random vector
independent of (X1,...,X). We define X := (Xq,...,
X)), Y = (W,..., ), and Z == (Z1,...,Z1)T. The

distributions of X, Y and Z are determined by their covariance
matrices Yy, >y and Xz, respectively.

The source vector X together with the noise vector Z
and the corrupted version Y generates an i.i.d. process
{(X;,Y;,Z;)}. Each encoder ¢ € {1,...,L} assigns a mes-
sage M, € M, to its observed sequence Y," using an encoding
function ¢\™: R" — M, such that M, := ¢\ (Y}").
Given (My,...,Mj), the decoder produces a reconstruction
(X7, ..., X7) == g™ (M, ..., My) using a decoding func-
tion ¢(™: My x ... My — REx™,

Definition 1: A rate-distortion pair (R, D) is said to be
achievable if for any € > 0, there exist encoding functions
¢§n), ¢e{l,---,L}, and a decoding function g(™) such that

L L
EZlog|Me| < R+e, )
=1
and
1 L n .
7 Z ZE[(Xe,i — X))’ <D+e (3)
=1 i=1

For every D, let R(D) denote the infimum of R such that
(R, D) is achievable. We shall refer to R(D) as the rate-
distortion function.

A. Preliminaries

For a given L x L matrix

a [ ... g
P L 4)
BB ... a
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it follows by the eigenvalue decomposition that we can write
I =0A07, ®)

where © is an arbitrary unitary matrix with the first column

being % 17 and

A :=diag®(a+ (L —1)8,a—f,...,a— f3). (6)

In this work, we assume that the covariance matrix ., * €
{X,Y, Z}, can be written as

o2 puo? ... peo?
. p*fff 0? p*?f | -
po? po? L. P
for some o, and p.. Therefore, we can write
¥, = 0A,07, ®)
where
A= diag™ (A, ves 0 70) ©)
with
A= (1+ (L = Dps)o?, (10)
Yo = (1 = pa)o?. (10b)

Note that it suffices to specify ¥ x and ¥y since Xy = Xx +
Yz (ie., 02 = 0% + 0% and pyo? = pxo% + pzod). It is
also clear that \y = Ax + Az and vy = yx + 7. To ensure
that the covariance matrices are positive semi-definite and the
source vector X is not deterministic, we assume of( > 0,
0% >0, px € [-15.1] and pz € [—715,1]; we further
assume Yy is positive definite, i.e., min(Ay,yy) > 0.

IIT. MAIN RESULTS

First, we review some results of [5]. The following theorem
gives an upper bound on the rate-distortion function R(D).
Let

AxAz N (L —1)yxvz

Amin = 11
L)\y L’}/y ( )
and
— 1 Ay
D) := =1 1+ —
R(D) := Flog ( + /\Q>
L-1
+ log (1+7—Y>, (12)
AQ
where \g is a positive number satisfying
Ax
Ax (11— ——F——
* ( Ay + AQ)
X
+(L-1 l————— ) =1LD. 13
(L= (1= =) 13

Theorem 1 (Upper Bound of Thm 2 in [5]): For D €
(dmin, 0% ), we have

R(D) < R(D).
Sketch of Proof of Theorem 1: See Appendix A.

(14)
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Remark 1: Tt can be observed that R(D), given in (12),
is expressed as the sum of two terms. These two terms
correspond to the compression rates required for the larger
eigenvalue \y and the smaller eigenvalue -y, respectively.
The second term has the coefficient L — 1, which is consistent
with the fact that the eigenvalue ~y appears L — 1 times in
the diagonal matrix Ay . A similar observation can be made
for the distortion expression as given in (13).

Next, we review a result of [5], which provides a lower
bound on the rate-distortion function R(D) in the form of a
minimization program. Define
Ay
Ao B,0) = Oy — Aw)a+ Ay Aw

L—-1

2
Ty
+ lo
2 By — B+

£ log 2% >‘W

0

where Ay = min(Ay, ’)/y). Let R(D) be the solution of the
following optimization problem:

1
3 log

5)

R(D) = 1{15{15 N, 3,9), (16a)
0<a<y, (16b)
0<8<9, (16¢)
0< 4, (16d)
§< (a7t A =AY (16e)
S< (BT A =) (16f)

A2+ Ax — AR
+ (L= w?6+7x =7k w') < LD.
(16g)
Theorem 2 (Lower Bound of Thm 2 in [5]): For D €
(dmin, 0% ), we have
R(D) = R(D).
Sketch of Proof of Theorem 2: See Appendix B.

In the following, we derive the explicit solution of the above
program. Define the following rate-distortion expressions:

A7)

¢(D) if D<DS
RE(D) i § D) iD= D (18)
RS(D) if D > DG,
: RE(D) it D <D
R(D) := @i( ) 1 = Tt (19)
RS(D) if D > D,
where
c L+1 _
R§(D) := log(L + 1)7§7y1(LD —Ax
—(L-Dyx =W
—1
AP0y + (7 = agH ™)
1 -1
QIOg)‘X'YX ()\Y’YY - 1)
L L-1
+ 5 log =, (20)
Ry (D) := 2L Llog(2L — 123y (LD - ax

—(L-D(vx — 7% ) + A

+ (L= D O = %71)‘1)

L—1 - ~ -
+ log VXA (w Ayt — 1)1
Ll

5 log

(L — 137y "

0g
2 °LD-\x—(L—

P

Df == A Ay — )"

1 _ _
+ Z((L = Dvx(vx" =) + Ax),

=7k Oy =)

+ %((L — vy + X205 = AY).

Moreover, define the following parameters:

2

IZ

IZ0

and

250

1 4L

2\/1_L >‘2>‘Y2X’YY,
1 4L 9
2\/1—L—A2AY X’Yy,

- 5\/1 — 4LV,

1 o _
+ 5\/1 — ALVE NP2,

N =N =N = N =
_|_

1
= 7 (M@= Dx = ROy =)

+(L =750y — )
—p2(L = Dvxyy (L= Ay

1 _ _ _
+ Egﬂyl(}w’yyl -1) 1)7

1
= 7 (A @ = Dx = ROy =)

+(L =750y — )
— (L =175y (L= Ayt ™!

1 _ _ _
+ Eﬁ(kyl(kyvyl -1) 1)7

1
= 7 (A @ = Dx = ROy =)

+(L—1)7vx Ay =)t
1
— (L= Dvxry (L= Ayt ™

+ XA vyt = 17,

1
¢:'Z<Ax-+(L—*nvx-—ki(AY-—WYTJ

+(L =%y —w) !
1
- (- Dyxyy (L= Ayh) ™

A vt = 1)),
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21

D(vx —v%w")’

(22)

(23)

(24)

(25)

(26)

27)
(28)

(29)

(30)

€1V

(32)

(33)
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Theorem 3 (Lower Bound): The lower bound R(D) is
completely characterized as follows.
o Ay >y
DI X398 > B3R AT orif Ai0d < 79k Ad
and po < 7‘; then for D € (din, 0% ), we have

R(D) = R(D). (34)

2) 2598 < L2930, 1 < 3= and 35 < pp <
1, then for D € (dmin, 0% ), We have

R(D) = {ﬁ(D), D < D1,

35
RYD), D>Dpy.

3) I A2 < L3N, i > = and pp < 1, then
for D € (dmin, 0% ), we have
R(D), D <D,
R(D) = ¢ R°(D), Dwi <D <Dy, (36)
R(D), D > Dppo.

4) If M8 < 29303, i = 0 and pp = 1 (or
equivalently, if A\x = 0), then for D € (din, 0% ),
we have

R(D) =R(D) 37
e Ty > Ay

D) If 7323 > =043 orif 7323 < £-A%73 and
vy < %, then for D € (dmin, 0% ), we have

R(D) = R(D). (38)
2) If'yg()\% 1/\Q’yy, Vlg%and%<ug<1,
then for D € (din, 0% ), we have
R(D), D<D
E(D) — AE )7 >~ Ath,lv (39)
E (D), D > Dth,1~

3) If ’yg(/\%/ )\X'yy, vy > X and v, < 1, then
for D € (dmm, 0% ), we have

ﬁ(D% D S I5[h,17

R(D) =4 R*(D), Du1 <D <Duna, (40)
R(D), D > Dgppo.

4) If 303 < X493, v = 0 and vy = 1 (or

equivalently, 1f vx = 0), then for D € (dmin,0%),
we have

R (4D
Proof: See Section IV. [ |
According to Theorem 3, under some conditions, the lower
bound R(D) matches the upper bound R(D). The gap
between the lower and upper bounds will be investigated in
the following example for some values of the parameters.
Example 1: In this example, we compare the upper bound
R(D) with the lower bound R(D). We set L = 10. In Fig. la
and Fig. 1b, we plot R(D) and R(D) with D € (din,0%)
for the following three cases.
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o Case I: A\x =0.8,vx =1, Ay =5, and 7y = 4. In this
case, we have dy;, = 0.7422 and Ug( = 0.98. As can be
seen from the figure, R(D) coincides with R(D) for all
D € (dwin, 0%), so R(D) is completely determined.

e Case 2: Ax = 0.5, vx = 1, Ay = 6, and 7y = 3.
In this case, we have dpnin ~ 0.646, Dy ~ 0.691,
DS ~ 0.733 and 0% = 0.95. As can be observed
from both figures, R(D) coincides with R(D) for D €
(dmin, Din,1] and consequently R(D) is determined over
this interval (see the diamond-line portion of Fig. 1b).
For D € (Dw,1,D§], R(D) is characterized by R{(D)
(see the plus-line portion of Fig. 1b). For D € (D§,0%),
R(D) is characterized by R5(D) (see the cross-line
portion of Fig. 1b).

o Case 3: Ax =1, vx = 0.45, \y = 12, and vy = 2.4.
In this case, we have dpin = 0.4207, Dy,1 ~ 0.453,
D2 ~ 0.489 and 0% = 0.505. For D € (din, Dun,1] and
D € [Du2,0%), R(D) coincides with R(D) and conse-
quently R(D) is determined over these two intervals (see
the circle-line portion of Fig. 1b). For D € (D1, Din,2),
R(D) is characterized by R{(D) (see the pentagonal-line
portion of Fig. 1b).

As can be observed from Fig. 1a and Fig. 1b, there exists a
gap between R (D) and R(D) in Cases 2 and 3. We plot this
gap, denoted by Ar(D), with D € (din, 0% ) for these two
cases in Fig. Ic and Fig. 1d, respectively.

Now, we proceed to study the asymptotic behavior of the
rate-distortion bounds R(D) and R(D) when L tends to
infinity. In the discussion below, it is necessary to assume that
px,pz € [0, 1]. First, we perform the asymptotic analysis for
R(D). Define

2 92

Ox0z 2 2
D, /2 -0
o_g( +0_%7 PX0Ox +pZUZ )
d?ln = poZU2 (42)
# +Yx7V2Yy
pxo% + pz0y
pxo% + pzoy >0,
DX .— Pxpzagﬂ% + (43)
th,0 pXo_g( +sz% VX
1 —
£:=( X )( py), (44)
I —px py
and
—o0 L ok
R(D):==1o X , 45
(D) 2 g(0§(+0%)D—U§(J% (45)
50 L ’YX’YY
R, (D) := Elog Do d;?m 1ogL
+110 (pxo%k "‘PZaz)(Dgfo - D)
28 "%
(DlhO §’Y§<’Y;1 - D)2
2( th,0 D)(D d?r?m)
1
+0 (Z)’ (46)
s 1 1 1 pPX
D)= —¢VL+ ~logL + =1
Ry (D) := 3¢VL+ plog L+ 5 log(1— )
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10F | R(D)

Q R(D) = Ri(D

R(D)
0.4 0.5 0.6 0.7

0.4 0.5 0.6

D
-3
0.12 4 %10
351
0.1
sl
0.08
25
Q Q
= 0.06 = 2r
< <
15
0.04
n
0.02
05
0 0
0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.42 0.44 0.46 0.48 0.5
D D
© (d)

Fig. 1. (a) Upper bound R(D) with D € (dmin, ag() for the three cases. (b) Lower bound R(D) with D € (dpin, ag() for the three cases. (¢c) Ar(D)
with D € (dmin,0%) for Case 2. (d) Ar(D) with D € (dmin,0%) for Case 3.

_&lpxx =z + (1= pX)oz) and
dyx (p% 0% + pxpz0%) I 2.1
o0 +1 XY
1 R (D) = 5 log DX ;Oo logL
+ @] \/_f s (47) min
41 (1-27%w "
—00 ]_ p2 O'4 2 D d?r?ln
RS (D) ::§10g 2 XQXD_DOO 1 (1— ) 1
(1—py)(ck — D) 1 27 (L= px)?py L
= +0(—=). (48) ol
2py (D — DY) L (D) = = log ——Xs—
- 2 YD —o%vz
Theorem 4 (Asymptotic Expression of Upper Bound): 1 D-—o% 1
1) If pxo%+pzo% =0, then for D € (d55,,,0%), we have 3D _ P~ ) <L> (54)
ﬁ( D) = R (D). (49) Theorem 5 (Asymptotic Expression of Lower Bound):
1) If pxo%+pzo% = 0, then for D € (dS%,, 0% ), we have
2) If pxo% +pzo2 > 0, then for D € (d%,,0%), we have R(D) = R™(D). (55)
Ry (D), D< Do, 2) If pxo% + pza% >0, px > 0and £ > 3, then for
R(D)={ R, (D), D= Do, (50) D e (d%,,,0%), we have
ﬁgo(D)a D > Dﬁloo El (D)a D < DlhOa
Proof: See Section V. (] R(D) = EZO(D>’ D = Dy, (56)
Next, we perform the asymptotic analysis for R(D). Define Rs (D), D > Dy
2 1
— poZUiU% o 3) If pX(Zlé(o—i— pZ;TZW:hg;er > 0 and £ < 55 then for
th,1 Pxﬂg( +p20% min’ e
_1+\/1—452ry2 1 1) Rl (D)v DéDg’no,la
g 9 e E?O(DL Dﬁfl <D< DSSQ)
050 —
D[Oh(:Q — ngZ X ZQ_ +vx E(D) = RTO(D)7 DﬁfZ < D < DSSO’ (57)
PXOX + pz0y o -
1—/1—4¢2 N EEO(D)v D:DthOa
- (52) Ry(D). D> D%,

Authorized licensed use limited to: McMaster University. Downloaded on September 27,2023 at 21:04:16 UTC from IEEE Xplore. Restrictions apply.



7962

0.1

0.82 0.84 0.86 0.88 0.9
D

Fig. 2. A%(D) with px = 0.3, 0% = 1, py = 0.5, 02 = 5 and
D € (Dg°y,Dg2,), where Dg°; & 0.816 and D32, ~ 0.917.

4) If pXUX + pzo% > 0 and px = 0, then for D €

(d%,,0%), we have
R(D) = R3°(D). (58)
Proof: See Section VI. [ |

The following corollary provides the (asymptotic) gap
between R(D) and R(D). Define

A () oo (D1 = DO - D)
" 2 (Dﬁfo = D) (D —d3,)
2
1Og 52 4 (Dg‘loo D) (D d?r?ln)
(59)

Corollary 1: The gap between R(D) and R(D) is given
as follows.
1) If pxo%+pzo% = 0, then for D € (dS%,, 0% ), we have

R(D) — R(D) = 0. (60)

2) If pXUX +pZUZ >0, px > 0and £ > %, then for
€ (d%,,0%), we have

R(D) — R(D) =0. (61)

3) If pxo% —l—pza% >0, px > 0and £ < %, then for

D € (d%,,0%), we have
lim R(D) - R(D)
)0, DgD{;fjl or DZD&‘?Q,
A% (D), Dg; <D < Dgs.
(62)
4) If pXUX + pzo% > 0 and px = 0, then for D €
(d%,,0%), we have

R(D) —R(D) = O(log L). (63)

As can be seen from the above corollary, under the third
condition, the lower and upper bounds asymptotically match
for all D except when D’y < D < Dg’,. Fig. 2 plots the
function Ag;boo)(D), which characterizes the asymptotic gap
between R(D) and R(D) (as L tends to infinity) in the
interval D’y < D < Dg5, for some values of parameters.

IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 70, NO. 12, DECEMBER 2022

IV. PROOF OF THEOREM 3

Before starting the proof, we introduce another representa-
tion of R(D) (defined in (12)—(13)) which will be repeatedly
used in the sequel. Define

A= gt gl (64)
’yl_l = 'y;l + )\51. (65)
Corollary 2: R(D) can be alternatively expressed as
— 1
R(D) = 5 1og()\ "Ay)
I —
+ 2 L iog (T+w A =A8),  (66)
where
NS+ Ax — AR
L =DOEW A = ADTH
+(L - 1(yx =% w") = LD, (67)
or in the following form
_ 1 B B
R(D) = 5 log (1+ Ay (77 - 'yyl))
L—1 _
+ log(v7 '), (68)
where
A+ A = DT A = AR
+(L =) +1x —7xw ') =LD. (69

Now, consider the optimization problem in Theorem 2 as
follows:

(70)
(71)

in 1)
min, (v, 8,6),
s.t. constraints (16b) — (16g).
Based on the fact that Ay > ~y or 7y > Ay, we get two
different cases.

First, consider the case Ay > vy > 0, where we have
Aw = 7y . Thus, the objective function reduces to

fla,d) = 1log A
7 (>\Y —’YY)OZ‘F)\Y’YY
L
+ 5 log 2, (72)
and the constraints (16b)-(16g) are simplified as follows:

0<a<y, (73a)
0<8 <, (73b)
0 <6, (73¢)
§< (ot Hapt = AyhH (73d)
0 <8, (73e)
MAVPa+ Ax — A
+(L -3 B+rx -3 < LD, (730

Since the objective function does not depend on parameter /3,
we can eliminate 3 from the constraints (73b), (73¢) and (73f).
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Thus, we get the following new constraints:

0<a<ly, (74a)

0 <9, (74b)

§< (a7t 4yt =AY (T4c)

§ <y, (74d)

Mg ia 4+ Ax — A

+(L=D)OE N S +x =% w') S LD, (T4e)
Given constraint (74a), the inequality (74c) is more

restricting compared to (74d), so the above constraints
reduce to

0<a<y, (75a)
0<6< (@t +451 = A0 (75b)
MAyZa+ Ax — A3

(L - D)(E w2 +9x —v%w') <LD. (750

Then, the goal is to minimize f(a,d) subject to the
constraints (75), which is a convex program. According to the
KKT optimality conditions, there exist nonnegative Lagrange
multipliers {wi, w2, w3} and optimal solutions (a*,d*) such
that

Ty — Ay
2((\y =)o + Ayvy)
—wa(1+ ('y;l — )\;,1)04*)_2 + w;»,)\%()\;z =0,

+ w1

(76a)

- 2§* +wz + (L= Dwsrkry” =0, (76b)

wi(a® = Ay) =0, (76¢)

wa(6* — (@) P+t = AP h) =0, (76d)
ws(AEAVZa" + Ax — AR

+(L-1)(vx 28" +1x =%y ) —LD) = 0. (76e)

In the following, we consider two different cases for the
Lagrange multipliers.

Case I (ws > 0): In this case, the KKT conditions in (76)
reduce to

Ty — Ay
2((\y =)o + Avqy)
—wa(1+ ('y;l - )\;,1)04*)_2 + w;»,)\%()\;z =0,

+ w1

(77a)
L 2 _—2

- ﬁ —+ wo + (L — 1)&)3’}/X’yy =0, (770b)
wi(a® —Ay) =0, (77c)
= ()t =) T =0, (77d)
w3(AE A2 + Ax — A

+ (L-1)(vx1y 8" +yx =7y ) —LD) = 0. (77e)
Assume that o* and 0* satisfy

M AZa + Ay — A
H(L -6 +yx =Yk w ) =LD. (18

7963

Solving the set of equations in (77) yields

w1 = 07 (793.)
L
wy = o = (L — Dwsviy s, (79b)
L _ _ S\ —
w3 = (26* (]. + (')/Yl — )\YI)O[ ) 2
1 _ _ _ - *\—
+ 5(7}/1 - /\Yl)(l + ('Yyl - /\Yl)a ) 1)
: ()\3(/\{,2

—1
H(L=1)% (L + (' — /\51)0&*)’2) :
(79¢)
Notice that w3z > 0 since Ay > vy . We should make sure that
wg > 0. This gives the following inequality:

1

57 (v = A D+ (! = A Dae)

1 oy
= m)\%x%\ylﬁm (80)

which can be equivalently written as
5 < %Aivﬁ;% (G5t =2h) " +at). @D
Combining the above inequality with (78), we can write
LD < LN (v =)™
+(L =X Ox —w) + Ax
—(L+ DN+ (L +Da" 32 (82)
Define

A= ot (83)

Considering (81) with (77d) and re-arranging the terms yields
the following constraint:

(L -1y (A +t = Aagh) ™

— AN <IN vyt =D)L (84)
Re-arranging the terms in (82) and (78), we have
LD < LNy Oyt — 178
(L= Dvx(vx" =)+ Ax = AN
+ (L + DA,
LD = Ax — A3 Ay
+(EL =D O+t =A™
(L -Dx = 73w )+ AN AL (89)

Thus, we define the following set as the admissible distortion
set:

Di1(A1) = {D € (din, 0%)"
LD < L3N Oyt =17t
H(L =D (k! =)+ Ax = AR
+ (L + DA,
LD = Ax — M3 \!

(L= A+ =A™

+(L=1)(yx = 7% ") + AXA A (86)
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Plugging (77d) into (72) and considering (78) yields the
rate-distortion expression R(D) defined in (66) subject to
constraint (67).

Case 2 (wy = 0): In this case, the KKT conditions in (76)
reduce to

Ay — vy

w1 = — w3 T2, (87a)
! 2((>\y — 'yy)a* + )\y’yy) 32Xy
L 2,.—2

= o5+ /T _ 1) 87b
w3 25*(L_1)7Y7X ’ ( )
wi(a® = Ay) =0, (87¢)
MAGZa + Ax — A
+(L =18 +x =% w ') —LD=0.  (87d)

To solve the above set of equations, we consider two different
subcases: wy > 0 and w; = 0.

Subcase a (w; = 0): Solving the set of equations in (87)
with w1 = 0 yields

* L - > v
o = 2—%)\)(2,\3, - (’Yyl - /\Yl) g (88a)
* L 2,2
O = ST ey VX o
L+1 -
wy = = (LD —Ax — (L= D(vx — 35 h)

A0y + 05 = A7) )

Recalling the definition of A; in (83), considering (88a)
with (88c) and re-arranging the terms, we get the following
equation:

(88¢)

LD = LA Oyt — 1)1
+(L = DOk —wh) + Ax

23T (L A+ DA (89)
Notice that (76d) with wy = 0 implies that
5 < (@) "+t = AT (90)
Moreover, (88a) with the fact that a* < Ay gives
1
w3 > 5)\;{2(/\3/ —vy), ©On

which together with (88c) yields the following constraint
on D:

LD < L/\AQX()\Y - ’yy)71
+ (L -7k (vk' =) + Ax.

Plugging (88a) and (88b) into (90) and re-arranging the terms
give the following condition:

LN Oyt =178
< (L=t +t =A™t

92)

— LA 93)
Combining (93) with (89) yields
LD < Ax — A"
+(L=DOEw A+ =)
Fx =75 ) + ALAAL (94)
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The conditions (89) and (94) define the following distortion
set:

D§(Ar) := {D € (dmin,0%):
LD = L3 vyt = 1)
+(L =Dk (rx" =)+ Ax = A3
+ (L + DA,
LD < Ax — Ay
+EL =D A+ =A™
+(L=D(rx = 7% ) + AN AL}

In summary, for this subcase, D € D§{(Ar) while the constraint
(92) holds. Plugging (88a)-(88c) into (72) gives the rate-
distortion expression R (D) defined in (20).

Subcase b (wy > 0): Here, we get the following solution
to (87):

95)

a* =y, (96a)
PR B B (96b)
2(L — Nwg 7 X
)\—1 o )\—2
w = way — WAL A2, (96¢)
L
Wy = (96d)

2(LD = Ax — (L= D(rx =% w )

Considering the fact that w; > 0 yields the following

constraint:
w5 < ARy — ). ©7)
Combining the above inequality with (96d), we get
LD > LN (v =)~
+L -0k —w)+Ax. 98)

With a similar reason to the previous subcase (by considering
distortion constraints (89) and (94)), we also know that D €
D5(Ar). In summary, for this subcase, the distortion set is
restricted to Df(A;) while constraint (98) holds. Plugging
(96a) and (96b) into (72) while considering (96d) gives the
rate-distortion expression R5(D) defined in (22).

To sum up all of the above cases, we have

R(D) = { g(%

D € Dy(A\r),

D € Di(An), o

where R°(D) is defined in (18).
Next, consider the case vy > Ay > 0, where we have
Aw = Ay. Thus, the objective function (15) reduces to

L-1 "
,0) = lo
16,9) 2 % (v = Ay)B+ Avy
L Ay
—log — 1
+5 log —, (100)
subject to the following constraints:
0<f <y, (101a)
0<d< (B +A" =) (101b)
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AAV20 + Ax — A A
+(L =Dk w B+rx —7%w!) < LD.

Then, the goal is to minimize f (£, J) subject to the constraints
(101). The solution to this convex program can be obtained
following similar steps to the case of Ay > ~y. Under the
condition

)‘X/\ (7[ + Ay 1_'Yy)
< L’YX’YY (v Y>‘Y1_1)

the admissible distortion set is given by

(101¢)

— Lyivi?
(102)

Dao(yr) :={D € (dmin,oi):
LD < vy (wAy! =17
+(L =Dk (x" —wh) +Ax = A3
+ 2L - D)y
LD = Ax — M3 y!

+ (L= DO +x = 7w )
NN A = )T
where we have R(D) = R(D). Moreover, under the condition
NN O+ =) -
> Ik vy = D)7

(103)

Lyvxy?
(104)

the admissible distortion set is given by
D5(71) := {D € (dmin, 0% ):
LD = Lyxwy ' (v Ay =17
+(L =Dk —wh) + Ax = AN
+ (2L - Dvivxry s
LD < Ax — M)
+ (L -1V v +x =73 )
_,_)\%()\;2(71—1 + )\;1 _ 7;1)71}71

where the lower bound takes the expression R°(D) defined
in (19). Thus, the case of vy > Ay can be summarized as

follows:
mm—{@@;

(105)

D € Da(7r),

106
D € D5(v). (106

After characterizing the lower bound under two complement
sets for each of the cases Ay > =y and vy > Ay, it just
remains to explicitly determine the sets Dy (A;) and Da(vr).
According to the definition of the set D1 (A7) in (86), the two
conditions inside the set can be recast as the non-negativity
condition for a certain expression. So, the proof is continued
by investigating the sign of this expression over different
intervals. Similar analyses can be done for Da(v;) as well.
Such steps have been taken in [5, Remark 3] and the result is

IThe inequality constraint inside the set DS(~yr) is implied by the equality
condition on D and constraint (104). A similar statement holds for the sets
D1 (A1), D2(vyr) and D§(Ar). Both conditions on D are included in the
definition of these sets to show that D§ (A7) (resp. D§(vr)) is a complement
of D1(Ar) (resp. Da(y1))-

7965

summarized in the following:

D1(\1)
{D € (dminagg()}
if A2 7_272 )\_2 > —L — 1
X IX 1Y = 4L ’
{D € (dminaUX)} -1
_ - ’YY
if )\X'yX 'y%AYQ < 17 and pp < N
{D S (dmin; Dth 1)}
L-1 Ty
_ if >\X’YX WA < —— 1M ST Ny
and — < 2 <1,
>\Y
{D € (dwmin,Din,1) U (D2, 0%)}
. L—1 Yy
if /\%{’YX ’yy)\ < — i ,u1>E
and po < 1,
_ L—-1
0 if M Ay” < 7 M =0
and ps =1,
(107)
and
Da(71)
{D 6( minvo-g()} 1
if YA —
1 ’YX Y’YY = 4L’
{D S (dmiruag()}
1 Ay
if ’)/X)\ 2)\ ')/Y < Eandug < ’y—Y
{D S (dmiru IA)lh 1)}
1 Ay
- if 'yX/\)\ QAY'yY i ,v1 < 'Y_Y
and ¥ <y <1,
Y
{D S (dmiru Dth 1) U (Dth 25 Ug{)}
Ay
if 73y QAY'yY < — AR > ’Y_Y
and vy < 1,
1
f 2\—2\2 . —2 i —
0 if YAV Yy < 4L’V1 0
and 1o = 1.
(108)

This completes the proof.

V. PROOF OF THEOREM 4
First, notice that the distortion constraint in (13) can be
written as
Ax + (L —1)yx — LD))%2
+(d17y + (L = 1)d2 Ay — d3(vy + Av)) Ao
— @3Ayyy =0,

where ¢1 := A\A A1, ¢2 = 147y and @3 := LD + ¢1 +
(L—1)¢2 — (Ax + (L —1)yx). The equation in (109) can be

(109)
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equivalently written as
aXg +brg +c=0, (110)

where a := (6% —D)L, b := g1 L>+goL and ¢ := h1 L?>+hsL

and
(111)
(112)

g1 = pxpzaxaz + (PXJX +pz0y)(vx — D),
g2 = 0% (vz +v) — pxoxx — 2 D,
hy = pxpzaggaé’w
+(px0% + pz0%)(x 72 — D)
= ’yY(PXUX + PZUZ)(d?r?m - D),
hy = pxoxVy + pz0y7v% + ¥xv27Y — 15 D.

(113)
(114)

We consider three different cases based on the value of g;.
Casel (g1 > 0): In this case, we have

_ JhZ —
)\Q = w (115)
a
—b+b /1 4ac
= v - (116)
2a
—b+b(1— 28 — 20 | O(L
_ +b( 7+ 0(5)) a17)
2a
¢ ac? 1
= —E—b—g—i—O(ﬁ) (118)
_h1L+h2 B (Ug( — D)(hlL—l-hg)Q
g1L + g2 (1L + g2)?
1
+ 0 (ﬁ) (119)
hiL + ho g2 1
_ 1 22 il
gL ( gL +O(L2))
ek -Dm (1
7L +0 Iz (120)
_a_(la_ph k- DiEY 2
91 91 9% gf L
1
+0 (ﬁ) (121)
—m+20(g). (122)

where (117) follows because \/1 +r=1+4z— —x —|—O( 3)
and (120) follows because 1+_z =1- :c + O( 2). Now,
plugging the above into (12) yields

1 Ay +Ag  L-—-1 Yy + Ag
-1 1
2 08 )\Q * 2 08 /\Q
1 A +m+2+0(4:)
2% T+ B+ 0(%)
’Y)/-|—771-|—nz +O(L2)
+ log ne 1
2 m+ £+ 0(z)
1
=—mgcr+@—4wyw%+m
1 —
+ 2 0() (m+ B +0(7y))

L-1, Ty +m+ 2 +0(5)
2 ® m+ 2 +0(F)

(123)

(124)

(125)
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2

L-1 T +m
1
T g( " +L771+O(L>)

1 L
- —1og( PYOY L o ))
m

1-— 126
(-tn+o(s)) w9
1 L
= —1og< pYUY )
2
L-1 Yy +mo Yy
+ lo ( -
2 BTy Lng
1
+0 <—2> ) (127)
py o3
= 1ogL + —1 og ¥
m+y
L
+_1Og7l1+’YY_ 2y
2 m 2m(m +v)
1
o= 128
+ (L) (128)
1 1. pxok +pzo3
= log L+ = log PXOX T P297
2 BT Ty
L. m+yy 27y
+ —1lo -
2 F Ty 2m(m +y)
1
— 12
+0<L>, (129)
where (126) follows because = = 1 — z + O(2?) and
(128) follows because log(1 + x) = z + O(z?). With some

straightforward calculations, we can show that each term of
the above expression can be written as follows:

1 o pxo% + pzos,

2 m+ vy
1 _
= 5 log7x” (pxpzo§(0%
+ (pxox + pzoy)(yx — D)),

L
_1Og771+7Y

2 m

(130a)

L
=3 log V% (pxo% + pz0%)
. ((pXU§( +pz0%)(vwD — vx7z2)

1
—PXPZVYU§<U%) ) (130b)
_ Yy 72
2m(m +v)
. 2 2 2 2 2
= vy (oxpzoz — (pxox + pzoz)D)
(Z(poZUXUZ + (PXUX + PZUZ)(’YX - D))

(pXJX + pZO—Z)PyY(D dmln))

=W (o%pz0% — (px0% + pzoy)D)?

. 2(poZU§(U% + (pxagc + PZU%)(’YX - D))
((pxo% + pzo%) (D — vx7z)

—poZ'yyag(U%)) (130c¢)
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Moreover, notice that g1 > 0 and D > 4%, implies
pxag( + pzo'% > 0 and 1 > 0 from (111) and (113).
Considering these conditions, (129)—(130) and simplifying the
terms, we get the first clause of (50).
Case 2 (g1 = 0): We consider two different subcases.
Subcase 1 (pxo3% + pzo% = 0): The distortion constraint

in (13) simplifies to

Lo}
Lo% — —2°X __ _ID 131
Ox O_g( +J%+>\Q ) ( )
or equivalently,

4

(o

X 2 2
3 —D_UX_UZ.
0x

Ag = (132)
Plugging the above solution in (12), we get the rate-distortion
expression in (49).

Subcase 2 (pxo% + pzo% > 0): In this case, we have

IO o=z
Ao = _ : (133)
2L(c% — D)

— gL+ L% —4(0% — D)y

.
.\/(1 G D)hz))

—4(0% — D) L (134)

1 R
= m(— g2L+L2 —4(0’%- — D)hl

O'X —
2 2
) _92_4(UX_D)h2 1
-z oL T Ozz))
(135)
_ [ L 92
B 0% —D 2(c% —D)
95 — Aok — D)hs O(i) (136)
8v/—(0% — D)3h,L L3
1
= a1VL 4 ay + O(—). (137)

VL

Moreover, the condition pxo% + pzoy > 0 together with
0% > D > d, and g; = 0 implies px > 0, vx > 0 and

min

a1 > 0. Then, we get the following:

0'2 0'2
D= PXPEIX0Z (138)
pPxox +pzoy
2 4
0% —D=—LXIX (139)
pPxox +pzoy
hi = —(px0% + pzoy)7%, (140)
92 = (pxo% + PZJ%)_1<— PZYXTX O
— PXYXWOX + PXOXVZ + PxVZ0X
—pxpmxogdf%)? (141)
2 2
a = PXTx +P§Uz)’yx7 (142)
PX0x
_ ; 2 2 2
Qg = 9,2 54 PZYXOx 07 + PXVYXVYOX
Px0x
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- P%{U§(72 - pX'YZU;l(

+ pxpzr1xokod). (143)

Now, we simplify each term of the rate in (12). Consider the
first term of (12) as follows:
1 A A
Zlog XY T
2 AQ
1 Ay 1 Ay + /\Q
Tlog 22X 4 o 22X T 2Q
3 %%, T2 Ty
1 log L(pxoX +pz0%) + v
2 aVL+0(1)
1 A A
Zlog XY FAQ
2 Ay
~ L og L(pxoX +pzo%) +v
2 a1VL+ 0 (1)

()

1 1

()

1 1
=7 log L + 3 logva)_(lag(

of)

where (145) follows from the definition of Ay in (10a) and the
definition of Ag in (137), (146) follows because :\\—3 = O(%)
and log(1 + x) = O(x), (148) follows from the definition of
a1 in (142).
The second term of (12) can be simplified as follows:
L-1
log Yy + Ag
2 )\Q
L-1 Ty
= ——log(l+—
5 log(1 + AQ)

L=1(vw % 1
=—|——=5+0|(—=
2 <)\Q 2>\2Q + L%

_L—l( Y
2 041\/3—}—0424—0(%)

(144)

+ (145)

(146)

2 2
PX0x +pz0oy
aq

(147)

(148)

(149)

(150)

— 732/ + O (i) )
2(a1VL + 0(1))2 L3
L—-17 ny < Qo
= 1- +
2 (al\/z le%
_i 14+0 L +0 i ) (151)
202L VL L3
_wVL vl ﬂ; 202) <L>
20&1 4041 L
pxvvok VL

2vx(px0% + pz0%)
1

4 pxo% + pz0%)* 7%

: ('yy (pxox(vx — px7Vz)
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+(1 +px)pZU§(U%7X))
1
+ 0 (ﬁ)a

where (150) follows because 1—2 =0 (%) and log(1+x) =

z— 3224+ 0(2?), (151) follows because ﬁ =1-2+0(z?).
Considering the fact that g; = 0, using approximations (148)
and (153) and simplifying the terms, we get the second clause
of (50).
Case 3 (g1 < 0): Here, we have

=
2L(c% — D)
+ (1L + g2 L)

(153)

Ag = —i1L* — gL

—4L(c% — D)(h L + th))*”Q) (154)
1
. S (5
2L(c% — D) ( i 92
+ (giL* + (29192 — 4(0% — D)) L?
+ (93— 4(0% - D)h2)L?) 7 (155)
1
S S (5
2L(0% — D) (-o2* -2
1
— 1L (1 + (9192 — 2(0% — D)hi)—7
91
1
+0(73))) (156)
_ g1 g2 — (6% — D)
- 2 L— 2
ox —D oy —D
1
+0 <Z) (157)
_ (x = D)(pxoXk + pz0%) — pxpz0% 0%
_ Lot
Ox
+0(1) (158)
= 5L+ O(1), (159)

where (156) follows because v1+xz = 1+ z + O(z?).
We then use the above approximation to calculate each term
of the rate in (12) as follows:

1
—log M + A
2 /\Q
1. px0% +pzog+ B 1
5 og 3 + O i3 (160)
1
= 5 log pkok ((pxo% +p203)(D = )
2 2\ ! 1
—poZUXUZ) + O I ) (161)
and
L—1
log 1Y +Ag
2 )\Q
L—-1 Yy 1
= — | — — 162
> (E o) (162
_ oy L
261+O<L> (163)
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(0% — D)
2(px0% +pz0%)(D —x) = 2pxpz0%0%

o(3)

Considering the fact that g; < 0, using approximations (161)
and (164) and simplifying the terms, we get the third clause
of (50). This concludes the proof.

(164)

VI. PROOF OF THEOREM 5

First, notice that px,pz € [0,1] implies Ay > ~y.
We consider four different cases.

Case 1 (pxo% + pzo% = 0): In this case, the condition
Mg > E2A3 AT s satisfied trivially for all L. So, we are
under the first condition of Theorem 3, and consequently

R(D) =R(D)=R7(D). (165)

This yields the first condition of Theorem (5), where the rate-
distortion expression is given by (55).

Case 2 (pxo% + pzo% >0, px >0, £ > 1): In this case,
we are under the first condition of Theorem 3. This can be
readily verified when vx = 0. When yx > 0, we have

(14 (L —1)px)*(1 = py)?

BN = e 1
_ g2+%+o(é> (167)
> i for all sufficiently large L (168)
> %, (169)

where (168) can be verified by considering & = % (which
implies py > px) and £ > % separately. In summary, the
analysis of this case yields (56).

Case 3 (pxag( —|—pza% >0, px >0 €< %): In this case,
we are under the third condition of Theorem 3. This is because
of the fact that puo < 1,

2 _ 1
M X"y = €+0 (z) (170)

for all sufficiently large L,

AL
171)
and

11 AL o

=g - 5\/1 - mAg(AY%X%%‘, (172)
11 1

- 5_5‘/1_452+O(E> (173)
> Z—’; for all sufficiently large L, (174)

where the last inequality follows because :\’—i =0 (%) Thus,
we continue with approximating D 1, Dw2 and the rate-
distortion expressions. We approximate Dy, ; and Dy o for
large L as follows:

2 2
XpPZO0Ox O
PXP X22 +yx

Dui=—5—"5
M pxo% + pzod
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1—1—\/1—

+O ( ) (175)

1
=Dg:1+0 (—), (176)
’ L
and
oo
Duno = m +yx
pXUX +pZUZ
1—1-42 , _, 1
- fﬁwy +0 <Z> (177)

(178)

oot)

Now, it remains to approximate the rate-distortion expressions.
In the intervals D < Dg°; and D > Dg,, R(D) can be
approximated as in Theorem 4, which leads to the expression
in (50). In the interval Dth 1 <D< Dﬁij, we need to approxi-
mate R°(D). For the rate-distortion expression R°(D), notice
that the second clause of (18) is not active for large L since

L (v =) '+ (L =Dk (k' = ') + Ax
= L*pkpy'oxoy” +O(L)

> LD. (179)

Thus, we need to approximate R (D) defined in (20) for large
L. Consider the following term in the first logarithm. We have
LD = Ax — (L= 1)(yx =7k )
XA Oy + (7 = AT
= L(D - pxo% — (3x =7k w "))
+ Lpg(p;laﬁ(a{;
+(2oxpy' (1= px)okoy” = 7%y ")

~o(3)

= LA+B+O(%). (180)

Thus, plugging the above into R{(D) in (20), we can
approximate the first logarithm as follows:
L+1 o (L+ 1)y 'v%
2 ®LA+B1O (l)

:L+1lg Wk

2 A+L+1( A+ B)

L+1 A—B 1
el +O<Z) (182)

(181)

=3 e 24

L + ~
= log vy 7% (D — px0%

—1
- (7x — %) + oy okor?)
1
+5(D+ i -0k
+px (3px — 2)p§103‘¢a§2) (D — pxo%
1
~ (ix = 7R + Py ok or?)

<0(3)

L+1

= —5— log(pxoX + pz0Z7y %)

(183)
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-((pxagg +pzoz)(D = (vx = 7% )
- PXPZJ§<U%) -
+ %((angc +pz0%)(D
+2(1- %' —x)
- PXPZU§<U%)
((x0% +p203)(D = (1x =% ")
- PXPZJ§<U%) -
+0 (%)
The second logarithm of (20) can be approximated as follows:

1 B B -
5 log X vyt = 1)

1 1 ox \°/1-py

_alogL+§1og<(1—Px) ( Py ))
1

+o<z>.

The third logarithm of (20) can also be approximated as

(184)

(185)

follows:
L 1 1 1
=1 1—— ) =—2 — . 1
2og( L) 2+O(L2> (186)
Plugging (184) and (185) into (20) yields
Ei(D)L !
+ _
= 10g7y17§(<(ﬂxf7§( + pz0%)
-1

(D= (rx =247 = pxpz0%0})

1
+ 3 log L

1 _
+5 (1297357 ((ox 0% + pzo)

—1

(D= (yx =% w ) - pxﬂzd?ﬂf%)

1 2/
syoe(725) (5F)

2 I —px PY

1

ol =

“o(;)
=Ry (D). (187)

The above expression can be further simplified to (53).
Moreover, the two boundary points D = Dg’; and
D = Dth2 can be easily handled by considering the fact
that Ry (DE1) = Ri°(Dgy) and Ry (Di2) = Ri°(Dga)-
In summary, the analysis of this case yields (57).

Case 4 (pxo% + pzoz > 0 and px = 0): In this case,
we are under the second condition of Theorem 3 since

1 1 4L
M1§—§\/1—L—)\y ’Yy (183)
1 1 4L (1—py)? 1
= ___,/1= il
2 2\/ L—l( LQp% +0 L3
(189)
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< z—’; for all sufficiently large L, (191)

and
1> o (192)
:1—%+0(%) (193)
> Z—’; for all sufficiently large L, (194)

and

N AV

_ 0(%) (195)
1L for all sufficiently large L, (196)

where (191) and (194) are due to z—i = 1;;; +O(#). Here,
Du,1 simplifies as follows:

1
D1 = U§( — 031(7;1 + 0O (f) (197)

o 1
= dmin +O (Z)

So, for all D € (d,,0%), the lower bound is given by

RE(D) when L is large enough. It just remains to approximate
R°(D). Notice that the second clause of (18) is active since

Ly — )+ (L= (x =)

(198)

+ Ax
= Lok —okyy') +0(1) (199)
= Ld%, +0(1) < LD. (200)

The rate-distortion expression R5(D) can be approximated as
follows:

(L — 735"

LD —Xx — (L —1)(yx — %75 0)
201)

L
R5(D) = 3 log

4
oy 1

| D—O'g(
= < log - = -
2 wD —0%vz 2D - o3 + J§(7Y1

(3

= Ry (D).

(202)
(203)

In summary, the analysis of this case yields (58). This con-
cludes the proof.

VII. CONCLUSION

We have studied the problem of distributed compression of
symmetrically correlated Gaussian sources. An explicit lower
bound on the rate-distortion function is established and is
shown to partially coincide with the Berger-Tung upper bound.
The asymptotic expressions for the upper and lower bounds
are derived in the large L limit. It is of considerable theoretical
interest to develop new bounding techniques to close the gap
between the two bounds.
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APPENDIX A
SKETCH OF PROOF OF THEOREM 1

The proof is built upon the so-called Berger-Tung bound
[15, Thm 12.1] as summarized in the following lemma.

Lemma I1: Let V := (V4,...,V.)T be an auxiliary ran-
dom vector jointly distributed with (X,Y,Z) such that
X, Z, Yo oeq, .oy {\Veteeq,...oype) — Yo — Vi form
a Markov chain for ¢ = 1,..., L. We have R > R(D) for
any (R, D) such that

R>I(Y;V), (204)

and
D> TE[(X ~EX|V)(X - EX|V)l.  (05)
Let Q := (Q1,...,Qr)" be an L-dimensional zero-mean

Gaussian random vector with covariance matrix
Yo = diag® (g, ..., \o),

where A\g > 0. We assume Q is independent of (X,Y,Z).
Define the following auxiliary random variables:

Ve = X+ Qy, 66{1,...,11}.

Note that the resulting V satisfies the Markov chain constraints
specified in Lemma 1. One can readily complete the proof by
verifying

(206)

(207)

1
I(Y;V) = Elog (1—1—;—;)

L—-1
+ log (1 T ”—Y) (208)
AQ
and
E[(X — EX|V]))" (X — E[X|V])]
Ax
=My [1—-—""T—
X < Ay + /\Q)
X
+(L—-1 1——FF-). 209
( )X ( vt )\Q> (209)
APPENDIX B
SKETCH OF PROOF OF THEOREM 2
Let
(Yy,..., YT = (U,...,U)T + (Wy,..., W7,
(210)
where (Uy,...,Ur)? and (Wy,...,W)T are two mutually

independent L-dimensional zero-mean Gaussian vectors with
covariance matrices Xy > 0 and

Aw = diag® Aw, ..., Aw) = 0. (211)

T
'aUL’i) }'?il
, W)t} e, are constructed in an ii.d.

Then, two auxiliary random processes {(Uy ;, . .
and {(Wy,,...
manner.

According to Definition 1, for any R > R(D) and € > 0,
there exist encoding and decoding functions such that

L
1
~ D log| M| < R+e (212)

=1
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and
1 L n
— Z ZE[(XM ~ X)) <D+e (213)
£=1i=1
The proof is divided to several steps as follows.
A. Simplifying the Rate Constraint
Lower bounding 2 S log|M,| by the standard

information-theoretic arguments as in [5, pp. 2349] yields
1 det(EU) det(Aw)

— log < R+e, (214)
2 det(AU‘M) det(Ay|U’jw)
where
AU\M = _ZE Ji jl)]e{l L}
-(U —Uji)jeqn....oy); (215)
1 A
Ay = — ZE[(YM —Yii)je1, .0}
i=1
(Vi = Yiaieqr,.oy)s (216)
with
Uji = E[U;il(Me)eequ,....3); (217)
Vi = EY|(UMeeq,...ny, Meqr,..ry)- (218)
We also define
§j = ZE[% =Yl ge{l....L}, (@19
i=1
where
Yji = E[Y;:|U}, Mj]. (220)
It is clear that
0; >0, Jjel, L. (221)
Furthermore, since Y* = U + W, j € [1,L], and
(up,...,Up) and (W7, ..., W) are mutually independent,
we have
AY|U,]W = d1ag(L) (51, ceey 6L) (222)
B. Simplifying the Distortion Constraint
We define
Ayiy = ZE M_ Y, 36{1 L}
(VL - Y z)Je{l b (223)
where
Vii = E[Y;il(Me) e, n)- (224)
Clearly,
0<Ayjm X Xy. (225)

With some matrix calculations as in [5, Appendix B], one can
show that

Apiv = ZuEy Ay Sy S + Sy — SuEy Sy,
(226)

Ayium = (A{/‘lM + Ay -2y (227)

7971

Similar to Ay as in (226), one can show that

LSRG - X))

i=1 j=1
= u(Sx Iy Ay Sy Ex + Sy — Ex Iy Ux).
(228)

Combining (228) and (213), we get
r(Sx Iy Ay Sy Ex + Sx — Ex 5y Ex)

< L(D+e). (229)

C. Formulating the Optimization Problem

Considering (214), (221), (222), (225), (227), (229) and
letting ¢ — 0, one can show using symmetrization and
convexity arguments that there exist A with identical diagonal
entries as well as identical off-diagonal entries and ¢ such that

1 det(Xy L Aw
=1 m 5 log = <R, (230a)
0<A=<Yy, (230b)
0<§, (230c)
diag»)(6,...,8) = (A7 + Ay = 2yH) 7
(230d)

r(Ex Sy ALY Sy + By — Bx 2y Ex)

< LD, (230e)
Apin = SuSy ASY Sy 4+ Sy — SuSy' Sy, (2306)

Using the eigenvalue decomposition, we have A =
O diag(a, 3,...,3) ©T for some positive o and f3. So,
inequality (230a) can be equivalently written as

)\2
(/\y - Aw)a + Ay Aw

L— ’YY
+ 1og
(v = Aw)B + v Aw

2
L Aw
— — <
+210g(5 <R,

1og

231)

and (230b)—(230f) reduce to the constraints (16b)-(16g). Thus,
minimizing the left-hand side of (231) over («, 3, d) subject to
the constraints (16b)-(16g) and sending Ay to min(Ay, vy )
yields the desired lower bound.
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